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Abstract—We continue the research on termination detection
for synchronous algorithms in P systems [1]. This paper is
the first attempt to relate the classical definitions of process
status and activation assumptions in the usual distributed
computing framework to P systems. We validate our approach
by modelling a well-known synchronous termination detection
algorithm, the Dijkstra-Feijen-Van Gasteren (DFG) algorithm,
and its application to synchronous BFS (SynchBFS) algorithm
in P systems. A separation of concerns (SoC) P system design
of this application is provided, by using our previous proposal,
complex state symbols and parallel composition with inter-
action [1]. We newly propose semantics that is required for
matching variables on components of complex state symbols.
Our resulting formal P system achieves the same runtime as the
DFG algorithm and shows substantially smaller program size
than the high-level informal pseudocodes of the DFG algorithm.

Index Terms—termination detection, P systems, synchronous,
parallel, complex symbols

I. INTRODUCTION

A P system is a parallel and distributed computational
model inspired by the structure and interactions of

living cells, introduced by Păun [2]; for a recent overview
of the domain, see Păun et al.’s [3] recent monograph.
Essentially, a P system is specified by its membrane structure
(in this thesis, a digraph), symbols and rules. Each cell
transforms its content symbols and sends messages to its
neighbours using formal rules inspired by rewriting systems.
The rules of the same cell can be applied in parallel (where
possible) and all cells work in parallel, traditionally in the
synchronous mode.

The adequacy of P systems to model distributed algorithms
has been investigated largely during recent years [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [1]. However, to the
best of our knowledge, the classical definitions of process
status and activation assumption in the usual distributed
computing framework have not been addressed in P systems,
which is non-trivial in modelling distributed algorithms, e.g.,
termination detection algorithms. Here we relate these clas-
sical definitions and assumptions in distributed computing
to P systems and validate our approach by modelling a
synchronous termination detection algorithm in P systems.

Termination detection determines whether a distributed
algorithm has terminated, which is a common problem in
distributed computing. A distributed algorithm terminates
when each process is passive and all channels are empty.
Intuitively, this can be clearly detected from outside, by
an external powerful observer, who can continuously probe
all process and all communication channels. However, can
the processes themselves detect this termination? For this
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purpose, processes can run a termination detection algorithm
ideally as a control layer over the main algorithm without
interfering it.

In this paper, we study the Dijkstra-Feijen-Van Gasteren
(DFG) algorithm [15], and apply it to synchronous BFS
(SynchBFS) algorithm [16]. We provide a SoC designed
P system algorithm (hereafter called P algorithm), by using
our previous proposal, complex state symbols and parallel
composition with interaction [1]. We further propose seman-
tics that is required for matching variables on components
of complex state symbols.

II. PRELIMINARIES

We use a refined version of simple P systems, as defined
in [17], where all cells share the same state and rule sets,
extended with generic rules using complex symbols.

A simple P system with duplex channels is a system
Π = (V,E,Q,O,R), where V is a finite set of cells; E
is a set of structural parent-child digraph arcs between cells
(functioning as duplex channels); Q is a finite set of states; O
is a finite non-empty alphabet of symbols; and R is a finite
set of multiset rewriting rules.

All components of a P system, i.e. V , E, Q, O and R, are
immutable. Each cell, σi ∈ V , has the initial configuration
(Si0, wi0), and the current configuration (Si, wi), where
Si0 ∈ Q is the initial state; Si ∈ Q is the current state;
wi0 ∈ O∗ is the initial multiset of symbols; and wi ∈ O∗ is
the current multiset of symbols. The general form of a rule
in R is:

r : S x →α S′ x′ (y′) (y)βγ . . . | z ¬ z′,

where: S, S′ ∈ Q, x, x′, y, z, z′ ∈ O∗, α ∈ {min, max},
β ∈ {↑, ↓, l}, γ ∈ V ∪{∀} and ellipses (. . . ) indicate possible
repetitions of the last parenthesized item; state S is known
as the rule’s starting state and state S′ as its target state.

