
A Novel Approach towards Very High Level
Programming

Darshan Patel, Devashish Thakur and Kavi Mahesh

Abstract—A significant share of programming errors
occurs in looping structures, especially in code written by
beginners. In this paper, we present an approach to very high
level programming to reduce the complexity of the syntax and
semantics of looping constructs. Our solution provides the
user with an interactive editor where he can program in high-
level algorithmic language independent of the syntax of any
particular programming language. Any errors in the algorithm
are removed by interacting with the user through a series of
dialog boxes. Errors are rectified automatically by the editor
without the need of the user to find the particular line of code.
The editor also provides the user with an option to view
equivalent Java code of the algorithm being programmed. The
algorithm can also be converted to a Java program free from
any looping errors.

Keywords—very-high level programming, loop structures,
interactive programming, editor.

I. INTRODUCTION

A major difficulty in today’s programming languages is the
difficulty in learning and the need for remembering the syntax
of that particular language. Programmers often get confused
with the looping syntax and end up using wrong looping
structure that leads to erroneous output that are very difficult
to debug. In our proposed editor the user need not remember
the syntax of any of the loops. The user just needs to select the
group of lines that have to be looped. The enclosure of the
statements in a loop is done automatically by the editor and
the type of loop is decided by the editor depending on the
inputs given from the user.

Similar problems are faced in conditional operations where
inappropriate use of if-else statements may lead to ‘dangling
else’ problem resulting in ambiguous results. Errors of these
kinds will be removed in the proposed editors as the user can
group statements effectively with a few mouse clicks and the
dangling else problem will never happen.

Centre for Knowledge Analytics and Ontological Engineering
KAnOE, PES Institute of Technology, Bangalore, India
http://kanoe.org
darsh.patel27@gmail.com, devashish.thakur11@gmail.com,
drkavimahesh@gmail.com

Our proposed editor also allows the user to perform complex
variables like addition of an array and a number without the
use of any kind of loops. The user can simply declare
variables without assigning the datatype. The data type is later
decided by the editor depending on the type of information
stored and automatic typecasting is done if needed.
The editor provides some inbuilt functions like print, average,
sort, max, swap, min and factorial to make the computation
process simpler. Compilers for the languages in case of
compilation errors just show the errors and the line numbers
and the user has to go to that particular line and has to find the
error and correct it. We change the approach towards error
correction entirely. All errors done in the editor are removed
by the editor itself by interacting with the user through dialog
boxes. Our editor acts as an interpreter between the user and
the compiler. Errors are corrected directly by the interpreter by
interacting with the user. By interaction the editor knows
exactly what the user intends to do and it modifies the line
appropriately without the user to go to that particular line.
After interaction is over the error free code is sent to the
compiler.

In between the user can see actual Java code of the algorithm
written in the editor by simply moving to the code-view
section provided. He can then shifts back to the algorithm
view and continue writing the algorithm in the editor.

The rest of the paper is organized as follows. We first describe
the prior work in section 2. Section 3 discusses the our new
approach. Section 4 shows the implementation of the
editor.We indicate our future work and conclude in section 6

II. RELATED WORK

Alba-Mutka [1] states that the more it takes to learn the
programming language and the use of the programming
environment, the harder it is for the students to assimilate the
general aspects of programming and problem solving.

Very high level language programming has been an area of
research for almost 30 years. In this topic we discuss some of
the prior work done in this field and the flaws that lead to its
failure.

In pseudo code programming [2, 3, 4] visualization has been
suggested as a method for enhancing programming learning,
especially with novice students. Animation of these objects is
usually utilized to visualize the changes in execution states.
The user gets the platform to write a pseudo code to get the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

visualization of the program where the mapping of language to
the pseudo code has to be given by the user [2]. The tool uses
a compiler that involves normal error correction mechanism
where the error in the code has to be corrected by the user.
Moreover the mapping provided is static in nature even if it is
provided by the user [4]. For example if the user declares a=2
then the tool cannot make out that a is an integer and make it
int a=2, which proves that the tool is not intelligent. There
was also no option of executing the pseudo code directly [3].

The optimized compiler/interpreter [5] for very high level
program was introduced an attempt to compile very high level
programs. It used low-level C and thereby high-level
constructs of the source program is lost.	 Compiled code is
efficient, but cannot be debugged using user-level concepts.
The low level C used makes the scalability of the
compiler/interpreter a major issue.

High level/scripting languages [6, 7, 8, 9, 14, 17] have been
proposed aiming to develop an environment which is less
stringent towards rules of syntax as compared to system level
programming. They are strongly typed and the abstract data
types have to be passed through procedures [6]. Scripting
cannot be used by novice as it is not meant to building an
application from scratch. Scripting also results in more code
and less flexible programs [7]. Object oriented languages have
been used as very high level languages which are developed
using the framework and libraries of Java [8]. This makes
coding possible only in Java.

