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Abstract—The main objective of this paper is to find a
common solution of split variational inclusion problem and fixed
point problem of infinite family of nonexpansive operators in a
setting of real Hilbert spaces. To reach this goal, the iterative
algorithms which combine Moudafi’s viscosity approximation
method with some fixed point technically proving methods are
utilized for solving the problem. We prove that the iterative
schemes with some suitable control conditions converge strongly
to a common solution of the considered problem. We also show
that many interesting problems can be solved by using our
presented results.

Index Terms—Split variational inclusion problem, fixed point
problem, nonexpansive operators, resolvent operators, strong
convergence.

I. INTRODUCTION

CENSOR and Elfving [11] initially introduced the cel-
ebrated split feasibility problem (SFP), which can be

mathematically formulated as the problem of finding a point
x∗ ∈ C such that Ax∗ ∈ Q, where C and Q are nonempty
closed convex subsets of Rn and Rm, respectively, and A
is an m × n matrix. Also, they proposed an algorithm for
solving such introduced problem. Nevertheless, the algorithm
involves the complicated computations of matrix inverses.
Hereupon, a new iterative algorithm for solving the (SEP)
problem was presented by Byrne [6], namely CQ-algorithm,
which is defined and considered by the following iterative
step:

xn+1 = PC(xn + γAT (PQ − I)Axn), ∀n ≥ 0,

where an initial x0 ∈ Rn, γ ∈ (0, 2/‖A‖2) and PC and PQ

denote the metric projections onto C and Q, respectively.
Thenceforward, the split feasibility problem has been consid-
ered by many authors in many aspect, for more information,
readers may consult [5], [6], [7], [9], [11], [12], [20], [27],
[28], [29] and reference therein. It is worth to mentioning
that the split feasibility problem in finite-dimensional Hilbert
spaces had already been used in practice as a model in
the intensity-modulation radiation therapy (IMRT) treatment
planning, see [11], [12], [13]. Moreover, this formalism is in
itself at the core of the modeling of many inverse problems
in various area of mathematics, physical, medical, technical,
and information sciences, see [10] for more details.

Appropriately, in 2010, Xu [28] extended the split fea-
sibility problem to the case of infinite-dimensional Hilbert
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spaces and proposed a modified CQ-algorithm: Let H1 and
H2 be real Hilbert spaces, A : H1 → H2 be bounded
linear operator. For given x0 ∈ H1, and consider an iterative
scheme via the procedure

xn+1 = PC(xn + γA∗(PQ − I)Axn), ∀n ≥ 0,

where γ ∈ (0, 2/‖A‖2). He proved that his iterative sequence
converges weakly to the solution of the split feasibility
problem, provided that they exist.

Recently, Censor - Gibali and Reich [14] introduced a
concept of Split Variational Inequality Problem (SVIP) which
is formulated as follows: find a point x∗ ∈ H1 such that

〈f(x∗), x− x∗〉 ≥ 0 for all x ∈ C, (1)

and such that the point y∗ = Ax∗ ∈ H2 solves

〈g(y∗), y − y∗〉 ≥ 0 for all y ∈ Q, (2)

where C and Q are closed convex subset of Hilbert spaces
H1 and H2, respectively, A : H1 → H2 is a bounded linear
operator, f : H1 → H1 and g : H2 → H2 are two given
operators. In order to solve (SVIP) problem, they proposed
the following algorithm: let λ be a positive real number and
select an arbitrary starting point x0 ∈ H1. Given the current
iterate xn, compute

xn+1 = P f,λ
C (xn + γA∗(P g,λ

Q − I)Axn)), ∀n ≥ 0, (3)

where γ ∈ (0, 1/‖A‖2), and P f,λ
C and P g,λ

Q are abbreviated
stand for PC(I − λf) and PQ(I − λg), respectively. Under
some suitable conditions imposed upon on the operators f
and g, they proved the weakly convergent result of the gen-
erated sequence {xn} to a solution point of split variational
inequality problem.

