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Abstract— Cross-species studies using microarray gene 

expressions help discover genetic diversity among different 

species, the results of which are fundamental to comparative 

genomics. Various approaches have been used for cross-species 

studies, such as homogeneity test and cluster analysis. A 

homogeneity test provides a homogeneity significance ranking 

for each gene pair whilst cluster analysis looks at the discovery 

of co-expressed meta-genes. We propose a unified method to 

extract both homogeneous and heterogeneous expression 

patterns across species. The basic idea is to model the sum and 

difference of expressions across species using multi-scale 

Gaussians which reveal information about homogeneous and 

heterogeneous expression patterns respectively. We show using 

both simulated and real data that the proposed method is suited 

to identifying both homogeneous and heterogeneous gene 

expression patterns. 

I. INTRODUCTION 

ROSS-species study compares multiple data sets from 

biological/medical experiments for revealing how genes 

are conserved among distantly related species [1]. For 

instance, it is assumed that the primary structure of an 

orthologous gene will be conserved when species evolve even 

if their evolutionary distance is large [2]. Biological 

investigation in one species on conserved genes can therefore 

be tested in another species if two species are related. For 

instance, clinic trials for disease intervention are conducted on 

mice prior to being tested on human and there have been many 

human-mice species comparison studies [3-7]. However, gene 

expression levels vary significantly across species due to 

sample variation, technique resolution, posing a challenging 

issue in cross-species studies [1, 2, 8-10]. 

Two types of quantitative analytical approaches are 

typically used for cross-species analysis. The first approach 

tests homogeneity gene expressions across species. For 

example, the homogeneity test based on correlation was used 

to determine the genetic components of alcohol consumption 

between human and rats [11]. Those genes with large 

correlation coefficients across the two species were classified 

as homogeneous genes. In extension to correlation analysis 

which captures only second order and linear information, 

some studies looked at higher order statistics such as mutual 

information to detect early stress responses in rodent models 
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of lung injury across species [12]. Evolutionary conservation 

is a complex implementation of correlation analysis for 

cross-species analysis [13-15]. Both correlation analysis and 

mutual information rely on large sample sizes. When 

examining homogeneity across more than two species, the 

Fisher combined probability test [16] is used when the species 

number is sufficiently large. It combines p values derived 

from significance analysis carried out separately in each 

species to deliver a combined p value of the dependence 

across species [17-19]. The Fisher combined probability test 

is unreliable when some p values are extremely small [20].  

The second approach uses multivariate analysis such as 

unsupervised and supervised learning algorithms for 

cross-species studies. Supervised learning algorithms are used 

to examine whether a pattern reserved in one species can be a 

predictive factor for the other species. The algorithms used for 

supervised cross-species analysis include artificial neural 

network [21], linear discriminant analysis [22] and k-nearest 

neighbors [22]. For instance, artificial neural network 

algorithm was used for identifying conserved and divergent 

transcriptional modules across species [23], linear 

discriminant analysis was used for lung injury biomarker 

detection across multiple species [24], k-nearest neighbor 

algorithm was used for probe sequence identification [25]. 

Because phenotypic data are not always available or difficult 

to acquire, unsupervised learning algorithms are often used in 

real applications. Nonnegative matrix factorization [26, 27] is 

such an unsupervised learning algorithm and has been used to 

analyze common meta-genes across two species [28-30]. 

Using nonnegative matrix factorization (NMF), a gene 

expression matrix is decomposed in to a meta-gene expression 

matrix and a coefficient matrix of individual gene 

contributions to the meta-genes. Mathematically the 

expression level of a gene is a linear combination of the 

expression levels of all meta-genes. Based on the magnitude 

of coefficients, one can quantify the relationship of each gene 

to a meta-gene, giving a partition or cluster of the data. 

Common meta-genes can then be identified across species by 

inspecting separate NMF models. Cluster analysis as another 

set of important unsupervised learning algorithms for 

partitioning data. Each cluster corresponds to a meta-gene. 

Clustering algorithms including k-means algorithm, mixture 

models and self-organizing map [31] have been used for 

cross-species study [32-35]. When clustering gene expression 

data for cross-species analysis, data can be separately or 

jointly analyzed. However in cross-species studies it models 

gene expression matrices of two species separately and 
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requires a post analysis to compare two species. In addition, 

the determination of the number of meta-genes is based on a 

priori knowledge. In case such knowledge is unavailable, it is 

then difficult to accurately identify meta-genes.  

