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Interactve Decision Making for Multiobjective
Fuzzy Random Linear Programming Problems
Using Expectations and Coefficients of Variation

Hitoshi Yano, Kota Matsui and Mikiya Furuhashi

Abstract—In this paper, an interactive decision making fuzzy decision making methods for MOFRLP to obtain the
method for multiobjective fuzzy random linear programming  satisfactory solution from among an extended Pareto optimal
problems using expectations and coefficients of variation is solution set have been proposed [18], [19]

proposed. In the proposed method, it is assumed that the - L L .
decision maker intends to not only maximize the expected de- In this paper, it is assumed that the decision maker intends

grees of possibilities that the original objective functions attain t0 not only maximize the expected degrees of possibilities [5]
the corresponding fuzzy goals, but also minimize coefficients that the original objective functions involving fuzzy random
of variation for such possibilities, and such fuzzy goals are variable coefficients attain the corresponding fuzzy goals, but
quantified by eliciting the corresponding membership functions. 5,56 minimize coefficients of variation for such possibilities
Using the fuzzy decision, such two kinds of membership . . .
functions are integrated. In the integrated membership space, In M_OFR_LP [_8]' [1_0]' In order to d_eal with such decision
a satisfactory solution is obtained from among an EV-Pareto Making situations in MOFRLP, we introduce an EV-Pareto
optimal solution set through the interaction with the decision optimal solution concept, in which both the expected degrees
maker. of possibilities and the corresponding coefficients of varia-
Index Terms—multiobjective programming, fuzzy random tion for such possibilities are integrated through the fuzzy
variables, expectations, coefficients of variation, fuzzy decision, decision [5], [14]. To obtain an EV-Pareto optimal solution,
interactive method. minmax problem is formulated. An interactive algorithm is
proposed to obtain the satisfactory solution from among
|. INTRODUCTION an EV-Pareto optimal solution set by solving the minmax

In the real world decision making situations, we ofteRfoPIem on the basis of convex programming technique. In
have to make a decision under uncertainty. In order gyder to illustrate the proposed method, a three-objective

deal with decision problems involving uncertainty, stochastfZzy random linear programming problem is formulated,

programming approaches [1], [2], [3], [6] and fuzzy progind the interactive processes under the hypothetical decision

gramming approaches [12], [14], [20] have been developdg@ker are demonstrated.

Recently, mathematical programming problems with fuzzy

random variables [11] have been proposed [13], [15], [16] !l. MULTIOBJECTIVE FUZZY RANDOM LINEAR
whose concept includes both probabilistic uncertainty and PROGRAMMING PROBLEMS

fuzzy one simultaneously. Extensions to multiobjective fuzzy |n this section, we focus on multiobjective programming
random linear programming problems (MOFRLP) have begjioblems involving fuzzy random variable coefficients in
done and interactive methods to obtain the satisfactory shjective functions called multiobjective fuzzy random linear
lution for the decision maker have been proposed [7], [9hrogramming problem (MOFRLP).

[15]. In their methods, it is required in advance for th@MOFRLP]
decision maker to specify permissible possibility levels in

a probability maximization model or permissible probability min Oz = (G12, -+, 1) (1)
levels in a fractile optimization model. However, it seems . . ) o _
to be very difficult for the decision maker to specify such/N€réz = (z1,--,z,)" is ann dimensional decision vari-
permissible levels appropriately. From such a point of vie\ﬁ,me E:olump vectorg( is a linear constraint sz_at_wnh respect
a fuzzy approach to MOFRLP, in which the decision makdp Z: ¢i = (i1, -+ ,¢in),7 = 1,--- , k are coefficient vectors

specifies the membership functions for the fuzzy goals 8f objective functionc;x, whose elements are fuzzy random

both the original objective functions and the correspondingiiables (The symbols ™and "™ mean randomness and
permissible levels has been proposed [17]. In the propod¥gZiness respectively).