To generalize the gorgeously written paper [14], Moudafi
[21] introduced the following Split Monotone Variational
Inclusion (SMVI):

find x∗ ∈ H1 such that 0 ∈ f(x∗) + B1(x∗), (4)

and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗) + B2(y∗), (5)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are set-valued
maximal monotone mappings, A : H1 → H2 is a bounded
linear operator, f : H1 → H1 and g : H2 → H2 are two
given single-valued operators. Moudafi proposed an iterative
method for solving (4) - (5), he showed that the sequence
generated by the proposed algorithm weakly converges to
a solution of split monotone variational inclusion problem.
Note that if C and Q are nonempty closed convex subset
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of H1 and H2, (resp.), and set B1 = NC and B2 = NQ;
where NC and NQ are normal cone to C and Q, (resp.);
then the split monotone variational inclusion problem (4) -
(5) reduces to split variational inequality problem (1) - (2).

On the other hand, let us recall some iterative methods for
solving the fixed point problems of nonexpansive mappings.
We know that most of the methods can be acquired from
Mann’ s iterative procedure [18], namely, for given element
x0 in a nonempty closed convex subset of H , compute

xn+1 = αnxn + (1− αn)Txn, ∀n ≥ 0, (6)

where T is a nonexpansive mapping from such nonempty
closed convex subset of H into itself and {αn} is a control
sequence, which we must impose some control conditions
to force the (weak) convergent result of the sequence {xn}
to a fixed point of T . Meanwhile, to obtain the strong con-
vergence results, it is necessary to apply some regularizing
procedures. In 2000, Moudafi [19] proposed the viscosity
approximation method which is done by considering the
approximate well-posed problem and combining the nonex-
pansive mapping of T with a contraction of a given mapping
f over the nonempty closed convex subset. He proposed an
iterative scheme: given an arbitrary x0 in a nonempty closed
convex subset, compute iterative sequence {xn} generated
by

xn+1 = αnf(xn) + (1− αn)Txn, (7)

where {αn} ⊂ (0, 1) goes slowly to zero. Under this iterative
procedure, the strong convergent result was successfully
obtained.

Motivated by the methods of finding solutions of split
variational inclusion problem and Moudafi’ s viscosity ap-
proximation, Kazmi and Rizvi [22] presented an explicit
viscosity approximation method for approximate a common
solution of fixed point problem for a nonexpansive mapping
and the following type of split variational inclusion problem
and in real Hilbert space: given two set-valued maximal
monotone operators B1 : H1 → 2H1 and B2 : H2 → 2H2 ,
a bounded linear operator A : H1 → H2, and two single-
valued operators f : H1 → H1, g : H2 → H2, the split
variational inclusion problem can be stated that:

find x∗ ∈ H1 such that 0 ∈ B1(x∗), (8)

and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (9)

Further, from now on, we will denote the solution set of the
problem (8) - (9) by

Γ = {x which solves (8) : Ax solves (9)}.

In [22], Kazmi and Rizvi proposed iterative scheme and
proved that such sequences converges strongly to a common
solution of split variational inclusion problem and fixed point
problem. Note that, in fact, the problem that considered by
Kazmi and Rizvi [22] is nothing but the problems (4) - (5),
when the operators f and g in are zero operators.

In the present paper, inspired by the above cited works, we
suggest and analyze the iterative methods for approximating
a common solution of split variational inclusion problem
(8) - (9) and the fixed point problem of infinitely family of
nonexpansive mappings by using the viscosity approximation

method and some fixed point technically proving methods.
Using our results, we can obtain some interesting applica-
tions.

II. PRELIMINARIES

Throughout this paper unless otherwise stated, we let H
be a real Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖. Let C be a nonempty closed convex subset of H .

We denote the strong convergence and the weak con-
vergence of {xn} to x ∈ H by xn → x and xn ⇀ x,
respectively.

