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Abstract—In this paper, an interactive decision making
method for multiobjective fuzzy random linear programming
problems using expectations and coefficients of variation is
proposed. In the proposed method, it is assumed that the
decision maker intends to not only maximize the expected de-
grees of possibilities that the original objective functions attain
the corresponding fuzzy goals, but also minimize coefficients
of variation for such possibilities, and such fuzzy goals are
quantified by eliciting the corresponding membership functions.
Using the fuzzy decision, such two kinds of membership
functions are integrated. In the integrated membership space,
a satisfactory solution is obtained from among an EV-Pareto
optimal solution set through the interaction with the decision
maker.

Index Terms—multiobjective programming, fuzzy random
variables, expectations, coefficients of variation, fuzzy decision,
interactive method.

I. I NTRODUCTION

In the real world decision making situations, we often
have to make a decision under uncertainty. In order to
deal with decision problems involving uncertainty, stochastic
programming approaches [1], [2], [3], [6] and fuzzy pro-
gramming approaches [12], [14], [20] have been developed.
Recently, mathematical programming problems with fuzzy
random variables [11] have been proposed [13], [15], [16]
whose concept includes both probabilistic uncertainty and
fuzzy one simultaneously. Extensions to multiobjective fuzzy
random linear programming problems (MOFRLP) have been
done and interactive methods to obtain the satisfactory so-
lution for the decision maker have been proposed [7], [9],
[15]. In their methods, it is required in advance for the
decision maker to specify permissible possibility levels in
a probability maximization model or permissible probability
levels in a fractile optimization model. However, it seems
to be very difficult for the decision maker to specify such
permissible levels appropriately. From such a point of view,
a fuzzy approach to MOFRLP, in which the decision maker
specifies the membership functions for the fuzzy goals of
both the original objective functions and the corresponding
permissible levels has been proposed [17]. In the proposed
method, it is assumed that the decision maker adopts the
fuzzy decision [5], [14] to integrate the membership func-
tions. As a natural extension of such a method, interactive
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fuzzy decision making methods for MOFRLP to obtain the
satisfactory solution from among an extended Pareto optimal
solution set have been proposed [18], [19]

In this paper, it is assumed that the decision maker intends
to not only maximize the expected degrees of possibilities [5]
that the original objective functions involving fuzzy random
variable coefficients attain the corresponding fuzzy goals, but
also minimize coefficients of variation for such possibilities
in MOFRLP [8], [10]. In order to deal with such decision
making situations in MOFRLP, we introduce an EV-Pareto
optimal solution concept, in which both the expected degrees
of possibilities and the corresponding coefficients of varia-
tion for such possibilities are integrated through the fuzzy
decision [5], [14]. To obtain an EV-Pareto optimal solution,
minmax problem is formulated. An interactive algorithm is
proposed to obtain the satisfactory solution from among
an EV-Pareto optimal solution set by solving the minmax
problem on the basis of convex programming technique. In
order to illustrate the proposed method, a three-objective
fuzzy random linear programming problem is formulated,
and the interactive processes under the hypothetical decision
maker are demonstrated.

II. M ULTIOBJECTIVE FUZZY RANDOM LINEAR

PROGRAMMING PROBLEMS

In this section, we focus on multiobjective programming
problems involving fuzzy random variable coefficients in
objective functions called multiobjective fuzzy random linear
programming problem (MOFRLP).
[MOFRLP]

min
x∈X

˜̄Cx = (˜̄c1x, · · · , ˜̄ckx) (1)

wherex = (x1, · · · , xn)
T is ann dimensional decision vari-

able column vector.X is a linear constraint set with respect
to x. ˜̄ci = (˜̄ci1, · · · , ˜̄cin), i = 1, · · · , k are coefficient vectors
of objective functioñ̄cix, whose elements are fuzzy random
variables (The symbols ”-” and ”˜” mean randomness and
fuzziness respectively).