method, it is assumed that the decision maker adopts thdn this paper, we assume that under the occurrence of
fuzzy decision [5], [14] to integrate the membership func@ch scenarid; € {1,---, L}, ¢, is a realization of a

tions. As a natural extension of such a method, interactif¢?2y random variable;; which is a fuzzy number whose
membership function is defined as follows [15].
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Moreover, we assume that a scenarfp occurs with a anotherz € X such thatE[Il (Gi)] > Elllg o (G,
probability p;e, , wherezé " pig, =1fori=1,--- k. i=1,---,k with strict |nequal|ty holding for at Ieast one
By Zadeh'’s extension pr|nC|pIe the reahzatlon x be- It should be noted here that (6) can be represented as
comes a fuzzy number which characterized by the followirfgllows [15].
membership function. 0 ((j.) _ Z;L o — dije,)wj + 20 o
die,z—y Cie, LA S iz — 2k + 20
max 41— —g-—5—,0,, y < dij, T Jj=171" i i
uéwiw(y) = d. = Since the probability that a scenarié; occurs is pi,,
max<{ 1 — %,0 . y>digx BT ,,(G5)] can be computed as follows.
®3) (@G
whered,,, = (dire,, - ,ding,), @ = (01, i) > 0, E[H’ciw(Gz)] (20)
Bi = (B, Bin) > 0. = -
Considering the imprecise nature of the decision maker’s - Z piedle,, 2(Gi)
judgment, it is natural to assume that the decision maker =
has a fuzzy goal for each objective function in MOFRLP. (i = Y piedige)a + 22
In this paper, it is assumed that such a fuzzy géal o Z?:laijxj —zl+20
can be quantified by eliciting the corresponding membership def g
function defined as follows. = Zi(z)
1 yi < 2} Then,MOP-E1 can be transformed into MOP-E2.
yi— 20 0 [MOP-E2]
e, (i) = =0 G <y < 2 4 %a))(((zl (@), ZF (@) (11)
0 Yi > Z? ©

Next, consider V-model for MOFRLP. The multiobjective
where 2? represents the minimum value of an unacceptabtgogramming problem based on V-model can be formulated
level of the objective function, and! represents the maxi- as follows.

mum value of a sufficiently satisfactory level of the objectivfMOP-V1]

function. By using a concept of possibility measure [5], the . i ~ i ~
degree of possibility that the objective function valage %Q(V[H’clm@l)]’ o Vil 2(Gr)]) (12)

satisfies the fuzzy godF; is expressed as follows [9]. subject to

g, 5(Gi) < supmin{yig, g (v). i, @)} ) B[l (G > &, i=1,-k (13)

It should be noted here that if a scenafip occurs with whereV[-] denotes the variance operator, _apdepresents

probability p,¢, then the value of possibility measure can bé permissible expectation level faf[L1 (Gi)]' Now, we
represent as denote the feasible set of MOP-V1 as

def .

cL[ z(Gi) « sup mm{/ic[ z (Y )»/i(;i ()} (6) ) _
Y Similar to E-model, in order to deal with MOP-V1, a V-

Using the above possibility measure, MOFRLP can be trarf3areto optimal solution concept is defined. _

formed into the following multiobjective stochastic program- Definition 2: z* € X () is said to be a V-Pareto optimal

ming problem (MOSP). solution to MOP-V1, if and only if there does not exist
[MOSP] anotherz € X (&) such that/[Il;, ,.(G;)] < VIl .. (Gi)],
- - i=1,---,k with strict inequality holding for at least one
gg)}(i(ﬂélw(&)’ o g 2 (Gr)) (7) It should be noted here thaf[IT, ,.(G;)] can be repre-
sented as follows [15].
[1l. AN EXPECTATION MODEL AND A VARIANCE MODEL V[H:c,,:c(éi)]
FORMOFRLP
Katagiri et al.[8], [10] formulated MOFRLP as the multi- _ 1 VS dya
o : ) 7 1 i
objective programming problems through expectation model (D j=1 iy — 2 +27) =
(E-model) and variance model (V-model) respectively. At 1
First, we explain E-model for MOFRLP formulated as fol- = m e Vi (15)
lows. (Xjor @igrj — 2 + 7))
[MOP-E1] < ZY ()
glagg(E[Hm(él)L L Bl o (GR)) (8) whereV; is the variance-covariance matrix df expressed
€
by
where E[-] denotes the expectation operator. In order to deal i ’ i
with MOP-E1, we introduce an E-Pareto optimal solution B
concept. V, = B A NI (16)
Definition 1: z* € X is said to be an E-Pareto optimal : s :
solution to MOP-E1, if and only if there does not exist vhy vh, .. vh,
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and IV. EV-M ODEL FORMOFRLP
vii o= V[ In this section, we consider the following hybrid model for
77 7 ) MOFRLP, where both E-model and V-model are considered
L ) L simultaneously.
= Z Pie; dijzi - Z Pie; dije; ) [MOP-EV1]
£;=1 l;=1
i=1.--- 17 E ... 7k
. J l _7 n, ( ) rwnea’)}(( (Zl (CE), 7Zk (m)ﬂ
Ujr = CO\_/[dij, dzr] _ZiS'D(w)7 e, — kSD(SC)) (22)