Non-procedural languages [10] with an interactive compiler
have been used as an approach towards automated
programming for Cobol/PL/I. The level of interactions is very
shallow and effective GUI wasn’t available for interactions
which made the interaction only possible through the terminal.

IDEs [11, 12, 13] provide the user an environment that makes
the coding simpler. The compiler associated with the IDE
intimates the user with the line number of error in case a
logical or syntactical error occurs, but it doesn’t provide a
mechanism of correcting these errors automatically. Moreover
the coding is made simple by features like drag-and-drop,
spell checker, predictions etc., but ultimately the user needs to

write the code in a particular programming language. Without
the knowledge of the programming language the IDE is of no
use to the user.

Very high-Level languages proposed in the paper intend to
increase the programmer’s productivity by easing the
programmer’s task in a way that enhances the user’s reliability
and understanding of code. It frees the programmer from
details which are not relevant to the problem he is solving. It
provides the user with high level of abstractions which hides
irrelevant details thereby increasing the accuracy and the
quality of the programmers. The user can now concentrate
more on the logic involved in programming rather than the
syntax of the language. The complete approach reduces the
learning curve involved in learning a language. The editor can
also help to teach the beginners the basic control structures
and operational logic independent of any programming logic.
Later it can be mapped onto Java code which will help in
better understanding of the language.

III. APPROACH

In normal programming language we need to define a variable
before we use it along with the datatypes. This acts as a
burden for the user as he doesn’t know what kind of data the
variable can hold in future. We propose an editor that allows
the user to declare the variable directly without worrying
about the definition. The definition is provided implicitly
depending on the type of value stored. Array manipulation can
also be done directly without explicitly writing any loops.

Normal programming languages offers three types of looping
constructs. Many times the user is unsure of the looping
construct he must use in a particular program and invalid use
may lead to logical errors that are difficult to debug. Our
approach tries to interact with the user and know the type of
looping construct he intends to use in the program. The
construction of the loop is done intuitively without the need of
writing the actual code. The communication happens with the
help of dialog boxes in non-programming terms so that the
user doesn’t get confused with the jargons involved with
programming.

Fig 1 – Algo view of the editor

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

 Fig 2 – Entry vs Exit condition Fig 3 – Fixed vs Variable repeats

 Fig 4 – Break condition Fig 5 – Continue condition

IV. OUR SOLUTION

Fig.1 shows the overview of the algorithm. The user can
bound statements in a loop by simply highlighting the required
text. An interactive dialog box pops which tries to know the
kind of loops the user wants. Fig. 2 shows the dialog boxes
which checks if the user wants an entry condition or an exit
condition. Similarly the dialog box shown in Fig. 3 inquires
about the structure of the loop. This interactive approach not
only reduces the chances of having manual errors in the loop
but also eases out the construction of the loop.

The construction of loops also involves optional break and
continue conditional that helps the user to jump out of the loop
or skip the loop on a particular user defined condition. Fig. 4
shows the break condition whereas Fig. 4 shows the continue
condition. The conditions entered are added to the loop by the
editor itself and duplicate entries of the same break or
continue condition is removed by the editor. The editor also
makes sure that the break condition isn’t a part of any while
condition or any if condition within the same loop.

Similar to loops, the process of entering a condition involves
interaction with the user. The Dangling else problem occurs in
programming languages when there are more if’s than else in
a conditional statement. This results in ambiguous association

of an else with an if which gives logical errors that are
difficult to debug. Our approach tries to remove this problem
by bounding statements automatically within an if or else
clause depending on the input from the user. This approach
not only prevents dangling else problem but also makes it
easier and intuitive for the user to write conditional statements
in a program.

Our approach also provides user with various inbuilt functions
like sort, print, swap, min, max, search, average and factorial.
The user can select any function and specify the arguments
for the same.

One of the most important aspect of the editor is the process of
error detection and correction. Compilation errors in any
programming language is shown by simply specifying the line
number of the erroneous line along with the cause of the
error.In this editor we try a different approach towards error
correction where the editor displays the error and it interacts
with the user and tries to resolve the error. The user need not
know the particular line or correct it himself. Errors like
uninitialized variables(b=a with the value of ‘a’ not given) as
shown in Fig. 7 lead to popping of a dialog box which tells the
error and asks the user to initialize or change the
statement.Invalid use of operators (a++b) or invalid
assignments in the algorithm will lead to invalid expression
dialog box and the user will have to delete or correct the
expression explicitly.Once the user makes a valid change the
change in the code is done automatically.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

 Fig 6 – Invalid Expression Fig 7 – Uninitialized expression

Fig 8 – Working of interpretor

 As shown in Fig. 8 the interaction between the user and the
interpreter for the purpose of error correction takes place in
the form of a loop till all the errors are corrected. The
advantage the interpreter has over compilers is that it even
corrects the logical errors of the program as well as the
syntactical errors. The error-free code is then saved in a .java
file which can be sent for compilation. The interpreter makes
sure that the final output is error-free.