Let T be a mapping of H into H . Then, T is said to be
(i) k-contraction if for all x, y ∈ H , there exists k ∈ [0, 1)

such that
‖Tx− Ty‖ ≤ k‖x− y‖;

(ii) nonexpansive if for all x, y ∈ H ,

‖Tx− Ty‖ ≤ ‖x− y‖;

(iii) firmly nonexpansive if 2T − I is nonexpansive, or
equivalently for all x, y ∈ H ,

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉,

where I is denoted for the identity operator on H .
We denoted by Fix(T ) the set of all fixed point of a

mapping T : H → H , that is Fix(T ) = {x ∈ H : x = Tx}.
Next, let us consider a set-valued operator B : H → 2H ,

we define a graph of B by {(x, y) ∈ H × H : y ∈ B(x)},
and denote it by Graph(B). Moreover, an inverse operator
of B, denoted B−1, is defined through its graph, i.e., for
every (x, y) ∈ H ×H,x ∈ B−1y ⇔ y ∈ Bx.

A set-valued operator B : H → 2H is called monotone if
for all x, y ∈ H , u ∈ B(x) and v ∈ B(y) satisfy

〈x− y, u− v〉 ≥ 0.

Such monotone operator is said to be maximal monotone
if there exists no any other monotone operator such that
its graph properly contains the graph of B. Furthermore,
consider a maximal monotone operator B, we note that for
each element x ∈ H and a positive real number λ, there
is a unique element z ∈ H such that x ∈ (I + λB)z. The
operator JB

λ := (I+λB)−1 is called the resolvent of B with
parameter λ, which we know that it is a single-valued and
firmly nonexpansive mapping.

III. CONVERGENCE RESULTS

To deal with an infinitely family of nonexpansive map-
pings, Aoyama et al. [1] gave the following condition and
lemma: let C be a nonempty subset of real Hilbert space
H and let {Tn} be a family of mappings of C into itselt
such that

⋂∞
n=1 Fix(Tn) 6= ∅, and we denote the common

fixed point set of infinitely family of mapping {Tn} by Ω,
that is Ω =

⋂∞
k=1 Fix(Tn). We say that {Tn} satisfies the

AKTT-condition if for each bounded subset B of C,
∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞.

Lemma-AKTT [[1], Lemma 3.2] Let C be a nonempty
closed subset of a real Hilbert space H , and let {Tn} be
a sequence of mappings from C into itself. Suppose that
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{Tn} satisfies AKTT-condition. Then, for each x ∈ C,
{Tnx} converges strongly to a point in C. Furthermore, let
T : C → C be defined by

Tx := lim
n→∞

Tnx ∀x ∈ C.

Then, for each bounded subset B of C,

lim
n→∞

sup{‖Tz − Tnz‖ : z ∈ B} = 0.

It should be noted that, if the sequence {Tn} satisfies the
AKTT-condition and Tx = limn→∞ Tnx for all x ∈ C, then
it is not necessary that Fix(T ) = Ω, for a counterexample,
see [25]. In the sequel, we shall say that {Tn, T} satis-
fies AKTT-condition if {Tn} satisfies AKTT-condition and
Fix(T ) = Ω.

Based on Lemma-AKTT and the concept of AKTT-
condition, we prove a convergence theorem for an iterative
method for approximating a common solution of the prob-
lems (8) - (9) and fixed point problems as follows.

Theorem 1 Let H1 and H2 be two real Hilbert spaces. Let
A : H1 → H2 be a bounded linear operator, B1 : H1 → 2H1

and B2 : H2 → 2H2 be maximal monotone operators, {Tn}
be a family of nonexpansive mappings of H1 into itself such
that {Tn, T} satisfying AKTT-condition and f : H1 → H1

be a k-contraction mapping. For a given x1 ∈ H1 be arbitrary
and let {xn} be a sequence generated by

un = JB1
λ (xn + γnA∗(JB2

λ − I)Axn);
xn+1 = αnf(xn) + (1− αn)Tnun, ∀n ≥ 1, (10)

where {αn} ⊂ (0, 1) satisfies

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞, and
∞∑

n=1

|αn+1−αn| < ∞,

{γn} ⊂ (0, 1
‖A‖2 ), and A∗ is the adjoint operator of A. If

Ω ∩ Γ 6= ∅, then the sequence {xn} converges strongly to
z ∈ Ω ∩ Γ, where z = PΩ∩Γf(z).

