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Abstract—The automatic construction of fuzzy system with a
large number of input variables involves many difficulties such
as large time complexity and getting stuck in a shallow and local
minimum. As models to overcome them, the SIRMs (Single-
Input Rule Modules) and DIRMs(Double-Input Rule Modules)
models have been proposed. In some numerical simulations such
as EX-OR problem, it was shown that there exists the difference
of the ability between DIRMs and SIRMs models. In this paper,
we will apply DIRMs and SIRMs models to control problem
such as obstacle avoidance. As a result, it is shown that DIRMs
model is also more effective than SIRMs model about control
problem. Further, we propose a constructive DIRMs model with
the reduced number of modules and show the effectiveness in
numerical simulations.

Index Terms—Fuzzy inference model, Single-input rule mod-
ule, Small number of input rule module, Double input rule
module, obstacle avoidance.

I. INTRODUCTION

MANY studies on self-tuning fuzzy systems[1], [2]
have been made. The aim of these studies is to

construct automatically fuzzy reasoning rules from input and
output data based on the steepest descend method. Obvious
drawbacks of the steepest descend method are its large com-
putational complexity and getting stuck in a shallow local
minimum. In order to overcome them, some novel methods
have been developed as shown in the references[3], [4], [5],
[6], [7]. The SIRMs (Single-Input Rule Modules) model aims
to obtain a better solution by using fuzzy inference system
composed of SIRMs[8], where output is determined as the
weighted sum of all modules. However, it is known that the
SIRMs model does not always achieve good performance
in non-linear problems. Therefore, we have proposed the
SNIRMs (Small Number of Input Rule Modules) model
as a generalized SIRMs model, in which each module is
composed of small number of input variables[9]. DIRMs
(Double-Input Rule Modules) model is an example of such
models and each module of DIRMs model is composed of
two input variables. It is well known that EX-OR problem
with two input variables can be approximated by DIRMs
model but not by SIRMs model[10]. Further, there exists the
difference of the ability between DIRMs and SIRMs models
as shown later in the paper. Then, does there exist such
example in control problems? In this paper, we consider the
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obstacle avoidance problem as an example of such problems.
The problem is how does the agent (or robot) avoid the
obstacle and reach the specified point. We show that DIRMs
model can simulate the problem but SIRMs model can not.
The simulation results show that the proposed methods are
also superior in control problem to the conventional SIRMs
model.

II. FUZZY INFERENCE MODEL AND ITS LEARNING

A. Fuzzy Inference Model
The conventional fuzzy inference model using the steepest

descend method is described[1]. Let Zj = {1, · · · , j} for the
positive integer j. Let x = (x1, · · · , xm) and y be input and
output data, respectively, where xi for i ∈ Zm and y are real
number. Then the rule of simplified fuzzy inference model
is expressed as

Rj : if x1 is M1j and · · · and xm is Mmj then y is wj ,
(1)

where j ∈ Zn is a rule number, i ∈ Zm is a variable number,
Mij is a membership function of the antecedent part, and wj

is the weight of the consequent part.
A membership value of the antecedent part µi for input x

is expressed as

µj =

m∏
i=1

Mij(xi) (2)

Let cij and bij denote the center and the wide values of Mij ,
respectively. If the triangular membership function is used,
then Mij is expressed as

Mij(xi) =

{
1− 2·

∣∣xi−cij

∣∣
bij

(cij −
bij
2 ≤ xj ≤ cij +

bij
2 )

0 (otherwise).
(3)

Further, if Gaussian membership function is used, then Mij

is expressed as follow:

Mij = exp

(
−1

2

(
xj − cij

bij

)2
)

(4)

The output y∗ of fuzzy inference is calculated by the follow-
ing equation:

y∗ =

∑n
j=1 µj · wj∑n

j=1 µj
(5)

The objective function E is defined to evaluate the infer-
ence error between the desirable output yr and the inference
output y∗.

E =
1

2
(y∗ − yr)2 (6)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



In order to minimize the objective function E, the param-
eters α ∈ {cij , bij , wj} are updated based on the descent
method[1].

α(t+ 1) = α(t)−Kα
∂E

∂α
(7)

where t is iteration times and Kα is a constant. In the
following, the case of the triangular membership function
is explained. From the Eqs.(2) to (6), ∂E

∂α ’s are calculated as
follows:

∂E

∂cij
=

µj∑n
j=1 µj

·(y∗−yr)·(wj−y∗)·
2sgn(xi − cij)

bij ·Mij(xi)
, (8)

∂E

∂bij
=

µj∑n
j=1 µj

·(y∗−yr)·(wj−y∗)·
1−Mij(xi)

Mij(xi) · bij
, and

(9)

∂E

∂wj
=

µj∑n
j=1 µj

· (y∗ − yr), (10)

where

sgn(z) =

 −1 ; z < 0
0 ; z = 0
1 ; z > 0.