For cell σi in configuration (Si, wi), a rule, r, is applicable
if S = Si, xz ⊆ wi, z′ ∩ wi = ∅, where multiset z is a
promoter and z′ is an inhibitor, which enables and disables
the rule respectively, without being consumed [3] and either
(a) no other rule was previously applied, in the same step,
or (b) all rules previously applied, in the same step, have
indicated the same target state, S′.

When applied, the rule consumes multiset x and fixes, if
not already fixed, the target state to S′. Multiset x′ becomes
immediately available in the same cell [17]. Message y′

is sent to the same cell via a loopback channel; message
y is queued and sent, at the end of the current step, as
indicated by the transfer operator βγ . β’s arrow indicates the
transfer direction: ↑—to parents; ↓—to children; l—in both
directions. γ indicates the distribution form: ∀—a broadcast,
which is the default distribution form if no γ is specified; a
structural neighbour, σj ∈ V—a unicast (to this neighbour).
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Operator α describes the rewriting mode: min indicates
that an applicable rule is applied once; max indicates that an
applicable rule is applied as many times as possible.

Example 1 explains how a set of rules are considered for
applicability and applied in one step.
Example 1. Consider the following rules with priorities,
{r1, r2, r3}, in a system where cell σ1 contains one symbol,
a, and has one child cell, σ2.

r1: S0 a →min S0 c (b) (f)↓2
r2: S0 b →min S1 d (g)↓2
r3: S0 c →min S0 a (h)↓2

• First, rule r1 is applied: one c becomes immediately
available (which can be used by lower priority rules);
one b is sent to itself; and one f is sent to σ2. Also, the
target state is fixed to S0.

• Next, rule r2 is not applicable, for two distinct reasons:
(1) there is no b in the current content (the message b
sent to itself by rule r1 arrives at the end of the step)
and (2) it indicates a target state, S1, different from the
one already selected, S0.

• Finally, rule r3 is applied: one a becomes available and
one h is sent to σ2.

• At the end of the step, σ1 contains ab and message fh
arrives at σ2.

We next discuss extended features [1] used in this paper,
which provide powerful ingredients for modelling distributed
algorithms.

A. Complex symbols

Complex symbols [17] provide complex data structures
for complex distributed algorithms and allow the design of
fixed-size P algorithms, i.e. solutions having a fixed number
of rules, which does not depend on the number of cells in
the underlying P systems.

Complex symbols can be viewed as complex molecules,
consisting of elementary atoms or other molecules, which
are compound terms of the form: t(i, . . . ), where (1) t is
an elementary symbol representing the functor; (2) i can be
(a) an elementary symbol, (b) another complex symbol, (c)
a free variable (open to be bound, according to the cell’s
current content), (d) a multiset of elementary and complex
symbols and free variables.

Free variables are used for pattern matching on term ar-
guments and typically denoted by lowercase subscripts such
as i, j, k, or or uppercase letters such as X , Y , Z. Following
are examples of complex symbols: b(2) = b2, c(i) = ci,
d(i, j) = di,j , e(j, c5) = ej(c

5), f(j,X) = fj(X).
Here we assume that each cell σi is “blessed” with a

unique complex cell ID symbol, ι(i), typically abbreviated
as ιi, which is exclusively used as an immutable promoter.

B. Generic Rules

To process complex symbols, we use high-level generic
rules [12], [17], which are identified by an extended ver-
sion of the classical rewriting mode, a combined instantia-
tion.rewriting mode, where (1) the instantiation mode is one
of {min, max} and (2) the rewriting mode is one of {min,
max}. Four combinations of the instantiation and rewriting
modes are used: min.min, min.max, max.min, max.max.

• The instantiation mode indicates how many instance
rules are conceptually generated, using free variable
matching:

– min indicates that the generic rule is nondetermin-
istically generated only once, if possible;

– max indicates that the generic rule is repeatedly
generated as many times as possible, depending
on the actually cell contents, without superfluous
instances (i.e. without duplicates).