Next, in another approaching, to avoid the summable
assumption of sup{‖Tn+1z − Tnz‖ : z ∈ B} over a natural
number n, by AKTT-condition, let us consider the following
Bruck [4]’ s lemma.

Lemma-Bruck [[4], Lemma 3] Let C be a nonempty
closed convex subset of a strictly convex Banach space E and
{Tn} be a sequence of nonexpansive mappings from C into
E. Then there exists a nonexpansive mapping L : C → E
such that Fix(L) =

⋂∞
n=1 Fix(Tn).

Motivated by Lemma-Bruck, He and Guo [17] showed the
following useful fact.

Lemma-HG [[17], Lemma 2.7] Let E be a Banach space,
{Tk} a sequence of nonexpansive mappings on E with⋂∞

k=1 Fix(Tk) 6= ∅, and {ωk} a sequence of positive real
numbers with

∑∞
k=1 ωk = 1. Let L =

∑∞
k=1 ωkTk, Ln =∑n

k=1
ωk

Sn
Tk, and Sn =

∑n
k=1 ωk. Then Ln uniformly

converges to L on each bounded subset S of E.

It should be note by Bruck’ s lemma and He-Guo’ s lemma
that each Ln is also a nonexpansive mapping and Fix(L) =⋂∞

k=1 Fix(Tk).
By using the above fact we obtain the following result.

Theorem 2 Let H1 and H2 be two real Hilbert spaces.
Let A : H1 → H2 be a bounded linear operator, B1 : H1 →
2H1 and B2 : H2 → 2H2 be maximal monotone operators,
f : H1 → H1 be a k-contraction mapping, {Tk} be a family
of nonexpansive mappings of H1 into itself and {ωk} be a
sequence of positive real numbers with

∑∞
k=1 ωk = 1. Let

L =
∑∞

k=1 ωkTk, Ln =
∑n

k=1
ωk

Sn
Tk, and Sn =

∑n
k=1 ωk.

For a given x1 ∈ H1 be arbitrary and let {xn} be a sequence
generated by

un = JB1
λ (xn + γnA∗(JB2

λ − I)Axn);
xn+1 = αnf(xn) + (1− αn)Lnun, ∀n ≥ 1, (11)

where {αn} ⊂ (0, 1) satisfies

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞, and
∞∑

n=1

|αn+1 − αn| < ∞,

{γn} ⊂ (0, 1
‖A‖2 ), and A∗ is the adjoint operator of A.

If
⋂∞

k=1 Fix(Tk) ∩ Γ 6= ∅, then the sequence {xn} con-
verges strongly to z ∈

⋂∞
k=1 Fix(Tk) ∩ Γ, where z =

P⋂∞
k=1

Fix(Tk)∩Γf(z).

IV. SOME APPLICATIONS

Here, we present two interesting problems which can be
solved by using our presented results.

A. Split Minimization Problem
Let us consider the split minimization problem (SNP),

namely

find x∗ ∈ H1 such that x∗ = argminx∈H1
φ(x),

and such that

find y∗ = Ax∗ ∈ H2 such that y∗ = argminy∈H2
ϕ(y),

where φ : H1 → R and ϕ : H2 → R be convex lower
semicontinuous functions. Recall that the subdifferentials of
a function h : H → R at x̄ is the set-valued operator on H
defined by

∂h(x̄) := {z ∈ H : h(x̂) ≥ h(x̄)+〈z, x̂−x̄〉 for all x̂ ∈ H}.

