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Abstract—In this paper we present a metaheuristic algorithm
that is inspired by Particle Swarm Optimization. The algorithm
maintains a set of intercommunicating particle clusters and
equips each particle with a specialized local search function. To
demonstrate the effectiveness of the algorithm, we analyze its
ability to solve Mastermind codes and compare its performance
with other algorithms found in the literature. For the Master-
mind problem, we have found that our algorithm is comparable
to other algorithms for small problem sizes, but has much more
efficient scaling behavior.

Index Terms—particle swarm optimization (PSO), cluster,
mastermind.

I. INTRODUCTION

PARTICLE Swarm Optimization (PSO), an algorithm by
Kennedy and Eberhart described in [1], is a popular

method for optimizing continuous nonlinear functions. The
algorithm is inspired by the interactions between agents in
a flock of birds or a school of fish. Each agent initially
begins in a random region of the search space, and more
favorable regions are found iteratively as the agents begin to
follow the best particle. While the algorithm was designed
for continuous problems, various researchers have used the
algorithm to solve various discrete problems, such as the
Travelling Salesman Problem [2].

Mastermind is a code-breaking game for two players:
an encoder and a decoder. The encoder selects a secret
permutation of P digits from a list of N digits. There are
no limits on the values of P and N, but during a single
game these values are fixed. The decoder makes a series
of guesses and for each guess gains information about how
close the guess is to the secret code. When a guess is
presented, the user receives a number of “dark pegs” which
correspond to digits that have the correct value in the correct
position. The user also receives a number of “light pegs”
which correspond to the remaining digits that have the correct
value but are in the incorrect position. Note that the dark
pegs take precedence over the light pegs. For example, if the
secret code is [1 2 2 4] and the guess is [1 4 3 2], then the
decoder will receive one dark peg and two light pegs. We
shall represent this as (1, 2).

Mastermind can be viewed as a dynamic-constraint opti-
mization problem. The decoder continues to make guesses
and receives more information about what the secret code
can and cannot be. Every (guess, response) pair imposes an
additional constraint on the decoder. This information can be
used to form an optimization function, and as a result various
researchers have attempted to solve Mastermind codes using
metaheuristics such as genetic algorithms. As the game
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progresses, it is increasingly difficult to identify a guess that
could still be the secret code. A potential guess is considered
“consistent” if it could still be the secret code given the
current list of constraints, and “inconsistent” otherwise.

The general goal of Mastermind is to break the secret
code as quickly as possible. Thus there are two values that
a Mastermind algorithm could minimize:

1) Number of Guesses: An algorithm’s performance may
be measured by the average of number of guesses
needed to break the secret code. A guess is one
submission of a code to the encoder.

2) Number of evaluations: An algorithm will analyze
several potential codes before making a guess. We
define an “evaluation” as one call of the fitness function
that the algorithm uses to analyze a single code.

Minimizing the number of guesses presents an interesting
challenge for large problem sizes, but it is not our main focus.
Since we are interested in optimization, our algorithm will
attempt to minimize the number of evaluations needed to
break the secret code.

In this paper we describe a cluster-based particle swarm
algorithm for solving the game of Mastermind. Our algo-
rithm is not a direct application of PSO, rather it uses the
underlying idea of communicating particles as inspiration.
The algorithm is similar to PSO in that it maintains a group
of communicating agents, but it organizes them into clusters.
It also introduces a local search function that greedily moves
each agent across neighbor states to more promising regions.
This combination of local and global search functions allows
for more efficient exploration of the search space. Later
in this paper we will demonstrate that the algorithm is
able to solve high-dimenionsal instances of the Mastermind
problem.

Section II discusses the various Mastermind algorithms
found in the literature. Section III describes the algorithm
we used to solve the problem. Section IV discusses the
experiments that we ran to test the algorithm’s performance,
and Section V concludes this paper.

II. LITERATURE REVIEW

The first Mastermind algorithm to appear in the literature
was by Knuth [3] in 1976. This algorithm chooses the next
guess that will minimize the maximum number of remaining
possibilities. If there is a tie among potential guesses, the
algorithm chooses the guess that is still consistent. Knuth
tested this algorithm with P = 4 and N = 6, and was able to
break the secret code in 4.478 guesses on average (5 in the
worst case).