Cluster analysis partitions data explicitly. During cluster 

analysis, each data point is assigned to a cluster and a cluster 

represents a meta-gene. When using cluster analysis for 

cross-species, one can model a gene expression matrix for 

each species separately [36-38] or model a combined gene 

expression matrix from multiple species [2, 32, 39]. Separate 

clustering suits any data size because each species is modelled 

individually to generate a cluster model through an 

unsupervised learning process. After individual cluster 

models have been generated, follow-up-manual work extracts 

co-expressed patterns across species. Combining expression 

matrices across species into one matrix, on the other hand, can 

avoid the difficulty of manual work [39]. Using combined 

expression matrix for cross-species analysis, gene expression 

matrices are normalized separately and then are merged into 

one matrix for using cluster analysis. Using this approach, we 

do not need a follow-up-manual comparison. Clusters of 

genes from multiple species directly show the co-expression 

of genes across species. However this approach has a stringent 

requirement of data pairing, i.e. all the expression matrices 

must have the same number of samples. Moreover, when the 

number of species becomes large, the number of samples is 

likely to be larger than the number of genes, i.e. the number of 

variables is larger than the number of instances in the context 

of machine learning. In this case, cluster analysis model can be 

unreliable. 

A major distinction between the two quantitative 

approaches is the focus on co-expressed genes versus the 

focus on co-expressed meta-genes. A homogeneity test can 

detect exactly which subset of genes is co-expressed across 

species and measure the significance of co-expressions for 

gene ranking. Cluster analysis does not produce statistics of 

significance but summarises information based on 

meta-genes. One critical issue for cluster analysis is that 

cluster structures are often badly estimated when data noise is 

large. For instance, two overlapped clusters can easily be 

merged into one. When a cluster structure (or multiple cluster 

structures using separate clustering approach) is wrongly 

estimated, true homogeneous co-expressed genes can hardly 

be accurately predicted. 

We introduce a new method using the multi-scale Gaussian 

(MSG) model for probabilistic cross-species analysis. We use 

MSG to model the sum and difference of DEs across two 

species. We use simulated and real data to illustrate the 

successful detection of both homogeneous and heterogeneous 

differential expression patterns (DEPs) using the proposed 

method.  

II. METHODS AND MATERIALS 

A. Multi-scale Gaussian 

The multi-scale Gaussian model is a mixture model 

[40-42], composed of two components which have similar or 

identical centres but different variances. We denote a vector 

by  
N
nnzZ 1}  { . We assume that Z follows a mixture of 

two Gaussians, one with a small variance which is referred to 

as the null density while the other with a large variance 

referred to as the alternative density. A standard multi-scale 

Gaussian density function )|( zf  given model parameters 
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1); mw  is the mixing coefficient or weight satisfying 

110 ww ; 0  is the standard deviation of the null density, 

01    is the standard deviation of the alternative density. 

This model is also called a two-component hierarchical 

normal mixture model. In this model, ),|( 2
00 zG  models 

the uninformative part of the data (null data -little variation 

from zero) and ),|( 2
11 zG  models the informative part 

(alternative data - large deviation from zero). A small 
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naturally leads to a sharp peak centred at 0 . However the 

density modelled by ),|( 2
11 zG  can extend infinitely to 

two tails when 01   , ),|( 2
11 zG  is approximates a 

uniform distribution and the identification of null data is 

straightforward. The likelihood function is defined as 
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The mixing coefficients are modelled using non-informative 

priors and we assign each of 0  and 1  a Gaussian prior 

with zero mean and small deviations m : ),0(~ 2
mm  G . 

Moreover 0|| z  indicates  null data. Such a mixture can 

learn ),|( 2
00 zG  for data with a property of 0|| z . 

Therefore 0|| 0   should be true if sufficient data have 

been acquired. On the other hand, estimating 1  largely 

depends on data. Because of large 1 , slight difference 

between positive alternative data and negative alternative data 

will affect || 1  accordingly. We set the prior means to be 

zero based on our observation that both centers are close to 

zero and set both m  to be 0.5. The posterior is: 
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where ) , , , , ,( 101010  bbaa  is the hyper-parameter set. 

The log-posterior can be written as: 
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where 00 m . The learning process is initiated by assigning 

0.5 to mw , 1 to m , and 0 to m  We set 00 m  to reflect 

our observation that the null data are distributed around zero. 

Setting 5.0mw  assumes that there are roughly an equal 

number of alternative and null data initially when there is no a 

priori knowledge. We also set 1m  and 0m  initially. 

For both Gaussians, the variance hyper-parameters 0a  and 

1a  were set to one. 



b0  was set to be the standard deviation of 

90% of the smallest absolute data as we assume that the 

majority of data correspond to those of null genes. 1b  was the 

90
th

 percentile of all data. Bayesian learning has desirable 

convergence properties [43, 44]. The convergence of 

multi-scale Gaussians is usually determined by the maximum 

learning cycle and parameter stability.  After convergence is 

achieved, the null density and the alternative density are 

estimated for each gene. The Bayes rule is then used to 

determine whether a data is alternative. 