In this paper, we assume that under the occurrence of
each scenarioℓi ∈ {1, · · · , Li}, c̃ijℓi is a realization of a
fuzzy random variablẽ̄cij which is a fuzzy number whose
membership function is defined as follows [15].

µc̃ijℓi
(t) =

max
{
1− dijℓi

−t

αij
, 0
}
, t ≤ dijℓi

max
{
1− t−dijℓi

βij
, 0
}
, t > dijℓi

(2)

where the parametersαij > 0, βij > 0 are constants
and dijℓi varies depending on which a scenarioℓi occurs.
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Moreover, we assume that a scenarioℓi occurs with a
probability piℓi , where

∑Li

ℓi=1 piℓi = 1 for i = 1, · · · , k.
By Zadeh’s extension principle, the realizationc̃iℓix be-

comes a fuzzy number which characterized by the following
membership function.

µc̃iℓi
x(y) =


max

{
1− diℓi

x−y

αix , 0

}
, y ≤ diℓix

max

{
1− y−diℓi

x
βix

, 0

}
, y > diℓix

(3)
wherediℓi = (di1ℓi , · · · , dinℓi), αi = (αi1, · · · , αin) ≥ 0,
βi = (βi1, · · · , βin) ≥ 0.

Considering the imprecise nature of the decision maker’s
judgment, it is natural to assume that the decision maker
has a fuzzy goal for each objective function in MOFRLP.
In this paper, it is assumed that such a fuzzy goalG̃i

can be quantified by eliciting the corresponding membership
function defined as follows.

µG̃i
(yi) =


1 yi < z1i
yi − z0i
z1i − z0i

z1i ≤ yi ≤ z0i

0 yi > z0i

(4)

wherez0i represents the minimum value of an unacceptable
level of the objective function, andz1i represents the maxi-
mum value of a sufficiently satisfactory level of the objective
function. By using a concept of possibility measure [5], the
degree of possibility that the objective function value˜̄cix
satisfies the fuzzy goal̃Gi is expressed as follows [9].

Π˜̄cix(G̃i)
def
= sup

y
min{µ˜̄cix(y), µG̃i

(y)} (5)

It should be noted here that if a scenarioℓi occurs with
probability piℓi then the value of possibility measure can be
represent as

Πc̃iℓi
x(G̃i)

def
= sup

y
min{µc̃iℓi

x(y), µG̃i
(y)}. (6)

Using the above possibility measure, MOFRLP can be trans-
formed into the following multiobjective stochastic program-
ming problem (MOSP).
[MOSP]

max
x∈X

(Π˜̄c1x(G̃1), · · · ,Π˜̄ckx(G̃k)) (7)

III. A N EXPECTATION MODEL AND A VARIANCE MODEL

FOR MOFRLP

Katagiri et al.[8], [10] formulated MOFRLP as the multi-
objective programming problems through expectation model
(E-model) and variance model (V-model) respectively. At
First, we explain E-model for MOFRLP formulated as fol-
lows.
[MOP-E1]

max
x∈X

(E[Π˜̄c1x(G̃1)], · · · , E[Π˜̄ckx(G̃k)]) (8)

whereE[·] denotes the expectation operator. In order to deal
with MOP-E1, we introduce an E-Pareto optimal solution
concept.

Definition 1: x∗ ∈ X is said to be an E-Pareto optimal
solution to MOP-E1, if and only if there does not exist

anotherx ∈ X such thatE[Π˜̄cix(G̃i)] ≥ E[Π˜̄cix∗(G̃i)],
i = 1, · · · , k with strict inequality holding for at least onei.

It should be noted here that (6) can be represented as
follows [15].

Πc̃iℓi
x(G̃i) =

∑n
j=1(αij − dijℓi)xj + z0i∑n

j=1 αijxj − z1i + z0i
(9)

Since the probability that a scenarioℓi occurs is piℓi ,
E[Π˜̄cix(G̃i)] can be computed as follows.