V. IMPLEMENTATION

The editor proposed in the paper is inplemented in open
source Java programming language.The GUI for the editor is
developed using javax.swing API and the code running in the
background is written in Java.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a new approach to programming
that may be very useful for novice programmers who are not
used to the syntax of a programming language. The editor may
also makes the programming simpler as the user can program
with mouse clicks and writing of long codes for loops and
conditional statements is minimized. The inbuilt functions
may further simplify the programming. We also propose an
interactive way of resolving errors in the program which may
be more easily understood by the user.

In future the work done in the editor can be extended for the
entire programming language so that the user need not know
the syntax of any language. He can simply type algorithm
independent of any syntax and execute it to get the result.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

ACKNOWLEDGMENT

This work is supported in part by the World Bank/Government
of India research grant under the TEQIP programme
(subcomponent 1.2.1) to the Centre for Knowledge Analytics
and Ontological Engineering (KAnOE) at PES Institute of
Technology, Bangalore, India.

REFERENCES

[1] Ala-Mutka, K. 2005. Ohjelmoinnin opetuksen ongelmiaja

ratkaisuja. Tekniikan opetuksen symposium 20.-21.10.2005.
Helsinki University of
Technology.http://www.dipoli.tkk.fi/ok/p/reflektori/verkkojulkai
su/index.php?p=verkkojulkaisu.

[2] Define and Visualize Your First Programming LanguageMikko-

Jussi Laakso, Erkki Kaila, Teemu Rajala & Tapio Salakoski
University of Turku, Turku Centre for Computer Science,
Turku, Finland

[3] Olsen, A.L. (2005). Using Pseudocode to Teach Problem

Solving. Journal of Computing Sciences in Colleges, 21(2):231-
236.

[4] Effectiveness of Program Visualization: A Case Study with the

ViLLE Tool Mikko-Jussi Laakso, Erkki Kaila, Teemu Rajala &
Tapio Salakoski University of Turku, Turku Centre for
Computer Science, Turku, Finland

[5] Debugging a High Level Language via a Unified Interpreter and

Compiler Runtime Environment Jinlong Cai, Marc Moreno
Maza, Stephen Watt Ontario Research Center of Computer
Algebra University of Western Ontario
{jcai,moreno,watt}@scl.csd.uwo.ca Martin Dunstan Department
of Applied Computing University of Dundee, UK
mdustan@computing.dundee.ac.uk

[6] Programming with abstract datatypes, Barbara Liskov and

Stephen Zilles

[7] Scripting: Higher Level Programming for the 21st Century John

K. Ousterhout Sun Microsystems Laboratories 901 San Antonio
Rd., MS UMTV29-232 Palo Alto, CA 94303-4900
john.ousterhout@eng.sun.com

[8] Very High Level Programming with Collection Components

Mark Evered, Gisela Menger University of Ulm

[9] The SIMPLE Language Robert M. AkscynComputer Science

DepartmentThe University of Waikato, New
Zealandra33@cs.waikato.ac.nz

[10] Use of a Nonprocedural SpecificationLanguage and Associated

Program Generator in Software Development N. S. PRYWES
University of PennsylvaniaA. PNUELI TeI-Aviv University and
S. SHASTRYBell Telephone Laboratories

[11] NETBEANS 6.9 http://netbeans.org/

[12] Eclipse www.eclipse.org

[13] JCREATOR www.jcreator.com

[14] Define and Visualize Your First Programming Language
Mikko-Jussi Laakso, Erkki Kaila, Teemu Rajala & Tapio
Salakoski University of Turku, Turku Centre for Computer
Science, Turku, Finland {milaak, ertaka, temira, sala}@utu.fi

[15] Software Prototyping using the SETL Programming Language

Philippe Kruchten, Edmond Schonberg, and Jacob Schwart New
York university.

[16] Supporting High Andrew Chien Level Programming with High

Performance: The Illinois Concert System Julian Dolby
Bishwaroop Ganguly Vijay Karamcheti Xingbin Zhang
Department of Computer Science University of IllinoisUrbana ,
Illinois

[17] What programmers should know-By J T Schwartz

[18] Programming Languages: Fundamental Concepts for Expanding

and Disciplining the Mind Mitchell Wand College of Computer
and Information Science Northeastern University, Daniel P.
Friedman Computer Science Department Indiana University.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