Kooi describes the “Most Parts Strategy” in [4]. This
algorithm selects the guess that yields the highest number
of possible responses. In the worst case this strategy takes 6
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guesses to break the secret code, but has a lower average of
4.373. These averages were obtained when P = 4 and N =
6.

Temporel and Kovacs describe an algorithm in [5] which
attempts to minimize the number of evaluations required
when P = 4 and N = 6. The algorithm requires 4.64 guesses
on average which is slightly higher than the previous algo-
rithms, but only evalutes 41.2 codes on average. However,
no data is given on larger problem sizes.

These algorithms work well for small instances of Mas-
termind, but because they require either searching or storing
the entire search space, they are computationally infeasible
for large values of P and N. Bernier et al. describe the use
of genetic algorithms and simulated annealing to solve larger
instances of Mastermind [6]. Simulated annealing was better
in terms of minimizing the number of evaluations, but the
genetic algorithm resulted in a lower number of guesses on
average.

Berghman et al. describe an improvement to the genetic
algorithm in [7]. They use genetic algorithms to create a set
of consistent guesses, and use an exhaustive strategy to select
the best guess from the set. This algorithm is comparable to
the full-enumeration strategies in terms of average number
of guesses, but outperforms them in terms of speed. When
P = 8 and N = 12, the algorithm can find the secret code in
an average of 20.571 seconds.

Merelo et al. also use this approach in [8]. They use
genetic algorithms to create a set of consistent guesses and
use the “Most Parts” strategy to select one to use. This
algorithm was tested with P = 5 and N = 9 and yielded
5.95 guesses and 38,485 evaluations on average.

III. ALGORITHM

Our algorithm always selects a guess that is consistent
with the previous guesses. The general outline is as follows:

while Secret Code not found do
Find a consistent guess g;
Submit g get response r = (ndark, nlight);
if ndark = P then

Secret Code has been found;
end

end
Fig. 1. Mastermind Algorithm

We now will define a formula for a consistent guess so that
we can phrase the Mastermind problem as an optimization
problem. We first define a rule as a guess submitted by the
decoder and the corresponding response from the encoder.
More formally, we define a rule as a (guess, response) pair
where guess is a vector of size P and response is a pair
of integers (ndark, nlight) representing dark pegs and light
pegs.

Now given two guesses gi and gj we define a new
function:

h(gi, gj) = (ndark, nlight) (1)

where ndark is the number of dark pegs and nlight is the
number of light pegs the decoder would receive if gi was

the secret code and gj was submitted as a guess. We now
define a measure of the similarity of two responses ri and
rj as follows:

d(ri, rj) = abs(ri dark− rj dark)+ abs(ri light− rj light)
(2)

Informally, the distance between two responses is 0 if
they have identical dark and light peg counts. Otherwise
the function returns the Manhatten distance between the
two response vectors. Now assume the decoder has made
n guesses and has received n responses, so we have (g1, r1),
(g2, r2), ..., (gn, rn) as our rule list. We now define the
fitness of some potential guess g as follows:

f(g) =
n∑

i=1

d(h(g, gi), ri) (3)

We know that the secret code must match each of the given
responses when compared to the given guesses. Thus for a
guess to be consistent its fitness value must be 0. The higher
the fitness value, the farther away a guess is from being
consistent. Thus finding a consistent guess can be reduced
to minimizing the above function. The following sections
describe the algorithm used to achieve this minimization.

A. Local Function

Our algorithm maintains a collection of potential guesses,
called agents, each equipped with a function that allows it to
explore neighboring states. If the function to minimize was
differentiable, then the agents could use gradient descent or
some other fast optimization strategy as their local search
function. Mastermind is a discrete problem, so we created a
custom search function to move an agent across the search
space. Given some guess g = [d1 d2 ... dP ], we define three
possible ways to move to a neighboring state:

1) Replace some digit di with a different value
2) Take two digits di and dj and swap them
3) Take three digits di, dj , and dk where i <j <k. Here

there are two possible neighbor states. Swap so that
the order is dk di dj or dj dk di. Notice that in each
of these new states, every digit is in a new location. If
this were not the case, the change could be made by
only swapping two elements.

Based on these possible neighbor states, we define three
different local functions. Local function (1) iteratively looks
at each digit and finds the replacement digit that reduces the
fitness value the most. If no replacement digit reduces the
fitness, the function does not change the guess vector.