Since ∂φ and ∂ϕ are maximal monotone operators and we
know that

J∂φ
λ = proxλφ and J∂ϕ

λ = proxλϕ,

where proximal operators proxλφ and proxλϕ of φ and ϕ
with parameter λ > 0 defined by

proxλφ(x) = argminu∈H1

{
φ(u) +

1
2λ
‖x− u‖

}
,

for each x ∈ H1

proxλϕ(y) = argminv∈H2

{
ϕ(v) +

1
2λ
‖y − v‖

}
,

for each y ∈ H2.
By taking B1 = ∂φ and B2 = ∂ϕ, the iterative scheme

(11) becomes

un = proxλφ(xn + γnA∗(proxλϕ − I)Axn);
xn+1 = αnf(xn) + (1− αn)Lnun, ∀n ≥ 1,

and we can assert a strong convergence of this proposed
iteration, which solves a common solution of split minimiza-
tion problem (SMP) and fixed point problem for a family of
nonexpansive mappings.
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B. Equilibrium problem

For a nonempty closed convex subset C of a real Hilbert
space H , let us assume that f : C × C → R is a bifunction
satisfying the following condition:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all

x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is a convex and lower
semicontinuous function.

The equilibrium problem is a problem of finding z ∈ C
such that

f(z, x) ≥ 0,

for all x ∈ C. We denote its solution set by EP (f). In
1994, Blum and Oettli [3] asserted that, if the bifunction f
satisfying (A1)-(A4) and let r > 0 and x ∈ H , then there
exists z ∈ C such that

f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0,

for all y ∈ C. Furthermore, if we set

Tr(x) =
{

z ∈ C : f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0,∀y ∈ C

}
,

we have from Combettes and Hirstoaga [15] that
(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive;
(iii) F (Tr) = EP (f)
(iv) EP (f) is a closed convex subset of C.
Recently, Takahashi et al. [24] defined a multivalued

mapping Af of H into itself by

Af (x) =
{
{z ∈ H : f(x, y) ≥ 1

r 〈y − x, z〉,∀y ∈ C}; x ∈ C,
∅ ; x /∈ C.

They proved that EP (f) = A−1
f (0), Af is a maximal

monotone operator with dom(Af ) ⊂ C and

Tr(x) = (I + rAf )−1(x).

If we put B1 = Af and B2 = Ag , where f, g are bifunctions
satisfy (A1)-(A4) that, then ones can see that the problem
of finding x∗ ∈ C such that f(x∗, y) ≥ 0 for all y ∈ C
is equivalent to the problem of finding x∗ ∈ C such that
0 ∈ Af (x∗). Hence, we can obtain a strong convergence
result for a common solution of split equilibrium problem
(SEP), namely

find x∗ ∈ C such that f(x∗, x) ≥ 0 for all x ∈ C,

and such that

find y∗ = Ax∗ ∈ Q such that g(y∗, y) ≥ 0 for all y ∈ Q,

and fixed point problem for a family of nonexpansive map-
pings.

V. CONCLUSION

In this work, motivated by Moudafi’s viscosity approx-
imation method, two iterative algorithms are constructed
for finding a common solution of split variational inclusion
problem and fixed point problem of infinite family of non-
expansive operators in a setting of real Hilbert spaces. The
first one (10), requires some additional conditions on the
considered operators, such as the AKTT-condition. Mean-
while, the second one (11), we do not need to assume any
additional conditions on the considered operators. However,
in the practical point of view, ones may point out that the
first algorithm (10) is more effective. By the way, for further
works, considering the methods for finding a solution of the
more general classes of operators and problems are required.