= Eldij - diy] — Eldi;] E|d] . .
L. L. L. In MOP-EV1, Z”(x) and Z7”(x) means the expected
= pie,dijo, dive, — pie, dije, pie,dire, value and the standard deviation of the objective function
eZ=1 j ez::l J (2 Héi,w(Gi) in MOSP. It should be noted here th?f(:c) can
jor=1,,njtr (18) be interpreted as an expected value of the satisfactory degree
for Tl ,.(G;), but Z7P (x) does not mean the satisfactory

Furthermore, the inequalities (13) can be expressed by egree itself. Here, instead &f°”(x), let us consider the

following forms. coefficient of variation defined as follows.
n Li
(Z pieidije; = (1= Ei)a”) T cv aef  ZPP(x)
0@ = 7R
<EH -G —a)i=1 0k (19) [TV @

Then, MOP-V1 can be transformed into MOP-V2. B 2?21(0%3‘ - Zf_;lpmdim)% + 29
[MOP-V2] (23)
min (2} (z), - . 2} (x)) (20) | y o

TeX By using the coefficient of variatio&{" (x), we can trans-
subject to form MOP-EV1 into MOP-EV2.
L [MOP-EV2]
Z (Z pie;dije; — (1 — fi)%‘j) zy < 2 — &z — 2)), max (Zf (=), Z{ (),
o \ict TeX
I —z2{V (@), — 25V () (24)

From the fact thad_7_, ijrj—z+29 > 0,27V, >0, In MOP-EV2, we assume that the decision maker has fuzzy
due to the positive-semidefinite propertylgf MOP-V2 can goals for Z¢V(x),i = 1,---,k, and the corresponding

be equivalently transformed to MOP-V3 membership functions are defined a8V (ZV (x)),i =
[MOP-V3] 1,---,k. In order to elicit the membership function
. CV(ZCV (x)) appropriately, we can compute a range of
inelgl((ZfD(w), T 7Z]§D(w)) (21) MZCV( ZCV(:IZ)) as follows.

subject to def . ValViz
CVimin = min — I 5
n (L 0 o 1 TeX 3 il — >y pieidije, )T + 2
Z pie,dije, — (1 — &)y | w5 < 27 — &z — 27), (25)
=t det ValVx

CVimax = max
Tex y N Vs 20
€ Zj:l(alj Zei:1 pie,dije,)T; + 2;

750(a) act [eTV ‘ | | (26)
Doy Qg — 2+ 2] The problem (25) forC'V;,i, is easily solved by apply-
ing a Dinkelbach-type algorithm [4], or a hybrid method
It should be noted here that(z) and Z7P(x) are of the bisection method and convex programming tech-
the stancall values for thg same random functfba‘,p(Gi). nique. Unfortunately, the problem (26) fof'Vimax be-
When solving MOFRLP, it is natural for the decision makegomes a non-convex optimization problem. On the interval
to consider bothZ”(z) and Z7P(z) for each objective [CVimims CVima], the decision maker sets his/her member-

function TIz ., (G;) of MOSP simultaneously, rather thanshin function uCV (ZCV (), which is strictly decreasing
considering either of them. Moreover, it seems be difficulfnq continuous.