Note that the rule instantiation is based on the actual cell
content and thus a generated rule is always applicable
and applied according to the rewriting mode.

• The rewriting mode indicates how each instantiated rule
is applied (as in the classical framework).

– min indicates that the instantiated rule is applied
once;

– max indicates that the instantiated rule is applied as
many times as possible.

After the instantiated rule is applied, if the instantiation
mode is max, then the generic rule repeats the generation
process until no new rules can be generated.

Example 2. Consider a system where cell σ7 contains
multiset f2f3

2v, and the generic rule ρα, where α ∈
{min.min, min.max, max.min, max.max} and i and j are free
variables:

(ρα) S20 fj →α S20 (bi)lj | v ιi

1) ρmin.min nondeterministically generates one of the fol-
lowing rule instances:

(ρ′1) S20 f2 →min S20 (b7)l2
(ρ′′1 ) S20 f3 →min S20 (b7)l3

In the first case, using (ρ′1), cell σ7 ends with f23 v.
In the second case, using (ρ′′1 ), cell σ7 ends with f2f3v.

2) ρmin.max nondeterministically generates one of the fol-
lowing rule instances:

(ρ′2) S20 f2 →max S20 (b7)l2
(ρ′′2 ) S20 f3 →max S20 (b7)l3

In the first case, using (ρ′2), cell σ7 ends with f23 v.
In the second case, using (ρ′′2 ), cell σ7 ends with f2v.

3) ρmax.min nondeterministically generates one of the fol-
lowing lists of rule instances:

(ρ′3) S20 f2 →min S20 (b7)l2
(ρ′′3 ) S20 f3 →min S20 (b7)l3

. . .
(ρ′4) S20 f3 →min S20 (b7)l3
(ρ′′4 ) S20 f2 →min S20 (b7)l2

In the first case, using (ρ′3) and (ρ′′3 ), cell σ7 ends with
f3v.
In the second case, using (ρ′4) and (ρ′′4 ), cell σ7 also
ends with f3v.
In both cases, although σ7 still contains f3, rule
S20 f3 →min S20 (b7)l3 can not be generated
again because max instantiation mode does not allow
duplicates.

4) ρmax.max nondeterministically generates one of the fol-
lowing lists of rule instances:

(ρ′5) S20 f2 →max S20 (b7)l2
(ρ′′5 ) S20 f3 →max S20 (b7)l3
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. . .

(ρ′6) S20 f3 →max S20 (b7)l3
(ρ′′6 ) S20 f2 →max S20 (b7)l2

In the first case, using (ρ′5) and (ρ′′5 ), cell σ7 ends with
v.
In the second case, using (ρ′6) and (ρ′′6 ), cell σ7 also
ends with v.

III. CELL STATUS AND ACTIVATION ASSUMPTIONS

A distributed system consists of a collection of processes
and a communication subsystem [15]. Each process performs
a collection of discrete events, each event being an atomic
change. To interact with the communication subsystem, a
process has internal events, which perform local computa-
tions, receive events, which receive messages from channels,
and send events, which queue messages to channels [15].

At any time during the computation of a distributed
algorithm, a process is either

• active, if an internal or send event is applicable; or
• passive, if no internal or send event is applicable: only

receive events are applicable [15].

The following activation assumptions are usually made:

• internal events can be only activated or disactived by
receive events; and

• send events can be only activated by internal events.

As a consequence,

• a message can only be sent by an active process;
• a passive process can only become active when a

message is received;
• an active process can only become passive after per-

forming an internal event or a send event.

In P systems, the receipt of messages are automatically
done (no rule is needed); a rule application can be considered
as combined internal+send events, which transform contents
and send messages. We relate the above definitions to P sys-
tems: at any time during the evolution of a P system, a cell
is either

• active, if it has at least one applicable rule; or
• passive, if it cannot apply any (more) rule.

A cell is a source cell, if it is active when the P system
starts to evolve.