E[Π˜̄cix(G̃i)] (10)

=

Li∑
ℓi=1

piℓiΠc̃iℓi
x(G̃i)

=

∑n
j=1(αij −

∑Li

ℓi=1 piℓidijℓi)xj + z0i∑n
j=1 αijxj − z1i + z0i

def
= ZE

i (x)

Then,MOP-E1 can be transformed into MOP-E2.
[MOP-E2]

max
x∈X

(ZE
1 (x), · · · , ZE

k (x)) (11)

Next, consider V-model for MOFRLP. The multiobjective
programming problem based on V-model can be formulated
as follows.
[MOP-V1]

min
x∈X

(V [Π˜̄c1x(G̃1)], · · · , V [Π˜̄ckx(G̃k)]) (12)

subject to

E[Π˜̄cix(G̃i)] ≥ ξi, i = 1, · · · , k (13)

whereV [·] denotes the variance operator, andξi represents
a permissible expectation level forE[Π˜̄cix(G̃i)]. Now, we
denote the feasible set of MOP-V1 as

X(ξ)
def
= {x ∈ X|E[Π˜̄cix(G̃i)] ≥ ξi, i = 1, · · · , k}. (14)

Similar to E-model, in order to deal with MOP-V1, a V-
Pareto optimal solution concept is defined.

Definition 2: x∗ ∈ X(ξ) is said to be a V-Pareto optimal
solution to MOP-V1, if and only if there does not exist
anotherx ∈ X(ξ) such thatV [Π˜̄cix(G̃i)] ≤ V [Π˜̄cix∗(G̃i)],
i = 1, · · · , k with strict inequality holding for at least onei.

It should be noted here thatV [Π˜̄cix(G̃i)] can be repre-
sented as follows [15].

V [Π˜̄cix(G̃i)]

=
1

(
∑n

j=1 αijxj − z1i + z0i )
2
V

 n∑
j=1

d̄ijxj


=

1

(
∑n

j=1 αijxj − z1i + z0i )
2
xTV ix (15)

def
= ZV

i (x)

whereV i is the variance-covariance matrix ofd̄i expressed
by

V i =


vi11 vi12 . . . vi1n
vi21 vi22 . . . vi2n
...

...
. . .

...
vin1 vin2 . . . vinn

 , i = 1, · · · , k, (16)
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and

vijj = V [d̄jj ]

=

Li∑
ℓi=1

piℓid
2
ijℓi −

(
Li∑

ℓi=1

piℓidijℓi

)2

,

j = 1, · · · , n, (17)

vijr = Cov[d̄ij , d̄ir]

= E[d̄ij · d̄ir]− E[d̄ij ]E[d̄ir]

=

Li∑
ℓi=1

piℓidijℓidirℓi −
Li∑

ℓi=1

piℓidijℓi

Li∑
ℓi=1

piℓidirℓi ,

j, r = 1, · · · , n, j ̸= r (18)

Furthermore, the inequalities (13) can be expressed by the
following forms.

n∑
j=1

(
Li∑

ℓi=1

piℓidijℓi − (1− ξi)αij

)
xj

≤ z0i − ξi(z
0
i − z1i ), i = 1, · · · , k (19)

Then, MOP-V1 can be transformed into MOP-V2.
[MOP-V2]

min
x∈X

(ZV
1 (x), · · · , ZV

k (x)) (20)

subject to

n∑
j=1

(
Li∑

ℓi=1

piℓidijℓi − (1− ξi)αij

)
xj ≤ z0i − ξi(z

0
i − z1i ),

i = 1, · · · , k.
From the fact that

∑n
j=1 αijxj−z1i +z0i > 0, xTV ix > 0,

due to the positive-semidefinite property ofVi, MOP-V2 can
be equivalently transformed to MOP-V3
[MOP-V3]

min
x∈X

(ZSD
1 (x), · · · , ZSD

k (x)) (21)

subject to

n∑
j=1

(
Li∑

ℓi=1

piℓidijℓi − (1− ξi)αij

)
xj ≤ z0i − ξi(z

0
i − z1i ),

i = 1, · · · , k,
where

ZSD
i (x)

def
=

√
xTV ix∑n

j=1 αijxj − z1i + z0i
.

