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Abstract—In this study, the wavelet-based fractal analysis is
applied to analyze epileptic ECoG data obtained during non-
seizure period and epileptic seizure events. The spectral expo-
nents of the epileptic ECoG data obtained using the wavelet-
based fractal analysis from various intervals of levels are
examined. The computational results show that the estimated
spectral exponents of the epileptic ECoG epochs vary according
to the levelsm used in the estimation of slope oflog

2
var(dm,n)-

m graphs. Also, it is shown that the spectral exponents of
epileptic ECoG data obtained during epileptic seizure events
are different from those of epileptic ECoG data obtained during
non-seizure period. The most difference between the spectral
exponents of epileptic ECoG data obtained during non-seizure
period and epileptic seizure events is observed in the 125.0–
15.625 frequency band.

Index Terms—wavelet analysis, fractals, epilepsy, seizure,
electrocorticogram,

I. I NTRODUCTION

Epilepsy is a common brain disorder in which clusters
of neurons signal abnormally [1]. More than 50 million
individuals worldwide, about 1% of the world’s population
are affected by epilepsy [2]. In epilepsy, the normal pattern
of neuronal activity is disturbed [1]. Epileptic seizures are
manifestations of epilepsy [3]. The electroencephalogram
(EEG) is a signal that quantifies the electrical activity of the
brain, usually from scalp recordings and is commonly used
to assess and detect brain abnormalities, and is crucial for
the diagnosis of epilepsy [1]. Electrocorticography (ECoG)
is an invasive approach to record the electrical activity of the
brain that is conventionally used for the epilepsy treatment.

Concepts and computational methods derived from the
contemporary study of complex systems including chaos the-
ory, nonlinear dynamics and fractals have gained increasing
interest for applications in biology and medicine because
physiological signals and systems can exhibit an extraordi-
nary range of patterns and behaviors [4]. The mathematical
concept of a fractal is commonly associated with irregular
objects that exhibit a property called scale-invariance or self-
similarity [4], [5]. 1/f processes are an important class of
statistical self-similar random processes [6].
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In [7], a wavelet-based representation for1/f processes
was developed where the spectral exponent (γ) is estimated
from the slope of thelog-var of the wavelet coefficients
versus the level, specifies the distribution of power from
low to high frequencies. In the previous studies [8], [9],
the wavelet-based approach, referred to as the wavelet-based
fractal analysis, was applied to analyze epileptic ECoG/EEG
data and it was found that the ECoG/EEG data corresponding
to various physiological and pathological states of the brain
exhibit different scale-invariant characteristics. Furthermore,
in [13], [14], the computational results obtained using the
wavelet-based fractal analysis were comparable to the results
obtained using the correlation dimension [10] and Hurst
exponent [11], [12].

In this study, the wavelet-based fractal analysis is applied
to analyze two data sets of epochs of ECoG data recorded
from an epilepsy patient. The first data set contains the
epileptic ECoG epochs obtained during non-seizure period
while another data set contains the epileptic ECoG epochs
obtained during epileptic seizure events. The spectral ex-
ponents of epileptic ECoG epochs estimated using various
intervals of levels are investigated. The most distinguishing
feature between the spectral exponents of epileptic ECoG
epochs of those two data sets can be identified.

II. M ETHODS

A. Wavelet-Based Fractal Analysis

Models of1/f processes are generally represented using
a frequency-domain characterization. The dynamics of1/f
processes exhibit power-law behaviors [16] and can be
characterized in the form of [7]

Sx(ω) ∼
σ2

x

|ω|γ
(1)

over several decades of the frequencyω, whereSx(ω) is
the Fourier transform of the signalx(t) and γ denotes the
spectral exponent.