P systems may not conform to usual activation assump-
tions: a rule can be applicable at the start of next step without
receiving a message. One may need constraints to make a
P system conform to the usual activation assumptions, so that
a rule can be only be applicable on receiving a message.

In Example 1, one a is immediately available after rule r3
is applied and makes rule r1 applicable at the start of the next
step without receiving a message. However, if we change rule
r3 to r3 to r′3 by replacing a with (a), which is treated as
a loopback message, then this P system conforms to usual
activation assumptions.

In this paper, these usual activation assumptions are made
in order to simplify algorithm descriptions and all P systems
are constrained conform to the usual activation assumptions.

IV. TERMINATION DETECTION IN P SYSTEMS

As discussed before, to detect the algorithm termination,
cells can run a termination detection algorithm as a control
layer over the main algorithm. To differentiate the main
algorithm, A, with termination detection algorithm, B, A
is called the basic algorithm while B is called the control
algorithm; messages in A are basic messages while messages
in B are control messages. Control algorithm B runs in
parallel with basic algorithm A, interacting with A at specific
points. Following our previous approach [1], to make a
clean separation, we describe this combination as a parallel
composition with interaction in P systems.

This approach enables separation of concerns (SoC) de-
signs, so that a P algorithm of a complex distributed problem
can be divided into smaller rule fragments and the solution
is the composition of bigger chunks out of rule fragments.

Our previous proposal parallel composition with interac-
tion [1], is a parallel composition with interaction of two
P systems, Π1 and Π2. This can be considered as running
in parallel Π1 and Π2, where Π1 “feeds” symbols to Π2.
This parallel composition is essential for cleanly adding a
separate control layer, Π2, over any algorithm, Π1.

Consider two P systems, Π1 and Π2, which share the same
membrane structure and satisfy the following conditions:
• Π1 and Π2 use disjoint sets of states (if not, without

loss of generality, we can relabel the states to satisfy
this condition);

• Π1 and Π2 share a set of symbols on three conditions:
– initially, no left-side symbols or promoter symbols

of Π2 are available;
– no rule of Π2 has empty left-side symbols;
– no rule of Π2 generates symbols of Π1 or symbols

generated by Π2 do not affect Π1.
The parallel composition of Π1 and Π2 with interaction,

denoted as Π1 .Π2, is constructed in the following way:
1) the structure of Π1 ‖ Π2 is the same as Π1 and Π2;
2) rules of Π1 and Π2 are concatenated, with rules of Π1

having higher priority than rules of Π2;
3) each state Si of Π1 is replaced by complex state

Θ(Si, Y ) and each state S′i of Π2 is replaced by
complex state Θ(X,S′i).

We propose weak binding for matching variables on com-
ponents of complex state symbols: during rules’ application,
the final target state is successively refined according to
the current rule’s target state; at the end of the step, the
unmapped variables are set according to the cell’s current
state.

Example 3 illustrates an example. Π1 cycles over three
states and each iteration generates one symbol, b, and Π2

cycles over two states and each iteration transforms one b to
one d. In Π1 .Π2, Π2 transforms symbol b generated by Π1

in each iteration to symbol d, therefore obtaining one d in
each iteration.
Example 3.
• Π1, has 3 states and 3 rules:

S1 a →min S2 b e
S2 e →min S3 f
S3 f →min S1 a

Step-by-step evolution:
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S1 a⇒ S2 b e⇒ S3 b f ⇒ S1 b a⇒ S2 b
2 e⇒ · · · ⇒

S1 b
n a (after n iterations)

• Π2, has 2 states and 2 rules:

S′1 b →min S′2 c
S′2 c →min S′1 d

Step-by-step evolution:
S′1 b⇒ S′2 c⇒ S′1 d

• Π1 .Π2, has 4 (= 2 + 2) states and 5 (= 3 + 2) rules:

Π1 :
r1 : Θ(S1, Y ) a →min Θ(S2, Y ) b e
r2 : Θ(S2, Y ) e →min Θ(S3, Y ) f
r3 : Θ(S3, Y ) f →min Θ(S1, Y ) a
Π2 :
r4 : Θ(X,S′1) b →min Θ(X,S′2) c
r5 : Θ(X,S′2) c →min Θ(X,S′1) d

Step-by-step evolution:
Θ(S1, S

′
1) a ⇒ Θ(S2, S

′
2) e c ⇒ Θ(S3, S

′
1) f d ⇒

Θ(S1, S
′
1)ad⇒ Θ(S2, S

′
2)bed⇒ · · · ⇒ Θ(S1, S

′
1)adn

(after n iterations)

Now we explain the first step evolution, Θ(S1, S
′
1) a ⇒

Θ(S2, S
′
2) e c, and the mapping of target state by weak

binding. Consider above rules of Π1 .Π2 in a system where
cell σ1 in state Θ(S1, S

′
1) contains one symbol a.

1) First, rule r1 is applied: one a is consumed and
be become immediately available; σ1’s target state is
temporarily mapped to Θ(S2, Y ).

2) Next, rule r4 is applied: one b is consumed and one
c becomes immediately available; σ1’s target state is
now fixed to Θ(S2, S

′
2).

3) At the end of the step, σ1 is in state Θ(S2, S
′
2) and

contains multiset ec.
Π1 . Π2 composition generates 6 states: Θ(S1, S

′
1),

Θ(S2, S
′
1), Θ(S3, S

′
1), Θ(S1, S

′
2), Θ(S2, S

′
2) and Θ(S3, S

′
2).

However, some are not reachable due to the sharing of
symbols; only three states are used: Θ(S1, S

′
1), Θ(S2, S

′
2)

and Θ(S3, S
′
1).

In this paper, we use parallel composition with interaction
to apply a termination detection algorithm (Π1) to a basic
algorithm (Π2), obtaining an augmented algorithm, in which
the source cell knows when the basic algorithm terminates,
but other cells are not aware of the termination.

V. DIJKSTRA-FEIJEN-VAN GASTEREN ALGORITHM

The Dijkstra-Feijen-Van Gasteren (DFG) algorithm as-
sumes synchronous messaging and an underlying network
containing a Hamiltonian cycle (also called a ring). It checks
whether all cells are passive by passing a d-token, around the
ring using a black and white colouring scheme.

This algorithm is round-based, which detects termination
by repeated rounds: each round starts when the source cell
sends a d-token and ends when the source cell receives back
the d-token and becomes passive.

Assume that the basic algorithm is extended with ingre-
dients for the DFG algorithm: a white or black property
for each cell and a global white or black d-token, the DFG
algorithm detects termination of the basic algorithm based
on the following detection rules.

Additions to the basic algorithm:
(I) Initially, all cells are white.

(II) A (source or non-source) cell that sends a basic message
becomes black.

(III) When the source cell becomes passive in the basic
algorithm, it sends a white d-token to start the first round
(this is done only once).

Control layer of the DFG algorithm:
(IV) A non-source cell only forwards the d-token when it is

passive in the basic algorithm.
(V) When a black non-source cell forwards the d-token, the

d-token becomes black (if it is white).
(VI) Each (source or non-source) cell becomes white (if it is

black) immediately after forwarding the d-token.
(VII) When the d-token returns to the source cell, the source

cell waits until it is passive in the basic algorithm:
(a) if the d-token and the source cell are white, the

source cell knows termination;
(b) otherwise, the source cell sends a white d-token

again to start another round.
Rules (IV) and (VII) of the DFG algorithm can be only

applied when a cell would become passive in the basic
algorithm. In P systems, this is achieved by the parallel
composition with interaction. The rules of the DFG algorithm
have lower priority than the rules of the basic algorithm and
thus can be only applied when a cell can not apply any more
rules of the basic algorithm, i.e. when a cell would become
passive in the basic algorithm.