It should be noted here thatZE
i (x) and ZSD

i (x) are
the statical values for the same random functionΠ˜̄cix(G̃i).
When solving MOFRLP, it is natural for the decision maker
to consider bothZE

i (x) and ZSD
i (x) for each objective

function Π˜̄cix(G̃i) of MOSP simultaneously, rather than
considering either of them. Moreover, it seems be difficult
for the decision maker to express his/her preference for the
standard deviationsZSD

i (x), i = 1, · · · , k. From such a
point of view, in the following sections, we propose the
hybrid model for MOFRLP, in which E-model and V-model
are incorporated simultaneously, and define an EV-Pareto
optimality concept. In order to derive a satisfactory solution
of the decision maker from among an EV-Pareto optimal
solution set, the interactive algorithm is developed.

IV. EV-M ODEL FORMOFRLP

In this section, we consider the following hybrid model for
MOFRLP, where both E-model and V-model are considered
simultaneously.
[MOP-EV1]

max
x∈X

(
ZE
1 (x), · · · , ZE

k (x),

−ZSD
1 (x), · · · ,−ZSD

k (x)
)

(22)

In MOP-EV1, ZE
i (x) and ZSD

i (x) means the expected
value and the standard deviation of the objective function
Π˜̄cix(G̃i) in MOSP. It should be noted here thatZE

i (x) can
be interpreted as an expected value of the satisfactory degree
for Π˜̄cix(G̃i), but ZSD

i (x) does not mean the satisfactory
degree itself. Here, instead ofZSD

i (x), let us consider the
coefficient of variation defined as follows.

ZCV
i (x)

def
=

ZSD
i (x)

ZE
i (x)

=

√
xTV ix∑n

j=1(αij −
∑Li

ℓi=1 piℓidijℓi)xj + z0i
(23)

By using the coefficient of variationZCV
i (x), we can trans-

form MOP-EV1 into MOP-EV2.
[MOP-EV2]

max
x∈X

(
ZE
1 (x), · · · , ZE

k (x),

−ZCV
1 (x), · · · ,−ZCV

k (x)
)

(24)

In MOP-EV2, we assume that the decision maker has fuzzy
goals for ZCV

i (x), i = 1, · · · , k, and the corresponding
membership functions are defined asµCV

i (ZCV
i (x)), i =

1, · · · , k. In order to elicit the membership function
µCV
i (ZCV

i (x)) appropriately, we can compute a range of
µCV
i (ZCV

i (x)) as follows.

CVimin
def
= min

x∈X

√
xTV ix∑n

j=1(αij −
∑Li

ℓi=1 piℓidijℓi)xj + z0i
(25)

CVimax
def
= max

x∈X

√
xTV ix∑n

j=1(αij −
∑Li

ℓi=1 piℓidijℓi)xj + z0i
(26)

The problem (25) forCVimin is easily solved by apply-
ing a Dinkelbach-type algorithm [4], or a hybrid method
of the bisection method and convex programming tech-
nique. Unfortunately, the problem (26) forCVimax be-
comes a non-convex optimization problem. On the interval
[CVimin, CVimax], the decision maker sets his/her member-
ship functionµCV

i (ZCV
i (x)), which is strictly decreasing

and continuous.
From the point of view that bothZE

i (x) and
µCV
i (ZCV

i (x)) means the satisfactory degree forΠ˜̄cix(G̃i),
we introduce the integrated membership function in which
the both satisfactory levelsZE

i (x) and µCV
i (ZCV

i (x)) are
incorporated simultaneously through the fuzzy decision [5],
[14].

µDi(x)
def
= min{ZE

i (x), µCV
i (ZCV

i (x))} (27)
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Then, MOP-EV2 can be transformed into the following
multiobjective programming problem.
[MOP-EV3]

max
x∈X

(µD1(x), · · · , µDk
(x)) (28)

µDi(x) can be interpreted as an overall satisfactory degree
for the fuzzy goalG̃i. For MOP-EV3, we introduce an EV-
Pareto optimal solution concept defined as follows.