(11)

B. The conventional leaning method

In this section, we describe the detailed learning algo-
rithm described in the previous section. A target data set
D = {(xp

1, · · · , xp
m, yrp)|p ∈ ZP } is given in advance. The

objective of learning is minimizing the following error:

E =
1

P

P∑
p=1

(y∗p − yrp)
2. (12)

The conventional learning algorithm is shown below[7].
Learning Algorithm A
Step 1: The initial number of rules, cij , bij and wj are
set. The threshold Θ1 for inference error is given. Let Tmax

be the maximum number of learning times. The learning
coefficients Kc,Kb and Kw are set.
Step 2: Let t = 1.
Step 3: Let p = 1.
Step 4: An input and output data (xp

1, · · · , xp
m, yrp) is given.

Step 5: Membership value of each rule is calculated by
Eqs.(2) and (3).
Step 6: Inference output y∗p is calculated by Eq.(5).
Step 7: Real number wj is updated by Eq.(10).
Step 8: Parameters cij and bij are updated by Eqs.(8) and
(9).
Step 9: If p = P then go to the next step. If p < P then
p← p+ 1 and go to Step 4.
Step 10: Inference error E(t) is calculated by Eq.(12). If
E(t) ≤ θ1 then learning is terminated.
Step 11: If t 6= Tmax then t ← t + 1 and go to Step 3.
Otherwise learning is terminated.

III. THE SNIRMS AND DIRMS MODELS

The SNIRMs, SIRMs and DIRMs models are
introduced[9]. Let Um

k be the set of all ordered k-tuples of
Zm, that is

Um
k = {l1 · · · lk|li < lj if i < j}. (13)

Example 1. U4
2 = {12, 13, 14, 23, 24, 34}, U4

1 = {1, 2, 3, 4}.
Then, each rule of SNIRMs model for Um

k is defined as
follows:

SNIRM−l1 · · · lk :

{Rl1···lk
i : if xl1 is M l1

i and · · · and xlk is M lk
i

then yl1···lk is wl1···lk
i }ni=1 (14)

Example 2. For U4
2 , the obtained system is as follows:

SNIRM− 12 :
{R12

i : if x1 is M1
i and x2 is M2

i then y12 is w12
i }ni=1

SNIRM− 13 :
{R13

i : if x1 is M1
i and x3 is M3

i then y13 is w13
i }ni=1

SNIRM− 14 :
{R14

i : if x1 is M1
i and x4 is M4

i then y14 is w14
i }ni=1

SNIRM− 23 :
{R23

i : if x2 is M2
i and x3 is M3

i then y23 is w23
i }ni=1

SNIRM− 24 :
{R24

i : if x2 is M2
i and x4 is M4

i then y24 is w24
i }ni=1

SNIRM− 34 :
{R34

i : if x3 is M3
i and x4 is M4

i then y34 is w34
i }ni=1

Note that the number of modules in the obtained system is
6.
Example 3. For U4

1 , the obtained system is as follows:

SIRM − 1 : {R1
i : if x1 is M1

i then y1 is w1
i }ni=1

SIRM − 2 : {R2
i : if x2 is M2

i then y2 is w2
i }ni=1

SIRM − 3 : {R3
i : if x3 is M3

i then y3 is w3
i }ni=1

SIRM − 4 : {R4
i : if x4 is M4

i then y4 is w4
i }ni=1

Let x = (x1, · · · , xm). The fitness of the i-th rule and the
output of SNIRM−l1 · · · lk are as follows:

µl1···lk
i = M l1

i (xl1)M
l2
i (xl2) · · ·M

lk
i (xlk), (15)

yol1···lk =

∑n
i=1 µ

l1···lk
i wl1···lk

i∑n
i=1 µ

l1···lk
i

. (16)

In this model, in addition to the conventional parameters c,
b and w, the importance degree h is introduced. Let hL be
the importance degree of each module L.

y∗ =
∑

L∈Um
k

hL · yoL (17)

From the Eqs.(2) to (6), ∂E
∂α ’s are calculated as follows:

∂E

∂hL
= (y∗ − yr)yOL , (18)

∂E

∂wL
i

= hL ·
µL
i∑n

i=1 µ
L
i

(y∗ − yr), (19)

∂E

∂cLi
= hL · (y∗ − yr)

wL
i − yoL∑n
i=1 µ

L
i

2sgn(xi − cLi )

bLi ·ML
i (xi)

, (20)

∂E

∂bLi
= hL · (y∗ − yr)

wL
i − yoL∑n
i=1 µ

L
i

xi − cLi
(bLi )

2
. (21)
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Fig. 1. The relation among the conventional fuzzy , SIRMs and DIRMs
models

The cases of k = 1 and k = 2 are called SIRMs
and DIRMs models, respectively. Fig.1 shows the relation
among the conventional fuzzy inference , SIRMs and DIRMs
models. Example 2 and Example 3 are DIRMs and SIRMs
models for m=4, respectively. It is known that the SIRMs
model does not always achieve good performance in non-
linear problems[10]. On the other hand, when the number of
input variables is large, Algorithm A requires a large time
complexity and tends to easily get stuck into a shallow local
minimum. The DIRMs model can achieve good performance
in non-linear problems compared to the SIRMs model and
is simpler than the conventional fuzzy model.