As a simple illustration, Example 4 shows the most
straightforward way to detect termination for synchronous
BFS (SynchBFS). SynchBFS produces a BFS spanning tree
in the synchronous mode. Initially, the source cell broadcasts
a visit token. On receiving the visit token, an unvisited cell
marks itself as visited, chooses one of the token sending
cells as its parent and sends its visit token to all non-
parent neighbours [1]. The algorithm terminates when no
more visit tokens are sent; however, no cell knows the
algorithm termination. To solve this problem, we apply the
DFG algorithm to SynchBFS; the augmented algorithm is
called SynchBFS+DFG.

Example 4. Figure 1 shows how to apply the DFG algorithm
to SynchBFS in a synchronous scenario. Graph G contains
a ring, σ1.σ2.σ3.σ4.σ1.

(a) At the start, the source cell, σ1, broadcasts its visit token
and becomes black.

(b) On receiving σ1’s visit token, each of the unvisited cells,
σ2, σ3 and σ4, marks itself as visited, sets its parent as
σ1, sends its visit tokens to all non-parent neighbours
and becomes black.
The source cell, σ1, sends a white d-token to σ2 to start
round 1.

(c) Visited cells σ2, σ3 and σ4 delete all received visit
tokens (no more visit tokens are sent).
On receiving the white d-token, black σ2 sends a black
d-token to σ3 and becomes white.

(d) On receiving the black d-token, black σ3 sends a black
d-token to σ4 and becomes white.

(e) On receiving the black d-token, black σ4 sends a black
d-token to σ1 and becomes white.
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Fig. 1. An example of SynchBFS+DFG in the synchronous mode. Edges
with arrows: virtual spanning tree child-parent arcs; thick arrows near edges:
basic messages (visit tokens); thin arrows with white or black circles near
edges: white or black d-tokens respectively.

(f) The black source cell, σ1, receives back the black d-
token, so it sends a white d-token again to start round 2.

(g)–(i) The white d-token travels around the ring.
(j) Finally, the white source cell, σ1, receives back a white

d-token and thus knows termination.

P Algorithm 1: Control layer of the DFG algorithm

Input: Assumptions of the basic algorithm are made: (I)
initially, all cells contain no b′; (II) a cell that sends a basic
message generates one b′ if it does not contain b′; (III) the
source cell, σs, sends a loopback message of one t when it
starts computation. Additionally, each cell, σi, contains its
ring successor pointer, rk.
Output: All ring successor pointer symbols are intact. The
source cell, σs, contains one g, indicating it knows the
algorithm termination.

Symbols and states
Cell σi uses the following symbols: rj indicates a ring

successor, σj ; w is a white d-token; b is a black d-token; b′

indicates that it is black (white if it has no b′); t indicates
that it must next send a black or white d-token; g indicates
that it knows the algorithm termination.

The control layer of DFG algorithm uses one state, S1.
Rules

1) S1 w →min S1 g | s ¬ b′
2) S1 w →min S1 t
3) S1 b →min S1 t
4) S1 t b

′ →min.min S1 (w) lj | s rj
5) S1 t b

′ →min.min S1 (b) lj | rj
6) S1 t →min.min S1 (w) lj | rj ¬ b′

The P rules correspond to the detection rules of the control
layer of the DFG algorithm.
(IV) Rules 2–3: when cell σi receives a white or black d-

token, w or b, it generates one t, indicating it must
next send a d-token (rules 2–3).
Then if σi is white, ¬ b′, it sends a white d-token, w,
to its ring successor, rj , and deletes t (rule 6).

(V) Rule 5: otherwise (if σi is black, b′), it sends a black
d-token, b, to its ring successor, rj , becomes white by
erasing b′ and deletes t.

(VI) Rule 5: as discussed in (V).
(VII) Rules 1–4, 6: consider the source cell, σs, which

receives w or b.
(a) Rule 1: if σs, receives w and is white, ¬ b′,

then it generates one g, indicating that it knows
termination.