Definition 3: x∗ ∈ X is an EV-Pareto optimal solution
to MOP-EV3, if and only if there does not exist another
x ∈ X such thatµDi(x) ≥ µDi(x

∗), i = 1, · · · , k with
strict inequality holding for at least onei.

In order to generate a candidate of a satisfactory solution
from among an EV-Pareto optimal solution set, the deci-
sion maker is asked to specify the reference membership
values [14]. For the reference membership valuesµ̂ =
(µ̂1, · · · , µ̂k), the corresponding EV-Pareto optimal solution
is obtained by solving the following minmax problem.
[MINMAX( µ̂)]

min
x∈X,λ∈Λ

λ (29)

subject to

µ̂i − ZE
i (x) ≤ λ, i = 1, · · · , k (30)

µ̂i − µCV
i (ZCV

i (x)) ≤ λ, i = 1, · · · , k (31)

where

Λ
def
=

[
max

i=1,··· ,k
µ̂i − 1, max

i=1,··· ,k
µ̂i

]
= [λmin, λmax] (32)

From the definition ofZE
i (x) andµCV

i (ZCV
i (x)), the con-

straints (30) and (31) can be equivalently transformed into
the following forms respectively.

n∑
j=1

(αij −
Li∑

ℓi=1

piℓidijℓi)xj + z0i

≥

 n∑
j=1

αijxj − z1i + z0i

 · (µ̂i − λ), i = 1, · · · , k

(33) n∑
j=1

(
αij −

Li∑
ℓi=1

piℓidijℓi

)
xj + z0i


·µCV

i

−1
(µ̂i − λ) ≥

√
xTV ix, i = 1, · · · , k (34)

The relationship between the optimal solution(x∗, λ∗) of
MINMAX( µ̂) and EV-Pareto optimal solutions of MOP-EV3
can be characterized by the following theorems.

Theorem 1: If x∗ ∈ X, λ∗ ∈ Λ is an unique optimal
solution of MINMAX(µ̂) thenx∗ is an EV-Pareto optimal
solution of MOP-EV3.
(Proof)
Let us assume thatx∗ ∈ X is not an EV-Pareto optimal
solution of MOP-EV3. Then, there existsx ∈ X such that
µDi(x) ≥ µDi(x

∗), i = 1, · · · , k, with strict inequality

holding for at least onei. This implies that

µDi(x) ≥ µDi(x
∗)

⇔ µ̂i −min{ZE
i (x), µCV

i (ZCV
i (x))}

≤ µ̂i −min{ZE
i (x∗), µCV

i (ZCV
i (x∗))}

⇔ max{µ̂i − ZE
i (x), µ̂i − µCV

i (ZCV
i (x))}

≤ max{µ̂i − ZE
i (x∗), µ̂i − µCV

i (ZCV
i (x∗))}

≤ λ∗, i = 1, · · · , k.

This contradicts the assumption thatx∗ ∈ X, λ∗ ∈ Λ is an
unique optimal solution of MINMAX(̂µ). 2

Theorem 2: If x∗ ∈ X is an EV-Pareto optimal so-
lution of MOP-EV3, then there exists a reference mem-
bership valuesµ̂ = (µ̂1, · · · , µ̂k) such thatx∗ ∈ X,
λ∗ = µ̂i − µDi(x

∗), i = 1, · · · , k is an optimal solution
of MINMAX( µ̂)
(Proof)
Let us assume thatx∗ ∈ X, λ∗ = µ̂i − µDi(x

∗) =
max{µ̂i −ZE

i (x∗), µ̂i − µCV
i (ZCV

i (x∗))}, i = 1, · · · , k, is
not an optimal solution of MINMAX(̂µ). Then, there exists
x ∈ X andλ < λ∗ such that{

µ̂i − ZE
i (x) ≤ λ < λ∗

µ̂i − µCV
i (ZCV

i (x)) ≤ λ < λ∗

⇔ µ̂i − µDi(x) ≤ λ < λ∗

⇔ µ̂i − µDi(x) < µ̂i − µDi(x
∗)