for the decision maker to express his/her preference for thergy,  the point of view that bothZZ(z) and

standard deviations?” (), i = 1,--- k. From such a  ov(7CV 4)) means the satisfactory degree 105 .(G,),
point of view, in the following sections, we propose th&ye introduce the integrated membership function in which
hybrid model for MOFRLP, in which E-model and V-modekye poth satisfactory levelgZ (z) and uSV (ZEV (z)) are
are incorporated simultaneously, and define an EV-Pargia rnorated simultaneously through the fuzzy decision [5],
optimality concept. In order to derive a satisfactory solutlon4]_

of the decision maker from among an EV-Pareto optimal ,

solution set, the interactive algorithm is developed. 1, () < min{ ZE (z), uCV (ZCV (x))} (27)

j=1

i=1,--,k
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Then, MOP-EV2 can be transformed into the followingholding for at least oné. This implies that

multiobjective programming problem.
[MOP-EV3]

max

TeX (28)

(/'LD1 ((B), LMDy ((L’))

up,(x) can be interpreted as an overall satisfactory degree

for the fuzzy goalG;. For MOP-EV3, we introduce an EV-
Pareto optimal solution concept defined as follows.

Definition 3: x* € X is an EV-Pareto optimal solution

to MOP-EV3, if and only if there does not exist another

x € X such thatup,(z) > up,(x*), i = 1,--- ,k with
strict inequality holding for at least one

pp,(x) > pup, (")

fii — min{ ZZ (x), uSV (ZEV (x))}

fi; — min{ ZF (*), 'V (ZEV (x*))}
max{fi; — ZZ»E(OJ), i — MiCV(ZiCV(w)

max{fi; — 2 ("), fui — " (27"

=1 k.

This contradicts the assumption that € X, \* € A is an
unique optimal solution of MINMAX(fz). O
Theorem 2: If «* € X is an EV-Pareto optimal so-
lution of MOP-EV3, then there exists a reference mem-
bership valuesis = (f1, -, %) such thatz* € X,

<
& )}
("))}

<
<

In order to generate a candidate of a satisfactory solutign _ -

= fi; — pp,(x*),i = 1,--- ,k is an optimal solution

from among an EV-Pareto optimal solution set, the decd'ﬁ MINMAX( /1)
sion maker is asked to specify the reference membersl@f;proof)

values [14]. For the reference membership valyes=

Let us assume that* € X, \* = i, — up,(z*) =

(fi1, -+ , i), the corresponding EV-Pareto optimal solutlor}nax{ﬂi — ZE(x*), i — pCV(ZCY (@*)} i =1, K, IS

is obtained by solving the following minmax problem.
[MINMAX( )]

min A (29)
TEX,NEA
subject to
fi— ZF(x) < Ni=1,---,k  (30)
fi— V(27 (@) < Ni=1,-k (31)

where

A déf |: maxkﬂi - ]-7 _Hllaxkﬂi:| = [)\mina )‘max] (32)

i=1,--

From the definition ofZ”(x) and 'V (ZEV (x)), the con-

straints (30) and (31) can be equivalently transformed intdi (€, A)

the following forms respectively.

j=1
z Zaijx7 Zz+z? (/:Ll_)‘)vlzl?7k
j=1
(33)
n L;
> (azj ~ > pir, dij&) )+ 2]
=1 =1
bV =N > VaTVimi=1, k (34)

The relationship between the optimal soluti@er, A*) of

MINMAX( fx) and EV-Pareto optimal solutions of MOP-EV3

can be characterized by the following theorems.
Theorem 1: If * € X, A\* € A is an unique optimal

solution of MINMAX(x) thenz* is an EV-Pareto optimal

solution of MOP-EV3.

(Proof)

Let us assume that* € X is not an EV-Pareto optimal

solution of MOP-EV3. Then, there exists € X such that

up,(®) > wp,(x*),i = 1,---,k, with strict inequality

ISBN: 978-988-19253-3-6
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not an optimal solution of MINMAXf). Then, there exists
x € X and X\ < A\* such that

fii — ZE(z) < A < A*
fri = pSV(ZEV () S X <A

o (@) <A<
& pp,(z) > pp,(x7)

forall : = 1,--- , k. This contradicts the fact that* ¢ X

is an EV-Pareto optimal solution of MOP-EV3. O
Unfortunately, since MINMAXf:) is a nonlinear program-

ming problem, it seems to be difficult to solve it directly.