B. Using multi-scale Gaussian mixture 

To use multi-scale Gaussian to model differential 

expressions (DEs) for a microarray expression data, we 

denote a DE matrix by 
dN

nnX  1}  {x . It has N rows of 

genes or probe sets. We use the biological significance [45, 

46] of the expression data and denote it by  )E(XZ . 

C. Cross-species differential expression pattern discovery 

We aimed to discover two kinds of cross-species 

differential expression patterns (DEPs). The first refers to the 

subset of genes with similar DE direction as well as magnitude 

across species - homogeneous DEP. The second refers to a 

subset of genes with opposite DE directions across species - 

heterogeneous DEP. Homogeneous DEPs inform how two 

species demonstrate similar response to stress whilst 

heterogeneous DEPs infer species diversity. 

We denoted two DE matrices by xdN
nnX  1}  {x  and 

ydN
nnY  1}  {y . Both matrices have N rows of genes or 

probe sets. From X and Y, we denoted a co-differential 

expression vector by )E()E( YXZ  , where ) ,(   

has two operations for the two kinds of DEPs. Here the sum 

function + was used for revealing homogeneous DEP (DEP0) 

across species and the difference function 
 
was used to 

explore heterogeneous DEP (DEP1) across species.  

D. Experimental design 

You Simulated data were designed to evaluate the method 

in identifying DEP0s and DEP1s. We simulated 1000 genes 

across two species, each with ten control and ten test samples. 

The control samples and the test samples of non-DEGs were 

random samples of a normal distribution of mean ten and a 

varying standard deviation. The standard deviation values 

were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. The test 

samples of DEGs were random samples of a normal 

distribution with mean ten, plus (minus) one unit for up (down) 

regulated genes. Table 1 shows how these 1,000 genes were 

distributed in two data sets. 

 

 
 

We used two measurements to evaluate algorithms for the 

simulated data, i.e. sensitivity and false discovery proportion. 

The sensitivity was derived as follows for different algorithms. 

The Fisher test and correlation analysis return vectors of p 

values for the genes. Suppose the design vector is denoted as t. 

The sensitivity was calculated using 

)1(/#)&1(# 0  tppt , where 0p  is the critical p value 

and 



#(x)  means of the number of x. The false discovery 

proportion was calculated using 

)(/#)&0(# 00 ppppt  . The largest sensitivity 

approaches one meaning that the p values for all the designed 

dependent/independent (homogeneous/heterogeneous) genes 

Table 1. Experimental design of simulated data with combinations of 

non-DEGs (Null),  up-regulated DEG (UP) and down-regulated DEG 

(Down). 

 Data set 1 Data set 2 

800 Null Null 

25 Null Up 

25 Null Down 

25 Up Null 

25 Down Null 

25 Up Up 

25 Down Down 

25 Up Down 

25 Down Up 
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approach zero. The smallest sensitivity will approach zero. 

The smallest false discovery proportion is zero if none of the 

designed non-dependent/independent genes has its p value 

less than a critical p value. MSG returns a vector of the 

posterior probabilities (P) for the designed 

dependent/independent genes. Therefore the sensitivity was 

calculated using  )1(/#)&1(# 0  tPPt , where 



P0 is the 

critical posterior probability. The false discovery proportion 

was calculated using )(/#)&0(# 00 PPPPt  . 

A clustering approach will return two vectors of cluster 

memberships for genes. We therefore used different 

measurement techniques for calculating the sensitivity and 

false discovery proportion. Moreover, the separate clustering 

approach returns two separate models, we therefore used 

correlation to pair clusters from two models. We scanned the 

clusters of one model for one data set one by one and found 

one cluster from the other model with maximised correlation 

which is larger than a pre-defined threshold. We denoted the 

membership vectors as Af  and Bf . For one cluster (say k), 

}{ kfA
k
A   and }{ kfB

k
B   denote genes from two 

data sets A and B. For the sum function, a commonality 

proportion for the cluster was calculated as 

)(/##  k
B

k
A

k
B

k
Ak   . For the difference function, a 

uniqueness proportion for the cluster was calculated as 

)(/#)(\)(#  k
B

k
A

k
B

k
A

k
B

k
Ak   . k  was then 

assigned to all genes belonging to the cluster. We denoted 

each gene’s sensitivity as is . The overall sensitivity was 

calculated as 


 1)1(#
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and the false discovery proportion was calculated as 


 0)0(#
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We set the critical p value to be 0.01 and the critical 

posterior probability to be 0.95. We downloaded a data set 

from the Gene Expression Omnibus (GEO, accession number 

GSE44337). The data set originated from a study on 

conserved gene differentiation in aggressive B lymphomas 

across human species (human diffuse large B cell) and mouse 

species (B6 iMyc).The human species expression data was 

generated using the GPL570 platform with 54,675 probe sets. 