In [7], [17], it was proved that a random processx(t)
constructed by the wavelet basis expansions

x(t) =
∑

m

∑

n

dm,nψm,n(t) (2)

whereψm,n(t) is an orthonormal wavelet basis anddm,n are
the wavelet coefficients has a time-averaged spectrum

Sx(ω) = σ2
∑

m

2−γm
∣

∣Ψ
(

2−mω
) ∣

∣

2

(3)
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(a) Data setN
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(b) Data setZ

Fig. 1. The examplary epileptic ECoG epochs of data setsN andZ.

that is nearly-1/f , i.e.,

σ2

L

|ω|γ
≤ X(ω) ≤

σ2

U

|ω|γ
(4)

for some0 < σ2

L ≤ σ2

U <∞. Variances of the wavelet coef-
ficientsdm,n that are a collection of mutually uncorrelated,
zero-mean random variables are

var(dm,n) = σ22−γm. (5)

The spectral exponentγ of a 1/f process can there-
fore be determined from the linear relationship between
log

2
var(dm,n) and levelsm, i.e.,

γ =
∆ log

2
var(dm,n)

∆m
. (6)

The steps for computing the spectral exponentγ of the
time seriesx using the wavelet-based fractal analysis are as
follows:

1) Decompose the time seriesx into M levels using
the wavelet-basis expansions to obtain the wavelet
coefficientsdm,n where levelsm = 1, 2, . . . ,M .

2) Compute the variance of wavelet coefficientsdm,n

corresponding to each levelm, var(dm,n).
3) Take the logarithm to base 2 of the corresponding

variances of wavelet coefficients,log
2
var(dm,n).

4) Compute the spectral exponentγ by estimating the
slope of alog

2
var(dm,n)-m graph between the spec-

ified levelsm.

B. Data and Analysis

ECoG data analyzed in this study are long-term ECoG
recordings of an epilepsy patient at University Hospitals of
Cleveland, Case Medical Center in Cleveland, Ohio, USA
before surgery. With the consent of the patient, the ECoG
data were recorded for few days using a Nihon-Kohden EEG
system with a sampling rate of 1,000 Hz. The epileptic ECoG
data were partitioned into 5-second epochs. Furthermore, the
epochs of epileptic ECoG data were divided into two data
sets, referred to as setsN andZ.

The data setN contains 200 epochs of ECoG data obtained
during non-seizure period (interictal state) while the data set

Z contains 50 epochs of ECoG data obtained during epileptic
seizure event (ictal state). There were none of overlapping
segments of epochs in both setsN andZ. The epochs of
setZ were obtained from four epileptic seizure events. The
exemplary epileptic ECoG epochs of data setsN andZ are
depicted in Figs. 1(a)–(b), respectively.

C. Analytic Framework

The epochs of epileptic ECoG data are decomposed
into 6 levels using the 10th order of Daubechies wavelet
(Db10). The spectral subbands corresponding to the lev-
els m = 1, 2, . . . , 7 range approximately between 250.0–
500.0, 125.0–250.0, 62.5–125.0, 31.25–62.5, 15.625–31.25,
7.8125–15.625, and 3.9062–7.8125, respectively. The spec-
tral exponentsγ of epileptic ECoG epochs are estimated
using a linear least-squares regression technique from various
intervals of levelsm. Six intervals of levelsm examined in
the spectral exponent estimation includem = 1, 2, . . . , 7,
m = 1, 2, 3, m = 2, 3, 4, m = 3, 4, 5, m = 4, 5, 6, and
m = 5, 6, 7. The Mahalanobis distances [15] between the
spectral exponentsγ of the epileptic ECoG epochs of data
setsN andZ are determined.
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Fig. 2. The log-var of the wavelet coefficients of the exemplary ECoG
epochs of data setsN (plotted in ‘△’) and Z (plotted in ‘▽’).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



N Z

2.5

3

3.5

Data Set

S
pe

ct
ra

l E
xp

on
en

t 
γ

(a) m = 1, 2, . . . , 7

N Z

3

3.5

4

4.5

Data Set

S
pe

ct
ra

l E
xp

on
en

t 
γ

(b) m = 1, 2, 3

N Z

2.5

3

3.5

4

4.5

5

Data Set

S
pe

ct
ra

l E
xp

on
en

t 
γ

(c) m = 2, 3, 4

N Z
2

3

4

5

Data Set

S
pe

ct
ra

l E
xp

on
en

t 
γ

(d) m = 3, 4, 5

N Z

1

2

3

4

Data Set

S
pe

ct
ra

l E
xp

on
en

t 
γ

(e) m = 4, 5, 6

N Z
−0.5

0

0.5

1

1.5

2

2.5

Data Set
S

pe
ct

ra
l E

xp
on

en
t 

γ

(f) m = 5, 6, 7

Fig. 3. Comparison of the spectral exponents of the epileptic ECoG epochs of data setsN andZ estimated from various intervals of levelsm.