Local function (2) iteratively looks at each pair of digits
and swaps them. If the fitness after the swap is less than
or equal to the old fitness, the change to the vector is kept.
Notice that unlike local function (1), we keep the resultant
vector if the new fitness is equal to the old fitness rather
than strictly less. This was found to be beneficial through
experimentation.

Local function (3) iterates over each triplet of digits in a
code and tests the fitness of both unique swaps. If at least
one of the swaps results in a fitness that is less than or equal
to the old fitness, the change will be kept. If both swaps lead
to a reduction in fitness, the function chooses the swap that
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leads to the largest reduction. If each reduction is equal, one
of the two swaps is chosen at random.

Note that all three of these functions exhaustively test
each possible neighbor state. This was possible to do for
the Mastermind problem, but for some problems this may
be computationally infeasible. A possible solution in these
cases is to only test the fitness of k random neighbors.

The agents in the search space need a way to use these
functions to move towards more favorable regions of the
search space. We decided to simply run these functions
sequentially, only moving from function (i) to function (j) if
function (i) failed to improve the fitness of g. Once function
(i) improves the fitness of g, the algorithm moves back to
function (1). If function (3) fails to improve the fitness of
g, then the algorithm stops as it has converged on a local
minimum. Here is a more formal description of the local
search algorithm:

Given a guess g;
while Not at local minimum do

Run function (1) to form g’;
if f(g’) ≥ f(g) then

Run function (2) to form g’;
if f(g’) ≥ f(g) then

Run function (3) to form g’;
if f(g’) ≥ f(g) then

Local minimum reached;
end

end
end

end
Fig. 2. Local Search Function

B. Metaheuristic

The function described in the previous section often leads
agents to a local minimum. Thus we introduce a metaheurtis-
tic that uses the local search function to help locate the global
minimum. Intuitively the idea is simple. We define k agent
clusters {c1, c2, ..., ck} where each cluster contains l agents.
Each cluster is initially given a cluster head, which is set
randomly in the search space. Each cluster head then uses
a disperse function to distribute (l - 1) agents around it up
to some predefined max distance. Each agent in each cluster
uses the local search function until all agents arrive at a
local minimum. When this happens, we identify the fittest
agent in each cluster and redistribute the remaining agents
in that cluster around it. We then locate the fittest individual
amongst all the clusters and use a pull function to move each
agent in its direction. This allows communication between
the clusters and moves large amounts of agents to favorable
regions of the search space. Our final step is to take the fittest
individual in each cluster and set it equal to a random vector,
leaving the other agents in the cluster to explore the region
that had been discovered. This was introduced primarily as
a measure to increase diversity and perhaps allow an agent
to move to a favorable region of the search space that no
cluster is exploring.

Before giving a formal description of the algorithm, we
need to define the disperse and pull functions that are
required by the algorithm. Like the local search function,

these functions are dependent on the optimization problem,
so we will explain how the functions were defined for the
Mastermind problem. The function disperse(agent) when
given some agent will randomly move a new agent to a close
region of the search space. The function pull(agenti, agentj)
will move agenti closer to agentj .

We first give our defintion of the disperse function. Given
some agent a = [d1 d2 ... dP ], we would like to produce a’ by
dispersing slightly from a. To do this, we will simply move
a across some small number of neighbor states randomly.
The number of neighbor states to move across is a random
integer between two bounds: distmin and distmax. A more
formal description of the disperse function is as follows:

Given agent a;
dist := random integer ∈ [distmin, distmax];
for i← 1 to dist do

Choose random value r ∈ [0, 1);
if r <.5 then

Randomly swap two digits in a;
else

Change a random digit in a;
end

end
Fig. 3. Disperse Function

This produces a new agent that is slightly farther away
from the central agent. Note that for simplicity, our disperse
function does not move to neighbors that require a triple
swap. As an illustration, suppose we have the guess vector
[1 2 3 4 5] and we wish to use the disperse function to create
a new vector. If the random distance is 2, then the function
may replace the second digit with the value 5 and swap the
fourth and fifth digits. The resulting guess vector is [1 5 3 5
4], which is 2 neighbor states away from the original.

We now define our pull function. For this, we use an extra
parameter called distpull.