It is composed of three samples of the wide type and nine 

tumour samples. The mouse species was generated using the 

GPL1261 platform with 45,101 probe sets. It is composed of 

three wide type samples and seven tumour samples. As both 

data sets have unmatched sample number between wide type 

and tumour, we used a one-to-one sample pairing approach, 

i.e., each wide type sample is paired with a tumour sample to 

generate a DE. Because different data sets in a cross-species 

study may use different platforms, we match probe sets to 

gene symbols. For gene symbols with more than one probe set, 

we selected the probe set with the maximum variance. 

III. RESULTS 

Simulation with DEP0. Fig. 1 shows the sensitivity 

evaluation of three approaches, separate clustering, joint 

clustering and MSG for identifying ten simulated DEP0 with 

varying noise levels. The Fisher test and correlation failed to 

provide meaningful results. It can be seen that the joint 

clustering approach and MSG were similar in performance 

while the separate clustering approach was very unreliable. 

Fig. 2 illustrates the false discovery proportions for these 

simulations. We can see that MSG achieved the lowest false 

discovery proportion among three approaches. 

 

 

 
Simulation with DEP0. Fig. 3 shows the sensitivity 

 
Fig. 1. The sensitivity measures for detecting DEP0. 

 

 
Fig. 2. The false discovery proportion measures for detecting DEP0. 
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measures for detecting DEP1. It can be seen that only MSG 

worked well. Both the separate clustering approach and the 

joint clustering approach failed to predict independent DEGs. 

Fig. 4 shows the false discovery proportion. MSG's false 

discovery proportion is at 60% similar to that shown in 

detecting DEP0. However the false discovery proportion 

measures for the separate clustering approach and the joint 

clustering approach were nearly one meaning all the predicted 

independent DEGs were false ones. 

 

 
Real data. We extracted 27 DEs for each gene in the human 

data set and 21 DEs for the mouse data set. After probe set - 

gene symbol mapping, we have selected 13,992 probe sets for 

the cross-species study. Using a 0.95 as the critical posterior 

probability, we identified 546 homogeneous DEGs and 309 

heterogeneous DEGs. Fig. 5 shows the top ten homogeneous 

DEGs, where six genes show homogeneous up-regulation in 

both species and the rest show homogeneous down-regulation 

in both species. We then mapped these top ten genes to Gene 

Ontology Biological Processes and have found that 74 are 

identical among 87 biological processes for the human species 

and 74 mice biological processes for the mice species. This 

shows that the biological processes are well conserved for 

these homogeneous DEGs. 

Fig. 6 shows the top ten heterogeneous DEGs. When 

mapping these top ten genes to Gene ontology biological 

processes, we have found that 68 are identical among 73 

biological processes for the human species and 77 mice 

biological processes for the mice species. 

 

 
Table 2 summarizes the top ten homogeneous and 

heterogeneous DEGs across the human and mice species. 

Among them, several have been both tested in human and 

mice. For instance, TOMM5 has been tested in human and 

mice tissue for examining the histopathology value and used 

mice as the baseline assay for high-throughput phenotyping 

[47]. CALU has been examined in human tissue for using 

IRF5 as a tumour suppressor in splenic marginal-zone 

lymphoma [48]. BCAR3 has been studied in relation with B 

lymphoma in both mice and human tissue [49]. ANXA6 was 

studied in human tissue for lymphoma [50]. STMN1 has been 

studied in human tissue for its anti-cancer activity [51]. 

 
Fig. 4. The false discovery proportion measures for detecting DEP1. 

 

 
Fig. 3. The sensitivity measures for detecting DEP1. 

 

 
Fig. 5. Expressions of the top ten homogeneous genes across mice (blue) 

and human (red). The boxes in light blue (red) represent the 27 DEs for 

each gene in the human species. The boxes in red represent 21 DEs for 

each gene in the mouse species. The horizontal lines in red represent the 

cutoffs for gene significance. 
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IV. CONCLUSION 

We have presented a new method for exploring 

homogeneous and heterogeneous DEPs across species using 

multi-scale Gaussian mixtures. The algorithm is motivated by 

the limitations in using existing homogeneity tests and cluster 

analysis techniques for cross-species analysis. The former 

suffers from low sensitivity and the latter is often severely 

affected by data noise. Density function is able to model two 

types of data with little difficulty. They are non-differentiable 

(hence informative modelled by a Gaussian density with a 

small variance) and differentiable (hence uninformative 

modelled by a Gaussian with a large variance) between two 

species. We introduced the sum/difference functions of DEs 

for homogeneous and heterogeneous DEP discovery. With 

these functions, co-expressed genes across species can be 

detected using the sum function while heterogeneous DEGs 

can be detected using the difference function. The method is 

simple to implement but can be extended to deal with more 

general problem settings in future work. We use simulated 

data and real data to illustrate the efficacy of this method in 

revealing both homogeneous and heterogeneous DEPs.  
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