To overcome such difficulties, we consider the following

function with respect to the constraints (33) and (34).

def -1,
= VaTVie —uf" (i — )
n L;
> (%‘ - pwﬂijh) zi+2 |,
Jj=1 l;=1
i=1,-- .,k (35)
def "
hi(w,\) = [ Y ey =220 | - (=)
j=1
n L;
=Y iy = Y piedije )z — 2
j=1 0;=1
i=1, .,k (36)

It should be noted here that(x, \), hi(x,\),i=1,--- ,k
are convex with respect t@ € X for any fixed A € A.
Let us define the following feasible s&t(\) for some fixed
AeA.

X\ Y {2 e X | gi(m\) <0,hi(x,\) <0,i=1,--- Kk}

(37)

Then, it is clear thatX ()\) is a convex set and satisfies the
following property.

Property 1: If A, A2 € AJ A1 < )Xo, then it holds that
X()\l) - X()\Q)

In the following, it is assumed tha¥ (Anin) = ¢,
X(Amax) # ¢. From Property 1, we can obtain the opti-
mal solution(x*, A*) of MINMAX( £&) using the following

IMECS 2014
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simplealgorithm which is based on the bisection method and
the convex programming technique.

TABLE |

PARAMETERS OF OBJECTIVE FUNCTIONS

[Algorithm 1] =1 6=2 £1=3] ay,biy
Step 1: SetAp < Amins A1 ¢ Amaxs A < (Ao + A1)/2. di1e, -2.5 -2.0 -1.5 0.4
Step 2: Solve the convex programming problem for the digg, | 35 -3.0 -2.5 0.5
fixed A € A, dize, | -2.25 -2.0 -1.75 0.4
min h;(z, \) p1 0.25 0.4 0.35
TeX lo=1 (=2 (=3 as, B2y
subject to do1e, | 25 2.0 -1.5 0.3
dose, | 075  -05 -0.25 0.4
gi(®,A) < Oi=1---Fk dose, | 25 225 20 0.3
hi(x,\) < 0,i=1,--- k, D2 0.3 0.5 0.2
where the inde; is one of {1,2,--- &}, and denote the doree 633:)1 ZZ;; 83;_53 a3]0’_f3]
optimal solution ase (). _ dm‘s - 275 30 s
Step.3: If Mo — )\1|_ < 0, go to Step 4, where is a dsats a5 275 50 04
sufficiently small positive number. 1§;(x()),\) < 0 and P 02 0.45 035

hi(x(M\),\) < 0, for anyi = 1,---,k, setA; « A,
A+ (Ag+A1)/2. Otherwise, sebg < A\, A < (Ao+A1)/2.
And return to Stfp 2. ) _ ~ holding for at least onei. From the inequalities (38) and
Step 4: Adoptz™ < (), A" < A as an optimal solution (39), this is equivalent to the following relations.

of |\/||N|\/|AX( ﬂ) min{ZE(a}) ‘uCV(ZCV(.’B))}

K3

: E (% cVv CV (%
V. AN INTERACTIVE ALGORITHM > min{Z7(x"), p; (27" (x"))}
E * .
In Theorem 1, if the optimal solution(z*, \*) of chéx )o7v @.Ell
MINMAX( f) is not unique, the EV-Pareto optimality can not pi (27 (x")), i€l

be guaranteed. In order to guarantee the EV-Pareto optimality
for (x*,\*), we formulate the EV-Pareto optimality testAs a result, the following inequalities holds.
problem. Before formulating such a test problem, without

E E * .
loss of generality, we assume that the following inequalities Zéém) ?VZi ("), B Z €h
hold at the optimal solutior* € X, \* € A. pi (Zy 7 (x)) = Z7 (x"), i€l (1)
ZE(x) > pfV (28 () i€l
E % cVv CcV * . [ = M1 7 ’
@) (@I h B8 6w (20 (@) > Y (26V (@), iehy
Z7 (") > py (277 (x7)),i € I (39)