⇔ µDi(x) > µDi(x
∗)

for all i = 1, · · · , k. This contradicts the fact thatx∗ ∈ X
is an EV-Pareto optimal solution of MOP-EV3. 2

Unfortunately, since MINMAX(̂µ) is a nonlinear program-
ming problem, it seems to be difficult to solve it directly.
To overcome such difficulties, we consider the following
function with respect to the constraints (33) and (34).

gi(x, λ)
def
=

√
xTV ix− µCV

i

−1
(µ̂i − λ)

·

 n∑
j=1

(
αij −

Li∑
ℓi=1

piℓidijℓi

)
xj + z0i

 ,

i = 1, · · · , k (35)

hi(x, λ)
def
=

 n∑
j=1

αijxj − z1i + z0i

 · (µ̂i − λ)

−
n∑

j=1

(αij −
Li∑

ℓi=1

piℓidijℓi)xj − z0i ,

i = 1, · · · , k (36)

It should be noted here thatgi(x, λ), hi(x, λ), i = 1, · · · , k
are convex with respect tox ∈ X for any fixed λ ∈ Λ.
Let us define the following feasible setX(λ) for some fixed
λ ∈ Λ.

X(λ)
def
= {x ∈ X | gi(x, λ) ≤ 0, hi(x, λ) ≤ 0, i = 1, · · · , k}

(37)
Then, it is clear thatX(λ) is a convex set and satisfies the
following property.

Property 1: If λ1, λ2 ∈ Λ, λ1 ≤ λ2, then it holds that
X(λ1) ⊂ X(λ2).

In the following, it is assumed thatX(λmin) = ϕ,
X(λmax) ̸= ϕ. From Property 1, we can obtain the opti-
mal solution(x∗, λ∗) of MINMAX( µ̂) using the following
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simplealgorithm which is based on the bisection method and
the convex programming technique.
[Algorithm 1]
Step 1: Setλ0 ← λmin, λ1 ← λmax, λ← (λ0 + λ1)/2.
Step 2: Solve the convex programming problem for the
fixed λ ∈ Λ,

min
x∈X

hj(x, λ)

subject to

gi(x, λ) ≤ 0, i = 1, · · · , k,
hi(x, λ) ≤ 0, i = 1, · · · , k,

where the indexj is one of {1, 2, · · · , k}, and denote the
optimal solution asx(λ).
Step 3: If |λ0 − λ1| < δ, go to Step 4, whereδ is a
sufficiently small positive number. Ifgi(x(λ), λ) ≤ 0 and
hi(x(λ), λ) ≤ 0, for any i = 1, · · · , k, set λ1 ← λ,
λ← (λ0+λ1)/2. Otherwise, setλ0 ← λ, λ← (λ0+λ1)/2.
And return to Step 2.
Step 4: Adopt x∗ ← x(λ), λ∗ ← λ as an optimal solution
of MINMAX( µ̂).

V. A N INTERACTIVE ALGORITHM

In Theorem 1, if the optimal solution(x∗, λ∗) of
MINMAX( µ̂) is not unique, the EV-Pareto optimality can not
be guaranteed. In order to guarantee the EV-Pareto optimality
for (x∗, λ∗), we formulate the EV-Pareto optimality test
problem. Before formulating such a test problem, without
loss of generality, we assume that the following inequalities
hold at the optimal solutionx∗ ∈ X,λ∗ ∈ Λ.