(b) Rules 2–4, 6: otherwise, it generates one t
(rules 2–3); then it sends w to start another round
and deletes t (rules 4, 6). Also, if σs is black, b′,
it becomes white by erasing b′ (rule 4).

VI. SYNCHBFS+DFG ALGORITHM

The DFG algorithm detect termination based on the usual
activation assumptions: it does not work if a cell can be-
come active without receiving any message. Thus, here we
ensure that our P algorithm conforms to the usual activation
assumptions, denoted as SynchBFS+DFG.

P Algorithm 2: SynchBFS+DFG

Input: All cells start in the same initial state, Θ(S2, S
′
1),

and with the same set of rules. Each cell, σi, contains an
immutable cell ID symbol, ιi, neighbour pointers, nj’s, and a
ring successor pointer, rk. The source cell, σs, is additionally
marked with one symbol, s.
Output: All cells end in the same state, Θ(S2, S

′
1); neigh-

bour pointer symbols and cell IDs are intact. Cell σs is still
marked with one s. Each cell contains a visited mark, v, and a
spanning tree parent pointer, pj . Specifically, the source cell,
σs, contains one ps, indicating it is the root of the spanning
tree, and contains one g, indicating it knows the algorithm
termination.

Table I shows initial and final configurations of P Speci-
fication 2 for Figure 1.

TABLE I
INITIAL AND FINAL CONFIGURATIONS OF XP SPECIFICATION 2 FOR

FIGURE 1.

σ1 σ2 σ3 σ4
Θ(S2, S′

1) s ι1
r2 n2 n3 n4

Θ(S2, S′
1) ι2

r3 n1 n3 n4

Θ(S2, S′
1) ι3

r4 n1 n2 n4

Θ(S2, S′
1) ι4

r1 n1 n2 n3

Θ(S2, S′
1) s ι1

r2 n2 n3 n4

v p1 g

Θ(S2, S′
1) ι2

r3 n1 n3 n4

v p1

Θ(S2, S′
1) ι3

r4 n1 n2 n4

v p1

Θ(S2, S′
1) ι4

r1 n1 n2 n3

v p1

Symbols and states
The modified SynchBFS, Π∗1, uses the following symbols.
Cell σi uses symbols of SynchBFS: nj indicates its

neighbour, σj ; pk indicates its BFS parent, σk; f indicates
that it is a token holding cell; v indicates that it is visited.

Cell σi uses specific symbols for the DFG algorithm: rj
indicates a ring successor, σj ; b′ indicates that it is black
(white if it has no b′); t indicates that it must next send a
black or white d-token.
Rules

Π∗1: rules of the modified version of SynchBFS by replac-
ing S2 with Θ(S2, Y ), where boxed rules correspond
to additions to SynchBFS for the DFG algorithm.

1) Θ(S2, Y ) →min.min Θ(S2, Y ) (t) fi | ιi s ¬ v
2) Θ(S2, Y ) fj →min.min Θ(S2, Y ) f v pj ¬ v
3) Θ(S2, Y ) →min Θ(S2, Y ) b′ | f ¬ b′

4) Θ(S2, Y ) →max.min Θ(S2, Y ) (fi) lj | ιi f nj ¬ pj
5) Θ(S2, Y ) f →min Θ(S2, Y )
6) Θ(S2, Y ) fj →max.max Θ(S2, Y ) | v

Π2: rules of the control layer of the DFG algorithm by
replacing S1 with Θ(X,S′1).
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SynchBFS: The source cell, σs, generates one token, fs,
which simulates that σs receives a visit token from a non-
existing cell (rule 1). When unvisited cell σi, indicated by
¬ v, receives fj’s, it selects one of the sending cells, by using
min.min mode, as its parent, pj , marks itself as visited by v
and generates one f , indicating it is being visited (rule 2);
next, σi sends fi to all non-parent neighbours, indicated by
nk ¬ pk (rule 4), and deletes f (rule 5). Visited cell σi,
indicated by v, deletes all received fj’s (rule 6).