APPENDIX A
PROOF OF THEOREM 1

Proof: We proceed along several steps.
Step 1. We show that {xn} is a bounded sequence.
Let x̄ ∈ Ω∩Γ. We know that x̄ = JB1

λ (x̄), Ax̄ = JB2
λ (Ax̄)

and x̄ = Tn(x̄) for each n. Also, we note that

‖xn+1− x̄‖ ≤ αnk‖xn− x̄‖+αn‖f(x̄)− x̄‖+(1−αn)‖un− x̄‖.
(12)

On the other hand, we nconsider

2γn〈A∗(JB2
λ − I)Axn, xn − x̄〉

= 2γn〈(JB2
λ − I)Axn, Axn − Ax̄〉

= 2γn[〈(JB2
λ − I)Axn, Axn − Ax̄ + (JB2

λ − I)Axn〉
−‖(JB2

λ − I)Axn‖2]

= 2γn[〈JB2
λ Axn − Axn, Axn − Ax̄〉 − ‖(JB2

λ − I)Axn‖2]

≤ 2γn

[
1

2
‖JB2

λ Axn − Axn‖2 − ‖(JB2
λ − I)Axn‖2

]
= −γn‖(JB2

λ − I)Axn‖2,

since JB2
λ is a nonexpansive mapping. Using this one, we

obtain

‖un − x̄‖2 = ‖JB1
λ (xn + γnA∗(JB2

λ − I)Axn)− x̄‖2

≤ ‖xn + γnA∗(JB2
λ − I)Axn − x̄‖2

= ‖xn − x̄‖2 + γ2
n‖A∗(JB2

λ − I)Axn‖2

+2γn〈A∗(JB2
λ − I)Axn, xn − x̄〉

= ‖xn − x̄‖2 + γ2
n〈AA∗(JB2

λ − I)Axn, (JB2
λ − I)Axn〉

+2γn〈A∗(JB2
λ − I)Axn, xn − x̄〉

≤ ‖xn − x̄‖2 + γn(γn‖A‖2 − 1)‖(JB2
λ − I)Axn‖2, (13)

and in view of {γn} ∈ (0, 1
‖A‖2 ), we get

‖un − x̄‖2 ≤ ‖xn − x̄‖2. (14)

Now, by using (14), the inequality (12) becomes

‖xn+1 − x̄‖ ≤ (1− αn(1− k))‖xn − x̄‖+ αn‖f(x̄)− x̄‖

≤ max
{
‖xn − x̄‖, ‖f(x̄)− x̄‖

1 − k

}
, (15)

for each n ≥ 1. Accordingly, by using an inductive
argument, we can conclude that

‖xn+1 − x̄‖ ≤ max
{
‖x1 − x̄‖, ‖f(x̄)− x̄‖

1− k

}
, ∀n ≥ 1. (16)

This means that {xn} is a bounded sequence, as required.
Subsequently, we have {f(xn)} is a bounded sequence and
also {Tkun} are bounded sequences, for each k.
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Step 2. We show that the sequence {xn} is asymptotically
regular, i.e., ‖xn+1 − xn‖ → 0 as n →∞.

Let M be a constant such that

M = max

{
sup
n≥1

‖f(xn)‖ , sup
k,n≥1

‖Tkun‖
}

.

Since JB1
λ (I+γA∗(JB2

λ −I)A) is a nonexpansive mapping,
we have

‖un − un−1‖ ≤ ‖xn − xn−1‖.

Now, by the definition of {xn}, we notice that

‖xn+1−xn‖ ≤ (1−αn(1−k))‖xn−xn−1‖+2M |αn−αn−1|+Ln,
(17)

where Ln = sup
{
‖Tnz − Tn−1z‖ : z ∈ {un}

}
Subse-

quently, we get

lim
n→∞

‖xn+1 − xn‖ = 0, (18)

as required.
Step 3. We show that limn→∞ ‖Tun − un‖ = 0.
Note that

‖Tnun − xn‖ ≤ ‖Tnun − xn+1‖+ ‖xn+1 − xn‖
≤ αn‖Tnun − f(xn)‖+ ‖xn+1 − xn‖.