III. R ESULTS

The log-var of the wavelet coefficients of the exemplary
ECoG epochs of data setsN and Z shown in Fig. 1
are shown in Fig. 2. It is observed that the slopes of
log

2
var(dm,n)-m graphs of the exemplary ECoG epochs of

data setsN andZ are different. The spectral exponents of
the exemplary ECoG epochs of data setsN andZ estimated
from the levelsm = 1, 2, . . . , 7, m = 1, 2, 3, m = 2, 3, 4,
m = 3, 4, 5, m = 4, 5, 6, and m = 5, 6, 7 are 2.6555
and 3.5341, 3.7521 and 4.3378, 3.0208 and 4.7803, 2.4501
and 5.0253, 2.2589 and 3.1185, and 1.8535 and 0.1884,
respectively.

The spectral exponents of the epileptic ECoG epochs of

TABLE I
STATISTICAL VALUES OF THE MAHALANOBIS DISTANCES BETWEEN THE

SPECTRAL EXPONENTS OF THE EPILEPTICECOG EPOCHS OF DATA SETS
N AND Z ESTIMATED FROM VARIOUS INTERVALS OF LEVELSm.

Levelsm Mean S.D.

m = 1, 2, . . . 7 94.8486 34.8861

m = 1, 2, 3 13.0932 9.4164

m = 2, 3, 4 59.7991 52.6181

m = 3, 4, 5 295.9030 133.5067

m = 4, 5, 6 34.7678 25.6424

m = 5, 6, 7 5.3628 4.6753

data setsN andZ estimated from the levelsm = 1, 2, . . . , 7,
m = 1, 2, 3, m = 2, 3, 4, m = 3, 4, 5, m = 4, 5, 6, and
m = 5, 6, 7 are compared in Figs. 3(a)–(f). The means
and the standard deviations of Mahalanobis distance of the
spectral exponents of the epileptic ECoG epochs of data set
Z from the spectral exponents of the epileptic ECoG epochs
of data setN are summarized in Table I. The interval of
levelsm = 3, 4, 5 provides the farthest distance between the
spectral exponents of the epileptic ECoG epochs of data sets
N andZ.

IV. CONCLUSIONS

From the computational results, the slope of
log

2
var(dm,n)-m graphs of the epileptic ECoG epochs

varies according to the levelsm. Therefore, the estimated
spectral exponents of the epileptic ECoG epochs depend
on the levelsm used in the wavelet-based fractal analysis.
At the levelsm = 1, 2, . . . , 7, m = 1, 2, 3, m = 2, 3, 4,
m = 3, 4, 5, and m = 4, 5, 6, the spectral exponents of
the epileptic ECoG epochs obtained during non-seizure
period and epileptic seizure events are relatively similar. The
spectral exponent of the epileptic ECoG epochs obtained
during epileptic seizure event tends to be higher than that
of the epileptic ECoG epochs obtained during non-seizure
period. On the other hand, at the levelsm = 5, 6, 7 the
spectral exponent of the epileptic ECoG epochs obtained
during epileptic seizure event tends to be lower than that
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of the epileptic ECoG epochs obtained during non-seizure
period.

In addition, the farthest distance between the spectral
exponents of the epileptic ECoG epochs obtained during
non-seizure period and epileptic seizure events is obtained
achieved at the levelsm = 3, 4, 5. This thus suggests that
the components of epileptic ECoG epochs obtained during
epileptic seizure events are most different from those of
epileptic ECoG epochs obtained during non-seizure period
at the 125.0–15.625 frequency band. This intriguing feature
of epileptic ECoG epochs is potentially useful for epileptic
seizure detection.
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