ZE
i (x∗) ≤ µCV

i (ZCV
i (x∗)), i ∈ I1 (38)

ZE
i (x∗) > µCV

i (ZCV
i (x∗)), i ∈ I2 (39)

I1 ∪ I2 = {1, · · · , k}, I1 ∩ I2 ̸= ϕ (40)

Under the above conditions, we formulate the following EV-
Pareto optimality test problem.
[EV-Pareto optimality test problem]

max
x∈X,ϵi≥0,i=1,··· ,k

k∑
i=1

ϵi

subject to

ZE
i (x) ≥ ZE

i (x∗) + ϵi, i ∈ I1

µCV
i (ZCV

i (x)) ≥ ZE
i (x∗) + ϵi, i ∈ I1

ZE
i (x) ≥ µCV

i (ZCV
i (x∗)) + ϵi, i ∈ I2

µCV
i (ZCV

i (x)) ≥ µCV
i (ZCV

i (x∗)) + ϵi,∈ I2

The following theorem shows the relationships between the
optimal solution of EV-Pareto optimality test problem and
the EV-Pareto optimal solution for MOP-EV3.

Theorem 3: Let x̌ ∈ X, ϵ̌i ≥ 0, i = 1, · · · , k be an
optimal solution of the EV-Pareto optimality test problem
for (x∗, λ∗). If

∑k
i=1 ϵ̌i = 0, thenx∗ ∈ X is an EV-Pareto

optimal solution.
(Proof)
Assume thaťϵi = 0, i = 1, · · · , k. If x∗ ∈ X is not an
EV-Pareto optimal solution, there exists somex ∈ X such
that µDi(x) ≥ µDi(x

∗),i = 1, · · · , k, with strict inequality

TABLE I
PARAMETERS OF OBJECTIVE FUNCTIONS

ℓ1 = 1 ℓ1 = 2 ℓ1 = 3 α1j , β1j

d11ℓ1 -2.5 -2.0 -1.5 0.4

d12ℓ1 -3.5 -3.0 -2.5 0.5

d13ℓ1 -2.25 -2.0 -1.75 0.4

p1 0.25 0.4 0.35

ℓ2 = 1 ℓ2 = 2 ℓ2 = 3 α2j , β2j

d21ℓ2 -2.5 -2.0 -1.5 0.3

d22ℓ2 -0.75 -0.5 -0.25 0.4

d23ℓ2 -2.5 -2.25 -2.0 0.3

p2 0.3 0.5 0.2

ℓ3 = 1 ℓ3 = 2 ℓ3 = 3 α3j , β3j

d31ℓ3 3.0 3.25 3.5 0.4

d32ℓ3 2.5 2.75 3.0 0.5

d33ℓ3 4.5 4.75 5.0 0.4

p3 0.2 0.45 0.35

holding for at least onei. From the inequalities (38) and
(39), this is equivalent to the following relations.

min{ZE
i (x), µCV

i (ZCV
i (x))}

≥ min{ZE
i (x∗), µCV

i (ZCV
i (x∗))}

=

{
ZE
i (x∗), i ∈ I1

µCV
i (ZCV

i (x∗)), i ∈ I2

As a result, the following inequalities holds.
ZE
i (x) ≥ ZE

i (x∗), i ∈ I1

µCV
i (ZCV

i (x)) ≥ ZE
i (x∗), i ∈ I1

ZE
i (x) ≥ µCV

i (ZCV
i (x∗)), i ∈ I2

µCV
i (ZCV

i (x)) ≥ µCV
i (ZCV

i (x∗)), i ∈ I2

(41)

with strict inequality holding for at least onei ∈ I1 ∪ I2.
Hence, there must exist at least onei such thaťϵi > 0. This
contradicts the assumption thatϵ̌i = 0, i = 1, · · · , k. 2

Now, following the above discussions, we can construct
the interactive algorithm in order to derive a satisfactory
solution from among an EV-Pareto optimal solution set.
[An interactive algorithm]
Step 1: The decision maker sets the membership function
µG̃i

(y), i = 1, · · · , k for the fuzzy goals of the objective
functions in MOFRLP.
Step 2: Considering the intervalCVimin, CVimax, the de-
cision maker sets the membership functionµCV

i (ZCV
i (x)),

i = 1, · · · , k.
Step 3: Set the initial reference membership values asµ̂i =
1, i = 1, · · · , k
Step 4: Solve MINMAX(µ̂) by applying Algorithm 1,
and obtain the optimal solutionx∗ ∈ X,λ∗ ∈ Λ. In
order to guarantee EV-Pareto optimality, solve the EV-Pareto
optimality test problem forx∗ ∈ X.
Step 5: If the decision maker is satisfied with the current
value of the EV-Pareto optimal solutionx∗ ∈ X, then
stop. Otherwise, the decision maker updates his/her reference
membership valueŝµi, i = 1, · · · , k and return to Step 4.