Taking n approaches to infinity, we have

lim
n→∞

‖Tnun − xn‖ = 0. (19)

Next, we claim that ‖xn − un‖ → 0 as n →∞. From (13),
we note that

‖xn+1 − x̄‖2 = ‖αnf(xn) + (1− αn)Tnun − x̄‖2

≤ αn‖f(xn)− x̄‖2 + (1 − αn)‖Tnun − x̄‖2

≤ αn‖f(xn)− x̄‖2 + ‖un − x̄‖2

≤ αn‖f(xn)− x̄‖2 + ‖xn − x̄‖2

+γn(γn‖A‖2 − 1)‖(JB2
λ − I)Axn‖2,

this implies

γn(1− γn‖A‖2)‖(JB2
λ − I)Axn‖2

≤ αn‖f(xn)−x̄‖2+‖xn+1−xn‖(‖xn−x̄‖+‖xn+1−x̄‖).
(20)

Since γn(1−γn‖A‖2) > 0, αn → 0 and ‖xn+1−xn‖ → 0
as n →∞, we can conclude that

lim
n→∞

‖(JB2
λ − I)Axn‖ = 0. (21)

Now, the firmly nonexpansiveness of JB1
λ implies that

2‖un − x̄‖2 = 2‖JB1
λ (xn + γnA∗(JB2

λ − I)Axn)− x̄‖2

≤ 2〈un − x̄, xn + γnA∗(JB2
λ − I)Axn − x̄〉

= ‖un − x̄‖2 + ‖xn + γnA∗(JB2
λ − I)Axn − x̄‖2

−‖un − xn − γnA∗(JB2
λ − I)Axn‖2

= ‖un − x̄‖2 + ‖xn − x̄‖2 − ‖un − xn‖2

+2〈un − x̄, γnA∗(JB2
λ − I)Axn〉

≤ ‖un − x̄‖2 + ‖xn − x̄‖2 − ‖un − xn‖2

+2
1

‖A‖2
‖un − x̄‖‖A∗(JB2

λ − I)Axn‖.

This gives

‖un − x̄‖2 ≤ ‖xn − x̄‖2 − ‖un − xn‖2

+2
1

‖A‖2
‖un − x̄‖‖A∗(JB2

λ − I)Axn‖.

Subsequently,

‖xn+1 − x̄‖2 ≤ αn‖f(xn)− x̄‖2 + (1− αn)‖un − x̄‖2

≤ αn‖f(xn)− x̄‖2 + (1− αn)[‖xn − x̄‖2 − ‖un − xn‖2

+2
1

‖A‖2
‖un − x̄‖‖A∗(JB2

λ − I)Axn‖]

≤ αn‖f(xn)− x̄‖2 + ‖xn − x̄‖2 − ‖un − xn‖2

+2
1

‖A‖2
‖un − x̄‖‖A∗(JB2

λ − I)Axn‖,

which is equivalent to

‖un − xn‖2 ≤ αn‖f(xn)− x̄‖2 + ‖xn − x̄‖2 − ‖xn+1 − x̄‖2

+2
1

‖A‖2
‖un − x̄‖‖A∗(JB2

λ − I)Axn‖,

≤ αn‖f(xn)− x̄‖2

+‖xn+1 − xn‖(‖xn − x̄‖+ ‖xn+1 − x̄‖)

+2
1

‖A‖2
‖un − x̄‖‖A∗(JB2

λ − I)Axn‖.

Using this one, from (18), (21) and αn → 0 as n →∞, we
obtain

lim
n→∞

‖un − xn‖ = 0. (22)

This proves the claim. Next, we obtain

lim
n→∞

‖Tnun−un‖ ≤ lim
n→∞

‖Tnun−xn‖+ lim
n→∞

‖xn−un‖ = 0.