with strict inequality holding for at least onee I; U I5.
LulL={l- kL LN #¢ (40) Hence, there must exist at least ansuch thatz; > 0. This
Under the above conditions, we formulate the following Eveontradicts the assumption that=0, ¢ =1,--- k.~ O
Pareto optimality test problem. Now, following the above discussions, we can construct
[EV-Pareto optimality test problem] the interactive algorithm in order to (_jenve a s_atlsfactory
solution from among an EV-Pareto optimal solution set.
[An interactive algorithm]
Step 1: The decision maker sets the membership function
pa,(y), i = 1,--- k for the fuzzy goals of the objective
functions in MOFRLP.
Step 2: Considering the interval'V;,in, CVinax, the de-
cision maker sets the membership functign' (ZV (z)),

k

max €;
TEX,e;>0,i=1, ,k Z ¢
subject to

ZE(x) > ZF(x*) +e,ie

uiV(Z7V (@) > ZF (@) +eie I i=1k
ZE(x) > uSV(ZEV (x*)) + €,i € I Step 3: Set the initial reference membership valuegias-
L,i=1,--,k

CV(,CV S OV 7OV x A
i (207 (@) 2 p (27T (@) + 6 € L Step 4: Solve MINMAX(fi) by applying Algorithm 1,

The following theorem shows the relationships between tla@d obtain the optimal solutior™ € X,\* € A. In
optimal solution of EV-Pareto optimality test problem an@rder to guarantee EV-Pareto optimality, solve the EV-Pareto
the EV-Pareto optimal solution for MOP-EVS3. optimality test problem forr* € X.

Theorem 3: Let & € X, ¢ > 0,4 = 1,--- ,k be an Step 5: If the decision maker is satisfied with the current

optimal solution of the EV-Pareto optimality test problenyalue of the EV-Pareto optimal solutios* € X, then
for (x*, \*). If Zle & =0, thenz* € X is an EV-Pareto stop. Otherwise, the decision maker updates his/her reference

optimal solution. membership valueg;, i = 1,--- , k and return to Step 4.
(Proof)
Assume that;; = 0, i = 1,---,k. If z* € X is not an VI. NUMERICAL EXAMPLE

EV-Pareto optimal solution, there exists some= X such In order to demonstrate the proposed method and the in-
that up, (x) > up,(x*),i = 1,--- , k, with strict inequality teractive processes, we consider the following three-objective
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TABLE Il

PARAMETERS OF MEMBERSHIP FUNCTIONS

0

1

0

1

Zi Zi q; q;
i -7.5 -23.8181| 0.45 0.25
= -0.9375  -16.25 0.25 0.08
) 33.5 9.375 0.3 0.03

linear programming problem with fuzzy random variable
coefficients.

[MOFRLP]
min 27 (iL’) = C11Z1 + Ci12Z2 + C13Z3
reX
min Zg(iL') = C21Z1 + Co2Zo + Co3T3
reX
min Zg(iL') = C31Z1 + C32Z2 + C33T3
reX

whereX = {(LEl,l'Q,ZL'g) S Ri | 3x1+2xo+x3 < 18,221+

xTo +2x3 < 13,3%1 +4(E2+3(Ed > 15,1‘1 +3£L‘2+2IL‘3 < 17} [1]
and it is assumed that a realizatioy),, of a fuzzy random 2]
variablec;; is an triangular-type fuzzy number whose mem-
bership function is defined as (2) where the parametgys, (3l
a4, Bi; are given in Table |. According to (17) and (18), the[4]
variance-covariance matricé$, i = 1,2,3 are computed as

INTERACTIVE PROCESSES

Iteration 1 2 3
i1 1 0.85 0.85
fi2 1 1 1
fis 1 0.85 0.75
xk 0.5683 | 1.0762 | 0.8326
xh 3.1269 | 2.1054 | 2.1693
x4 2.3510 | 2.8859 | 3.3730
ZE(z) 0.5358 | 0.4825 | 0.5214
ZE(z) 0.5358 | 0.6325 | 0.6714
ZE (x*) 0.5358 | 0.4825 | 0.4214
p§SV(ZEV (x*)) | 0.5358 | 0.5255 | 0.6209
pSV(Z§V (x*)) | 0.6270 | 0.6325 | 0.6714
pwSV(Z§Y (=*)) | 0.8009 | 0.7630 | 0.6732
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