VI. N UMERICAL EXAMPLE

In order to demonstrate the proposed method and the in-
teractive processes, we consider the following three-objective

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



TABLE II
PARAMETERS OF MEMBERSHIP FUNCTIONS

z0i z1i q0i q1i
i = 1 -7.5 -23.8181 0.45 0.25

i = 2 -0.9375 -16.25 0.25 0.08

i = 3 33.5 9.375 0.3 0.03

linear programming problem with fuzzy random variable
coefficients.
[MOFRLP]

min
x∈X

z1(x) = ˜̄c11x1 + ˜̄c12x2 + ˜̄c13x3

min
x∈X

z2(x) = ˜̄c21x1 + ˜̄c22x2 + ˜̄c23x3

min
x∈X

z3(x) = ˜̄c31x1 + ˜̄c32x2 + ˜̄c33x3

whereX = {(x1, x2, x3) ∈ R3
+ | 3x1+2x2+x3 ≤ 18, 2x1+

x2+2x3 ≤ 13, 3x1+4x2+3x3 ≥ 15, x1+3x2+2x3 ≤ 17}
and it is assumed that a realizationc̃ijℓi of a fuzzy random
variable˜̄cij is an triangular-type fuzzy number whose mem-
bership function is defined as (2) where the parametersdijℓi ,
αij , βij are given in Table I. According to (17) and (18), the
variance-covariance matricesVi, i = 1, 2, 3 are computed as
follows.

V1 =

 0.1475 0.1475 0.07375
0.1475 0.1475 0.07375
0.07375 0.07375 0.036875



V2 =

 0.1225 0.06125 0.06125
0.06125 0.030625 0.030625
0.06125 0.030625 0.030625



V3 =

 0.032969 0.032969 0.032969
0.032969 0.032969 0.032969
0.032969 0.032969 0.032969


Let us assume that the hypothetical decision maker sets the
membership functionsµG̃i

(·), µCV
i (·), i = 1, 2, 3 as follows.

µG̃i
(y) =

y − z0i
z1i − z0i

, z1i ≤ y ≤ z0i , i = 1, 2, 3

µCV
i (s) =

s− q0i
q1i − q0i

, q1i ≤ s ≤ q0i , i = 1, 2, 3

where the parametersz0i , z1i , q0i , q1i are given in Table II. The
interactive processes under the hypothetical decision maker
are summarized in Table III.

VII. C ONCLUSION

In this paper, under the assumption that the decision
maker intends to not only maximize the expected degrees of
possibilities that the original objective functions attain the
corresponding fuzzy goals, but also minimize coefficients
of variation for such possibilities, an interactive decision
making method for MOFRLP is proposed. In the proposed
method, a satisfactory solution is obtained from among an
EV-Pareto optimal solution set through the interaction with
the decision maker.

TABLE III
INTERACTIVE PROCESSES

Iteration 1 2 3

µ̂1 1 0.85 0.85

µ̂2 1 1 1

µ̂3 1 0.85 0.75

x∗
1 0.5683 1.0762 0.8326

x∗
2 3.1269 2.1054 2.1693

x∗
3 2.3510 2.8859 3.3730

ZE
1 (x∗) 0.5358 0.4825 0.5214

ZE
2 (x∗) 0.5358 0.6325 0.6714

ZE
3 (x∗) 0.5358 0.4825 0.4214

µCV
1 (ZCV

1 (x∗)) 0.5358 0.5255 0.6209

µCV
2 (ZCV

2 (x∗)) 0.6270 0.6325 0.6714

µCV
3 (ZCV

3 (x∗)) 0.8009 0.7630 0.6732
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