Given agenti and agentj ;
for i← 1 to distpull do

k := radom integer ∈ {1, 2, 3,...,P};
kth digit of agenti := kth digit of agentj ;

end
Fig. 4. Pull Function

This function takes digits from the best agent and places
them into the corresponding digit of the agent being moved.
The value k can be selected with or without replacement. In
our implementation, we select k with replacement because
we found through experimentation that this strategy produces
slightly better results. As an example, suppose we wish to
use the pull function to move the vector [1 2 3 4 5] in the
direction of the vector [6 7 7 3 4]. Depending on the random
values, the function may replace the third digit of the first
vector with the third digit of the second vector, resulting in
[1 2 7 4 5].

Now that we have defined these two functions, we give a
more detailed description of the whole algorithm for finding
a consistent guess:
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for i← 1 to k do
ahead := random agent;
add ahead to ci;
for j ← 1 to (l - 1) do

anew := disperse(ahead);
add anew to ci;

end
end
while Sufficiently fit agent not found do

for i← 1 to k do
for j ← 1 to l do

Run local search function on aij ;
if f(aij) = 0 then

return aij ;
end
if f(aij) is lowest fitness found then

abest := aij ;
end

end
end
for i← 1 to k do

abest i := best agent ∈ ci;
for j ← 1 to l do

aij := disperse(abest i);
end
abest i := random agent;

end
for i← 1 to k do

for j ← 1 to l do
pull(aij , abest);

end
end

end
Fig. 5. Particle Cluster Search Algorithm

We will now summarize the parameters used by this
algorithm:

1) k: The number of clusters
2) l: The number of agents in a cluster
3) distmin: The minimum number of neighbor states to

move across in the disperse function
4) distmax: The maximum number of neighbor states to

move across in the disperse function
5) distpull: The maximum number of neighbor states that

agenti will move across toward agentj in the pull
function

These parameters have a strong impact on the performance
of the algorithm. Higher values of k and l are often better in
terms of avoiding local minima, but lead to higher amounts of
computation. The distance parameters are highly dependent
on the size of the problem. As we describe in our experiment
section, we do not perform extensive analysis to determine
good values for these parameters, but rather use our judge-
ment depending on the size of the Mastermind problem being
solved.

C. Domain Heuristics

Domain-specific heuristics can greatly improve the con-
vergence speed of the algorithm. Based on the reponses of

the decoder, we are able to eliminate large poritions of the
search space. We do this by maintaining a 2-dimensional
array called valid[][], which has P rows and N columns. We
say that valid[i][j] is true iff it’s possible for a consistent
guess to have the value j for di. If it is impossible, then
valid[i][j] is false. Initially, all entries in the array are set
to true. The disperse function and all local search functions
avoid setting some digit di to some value j if valid[i][j] is
false. Thus the more entires that are set to false, the more
inconsistent guesses will be avoided by the algorithm.

The question then is how to determine if an array entry
can be set to false. Our algorithm identifies three general
categories of a response r = (ndark, nlight) that allow us to
alter this array:

1) Suppose ndark = nlight = 0. This is the most informa-
tive case, since no digit in the guess g can appear in
a consistent guess. Thus ∀ i ∈ {1, 2, 3,...,P} and ∀ dj
∈ g, valid[i][dj] = false

2) Suppose ndark = 0 but nlight >0. In this case, a
consistent guess cannot have any digit dj in slot j
because this would produce a dark peg. Thus ∀ dj
∈ g valid[j][dj] = false

3) Suppose ndark + nlight = P. In this case, the decoder
has identified all of the digits that appear in the secret
code, but not in the right order. Thus the secret code is
a permutation of the digits in g, so all digits not in g
can be eliminated. More formally, ∀ i ∈ {1, 2, 3,...,P}
and ∀ j ∈ {1, 2, 3,...,N}, valid[i][j] = false iff j /∈ g

After condition (3) is met, we also flag a special variable
called endgame. The endgame occurs after all of the digits
have been identified and the algorithm simply needs to find a
permutation of them. When this happens, the algorithm first
runs local functions (2) and (3) on the most recent guess
played in the hopes that only a few swaps are needed to
produce a consistent guess. If this fails, then the algorithm
proceeds as normal. We have found experimentally that this
enhancement often does lead to the quick discovery of a
consistent guess.