(23)
Note that

‖Tun − un‖ ≤ ‖Tun − Tnun‖+ ‖Tnun − un‖
≤ sup{‖Tnz − Tz‖ : z ∈ {xn}}

+‖Tnun − un‖. (24)

Using this one, in view of (23), we have

lim
n→∞

‖Tun − un‖ = 0, (25)

as required.
Step 4. We show that xn → z ∈ Ω ∩ Γ, where z =

PΩ∩Γf(z).
Note that, by (22) and the boundedness of {xn}, by pass-

ing to a subsequence (if necessary), we can assume without
loss of generality that un ⇀ u for some u ∈ H1. Since T
is a nonexpansive mapping, then by Step 3 and in view of
the demiclosedness of T , we know that u = Tu. This means
u ∈ Ω. Further, since un = JB1

λ (xn + γnA∗(JB2
λ − I)Axn),

we know that

xn − un + γnA∗(JB2
λ − I)Axn

λ
∈ B1un,

by passing n to infinity, and using (21) and (22), we can
show that 0 ∈ B1u. This means that u solves (8). Further, by
(22), we have Axn weakly converges to Au. Thus, by using
(21) and applying the demiclosed principle to a nonexpansive
mapping JB2

λ , we obtain that 0 ∈ B2(Au). Therefore, u ∈
Ω ∩ Γ.

Since z = PΩ∩Γf(z), we have

lim sup
n→∞

〈f(z)− z, xn − z〉 = 〈f(z)− z, u− z〉 ≤ 0. (26)
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Finally, we show that xn → z as n →∞. We observe that

‖xn+1 − z‖2 = 〈αnf(xn) + (1− αn)Tnun − z, xn+1 − z〉
= αn〈f(xn)− z, xn+1 − z〉

+(1 − αn)〈Tnun − z, xn+1 − z〉
= αn〈f(xn)− f(z), xn+1 − z〉

+αn〈f(z)− z, xn+1 − z〉
+(1 − αn)〈Tnun − z, xn+1 − z〉

≤ αn

2

[
‖f(xn)− f(z)‖2 + ‖xn+1 − z‖2

]
+αn〈f(z)− z, xn+1 − z〉

+
1 − αn

2

[
‖Tnun − z‖2 + ‖xn+1 − z‖2

]
≤ αnk2

2
‖xn − z‖2 +

αn

2
‖xn+1 − z‖2

+αn〈f(z)− z, xn+1 − z〉

+
1 − αn

2

[
‖un − z‖2 + ‖xn+1 − z‖2

]
≤ αnk2

2
‖xn − z‖2 +

1

2
‖xn+1 − z‖2

+αn〈f(z)− z, xn+1 − z〉+
1 − αn

2
‖xn − z‖2

and so

‖xn+1−z‖2 ≤ (1−αn(1−k2))‖xn−z‖2+2αn〈f(z)−z, xn+1−z〉,
(27)

Since
∑∞

n=1 αn(1− k2) = ∞, we have

lim
n→∞

‖xn − z‖ = 0. (28)

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Proof: By using the similar arguments and techniques
as those showed in proving Theorem 1, we can show that
{xn} is bounded sequence and

‖xn+1 − xn‖ ≤ (1− αn(1− k))‖xn − xn−1‖
+|αn − αn−1|‖f(xn−1)‖
+‖Lnun−1 − Ln−1un−1‖
+|αn − αn−1|‖Ln−1un−1‖, (29)

for each n ≥ 1. Further, we can compute that
∞∑

n=1

‖Lnun−1 − Ln−1un−1‖ ≤ 2

∞∑
n=1

ωn

Sn
M ≤ 2

∞∑
n=1

ωn

ω1
M,

(30)
where M := sup{‖Tmun‖ : m, n ≥ 1}. Since {ωn} is

summable, we obtain that
∞∑

n=1

‖Lnun−1 − Ln−1un−1‖ < ∞.

By using this one, in view of the control conditions on {αn},
we see that

lim
n→∞

‖xn+1 − xn‖ = 0.

By following step 3. of the proof in Theorem 1 we see that

lim
n→∞

‖Lnun − un‖ = 0.

Note that

‖Lun − un‖ ≤ ‖Lun − Lnun‖+ ‖Lnun − un‖

By Lemma III, we have

lim
n→∞

‖Lun − un‖ = 0. (31)

From this point, by replacing T by L and following the lines
proof of Theorem 1, we can obtain the desired result.
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