Additions to SynchBFS: The modification corresponds to
the detection rules for the DFG algorithm.

(I) Initially, all cells contain no b′.
(II) Rule 3: symbol f indicates that a cell must next send

visit tokens, so rule 1.3 is added, which uses f as a
promoter to generate b′ if no b′ exists.

(III) Rule 1: the source cell, σs, sends a loopback message
of one t, indicating that it must next send a d-token.

Table II shows partial traces of P Algorithm 2 for cell
σ3 in Figure 1, highlighting the symbols used for the DFG
algorithm. Omitted symbols (. . . ) are ι3 n1 n2 n4.

To explain the cell content evolution at a step, a form
{r} c⇒ g {l} {m}R . . . is used, where received message r
is consumed; multiset c is consumed; multiset g becomes
immediately available in the same cell; message l is a
loopback message sent to the same cell; message m is sent
to neighbours indicated by R.

TABLE II
PARTIAL TRACES OF XP SPECIFICATION 2 FOR CELL σ3 IN FIGURE 1.

Fig. Content evolution Content
(a) r4 . . .
(b) {f1} ⇒ v p1 b′ {f3}2,4 r4 v p1 b′ . . .
(c) {f2 f4} ⇒ r4 v p1 b′ . . .
(d) {b} b′ ⇒ {b}4 r4 v p1 . . .
(e) (f) (g) r4 v p1 . . .
(h) {w} ⇒ {w}4 r4 v p1 . . .
(i) r4 v p1 . . .

The runtime of a termination detection algorithm is the
detection latency of the augmented algorithm; the program
size of a termination detection algorithm includes the rules of
additions to the basic algorithm and the rules of the control
layer of the termination detection algorithm. Thus, these two
measures may change when adapted to the specific basic
algorithm.

In our example, P Algorithm 2 takes seven steps, achieving
the same the runtime complexity of the DFG algorithm as
discussed in [15], O(n). The number of rules of P Solution 2
is eight, which is approximately one third of the number of
lines of pseudocodes presented in [15].

VII. CONCLUSION

The activation assumptions are non-trivial in usual dis-
tributed computing framework, e.g., in termination detection.
We address these assumptions in P systems, which we believe
is the first attempt relate such distributed concepts in the
domain of P systems. This approach is successfully validated
by modelling a synchronous termination detection algorithm
in P systems. Our P systems use parallel composition with
interaction [1] and complex state symbols that are mapped in
a newly proposed weak binding way, enabling a high-level

SoC design. The resulting P system has a reasonably fixed-
size ruleset, achieving the same runtime and substantially
smaller program size than standard algorithms.

As future work, we intend to continue this study and
make this work more complete, for example, by modelling a
termination detection algorithm in the asynchronous setting.
We are also interested in investigating a clean and common
solution for all P systems to conform to the usual activation
assumptions.
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[9] T. Bălănescu, R. Nicolescu, and H. Wu, “Asynchronous P systems,”
International Journal of Natural Computing Research, vol. 2, no. 2,
pp. 1–18, 2011.

[10] M. J. Dinneen, Y.-B. Kim, and R. Nicolescu, “An adaptive algorithm
for P system synchronization,” in Twelfth International Conference on
Membrane Computing (CMC12), Fontainebleau/Paris, France, August
23-26, 2011, Proceedings, 2011, pp. 127–152.

[11] M. J. Dinneen, Y.-B. Kim, and R. Nicolescu, “Faster synchronization
in P systems,” Natural Computing, pp. 1–9, 2011.

[12] R. Nicolescu and H. Wu, “New solutions for disjoint paths in P sys-
tems,” Natural Computing, vol. 11, pp. 637–651, 2012.

[13] H. Wu, “Minimum spanning tree in P systems,” in Proceedings of the
Asian Conference on Membrane Computing (ACMC2012), Huazhong
University of Science and Technology, October 15-18, 2012, Wuhan,
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