IV. EXPERIMENTS AND RESULTS

To test the performance of the proposed algorithm, we
ran several trials for several values of P and N. We used an
Inspiron N4010 computer with a 2.43 GHz Intel i3 processor
and 4 GB of RAM. The computer was equipped with the
Windows 7 operating system. The programming language
we chose was C++ for purposes of speed. Each agent is
represented as a 64-bit integer, with each digit given 4 bits
of information. Thus each digit can have a maximum of 16
posssible values.

The algorithm has many parameters, and each trial uses 5
clusters and 8 particles in a cluster. All other parameters
varied depending on the problem size, and we used our
best judgment to select appropriate values. We compare our
results to the results of Berghman et al. in [7] and Merelo
et al. in [8] by comparing the average number of guesses,
average number of evaluations, and average time needed to
break the secret code. We then demonstrate our algorithm’s
scaling behavior on problem sizes not yet found in the
literature.
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A. P = 4 and N = 6

For this configuration, we used [0 0 1 1] as our first
guess. We ran 10 trials for each possible secret code and
averaged the results. As expected, our algorithm has a worse
performance in terms of the average number of guesses.
However, it is efficient in terms of the number of evaluations
required to find the secret code.

TABLE I
COMPARISON OF ALGORITHMS FOR P = 4 AND N = 6

Algorithm Guesses Evaluations Time
Berghman et al. 4.39 N/A .614 sec

Merelo et al. 4.414 3899 N/A

New Algorithm 4.64 253 0.003 sec

B. P = 5 and N = 8

For this configuration we use [0 1 2 3 4] as our first guess
and run 10000 trials, each with a randomaly generated secret
code.

TABLE II
COMPARISON OF ALGORITHMS FOR P = 5 AND N = 8

Algorithm Guesses Evaluations Time
Berghman et al. 5.618 N/A N/A

Merelo et al. 5.619 19758 N/A

New Algorithm 5.95 1464 0.009 sec

C. P = 8 and N = 12

This is the largest configuration of Mastermind that we
were able to find in the literature. We chose [0 0 1 1 2 2 3 3]
as our first guess and ran 3000 trials with randomly generated
secret codes. We compare our results to Berghman et al. We
see that our algorithm exibits a higher guess average, but the
time needed to break the secret code is significantly reduced.

TABLE III
COMPARISON OF ALGORITHMS FOR P = 8 AND N = 12

Algorithm Guesses Evaluations Time
Berghman et al. 8.366 N/A 20.571 sec

New Algorithm 8.92 26149 0.18 sec

D. Higher Dimensions

To demonstrate that our algorithm can scale to higher
dimensions, we present data on higher values of P and N.
Due to our representation of Mastermind Codes as 64-bit
integers, we limited P and N to a maximum of 16.

As we can see, the algorithm scales very well to higher
dimensions of Mastermind. Observe that when P = N = 16,
there are 1616 possible secret codes, which is approximately
1019. This means that, on average, the algorithm evalutes
only 1

1013 of the search space.

TABLE IV
PERFORMANCE FOR HIGH DIMENSIONS

(P, N) Guesses Evaluations Time
(10, 12) 10.385 69057 .655 sec

(10, 16) 11.53 131925 1.32 sec

(11, 16) 12.43 195126 2.2 sec

(12, 16) 13.19 355021 4.41 sec

(13, 16) 14.19 402877 5.81 sec

(14, 16) 15.11 604736 9.95 sec

(15, 16) 16.03 1.003×106 18.54 sec

(16, 16) 17.26 1.557×106 33.70 sec

V. CONCLUSION

In this paper we presented a new algorithm inspired by
PSO. The algorithm is similar to PSO in that it uses a swarm
of agents to explore a search space, but it introduces particle
clusters and a specialized local search function. We have
shown that the algorithm works well for solving Mastermind
codes compared to other algorithms found in the literature.

We plan to further analyze the parameters of the algorithm
to determine good rules of thumb for parameter selection. We
would also like to test the algorithm’s performance on var-
ious other discrete optimization problems that are typically
solved with genetic algorithms or other metaheuristics. This
would require modifying the disperse, pull, and local search
functions in order to suit the given optimization problem. We
further plan to enhance the algorithm through parallelism by
assigning each particle cluster its own processing core.
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