A learning algorithm for SNIRMs (DIRMs) model is given
as follows:
Learning Algorithm B
Step 1: The initial parameters, cLi , bLi , wL

i , Θ1, Tmax, Kc,
Kb and Kw are set.
Step 2: Let t = 1.
Step 3: Let p = 1.
Step 4: An input and output data (xp

1, · · · , xp
m, yrp) is given.

Step 5: Membership value of each rule is calculated by

Eq.(15).
Step 6: Inference output y∗p is calculated by Eqs.(16) and
(17).
Step 7: Importance degree hL is updated by Eq.(18).
Step 8: Real number wL

i is updated by Eq.(19).
Step 9: Parameters cLi and bLi are updated by Eqs.(20) and
(21).
Step 10: If p = P then go to the next step. If p < P then
p← p+ 1 and go to Step 4.
Step 11: Inference error E(t) is calculated by Eq.(12). If
E(t) < Θ1 then learning is terminated.
Step 12: If t 6= Tmax, t← t+1 and go to Step 3. Otherwise
learning is terminated.

Note that the numbers of rules for the conventional,
DIRMs and SIRMs models are O(Hm), O(m2H2) and
O(mH), respectively, where H is the number of fuzzy
partitions. In order to reduce the number of rule for DIRMs
model, we propose the constructive DIRMs model with
O(mH2) rules. The model is composed of SIRMs model
and O(mH2) rules of DIRMs models. The algorithm is as
follows:
Learning Algorithm C (The constructive DIRMs model)
Step 1: Algorithm B for k=1 is performed. SIRMs model is
constructed.
Step 2: Select a variable x0 with highest importance degree
in step1 and add all new modules composed of two input
variables including the variable x0 to the system of step1.
Step 3: In order to adjust the parameters of the system,
algorithm B is performed.

IV. NUMERICAL SIMULATIONS

In order to show the effectiveness of DIRMs models, nu-
merical simulations for function approximation and obstacle
avoidance are performed.

A. Two-category Classification Problems

First, we perform two-category classification problems as
in Fig.2 to investigate the basic feature of the proposed
method and to compare it with the SIRMs model. In the
classification problems, points on [0, 1] × [0, 1] × [0, 1] are
classified into two classes: class 0 and class 1. The class
boundaries are given as spheres centered at (0.5, 0.5, 0.5).
For Sphere, the inside of sphere is associated with class 1 and
the outside with class 0. For Double-Sphere, the area between
Spheres 1 and 2 is associated with class 1 and the other area
with class 0. For triple-Sphere, the inside of Sphere1 and the
area between Sphere2 and Sphere3 is associated with class 1
and the other area with class 0. The desired output yrp is set
as follows: if xp belongs to class 0, then yrp = 0.0. Otherwise
yrp = 1.0. The simulation condition is shown in Table I and
Gauss function is used as the membership functions. The
number of partitions for each model is 3. The results of
classification are shown in Table II. TableII, A, B, and C
means Algorithm A, B, and C, respectively, and the number
in parenthesis means the number of parameters. Further, the
upper and lower values in each box mean the error rates for
learning and test, respectively.
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Fig. 2. Two-category Classification Problems

TABLE I
INITIAL CONDITION FOR SIMULATION.

A B (k = 1) B (k = 2) C
Tmax 10000 100 3000 3000
Kw 0.05 0.01 0.01 0.01
Kh - 0.05 0.05 0.05
Kc 0.00001 0.001 0.0001 0.0001
Kb 0.00001 0.001 0.0001 0.0001

TABLE II
SIMULATION RESULT FOR TWO-CATEGORY CLASSIFICATION PROBLEM.

Sphere Double-Sphere Triple-Sphere
A 1.699 1.562 2.753

(189) 2.210 4.320 5.412
B(k=1) 11.230 16.835 16.328

(30) 11.237 16.789 16.371
B(k=2) 1.484 2.128 3.476
(138) 2.179 5.095 6.307

C 1.660 4.550 5.019
(122) 3.317 8.582 8.789

TABLE III
INITIAL CONDITION FOR SIMULATION.

A B (k = 1) B (k = 2) C
Tmax 10000 100 1000 1000
Kw 0.01 0.01 0.01 0.01
Kh - 0.05 0.05 0.05
Kc 0.001 0.001 0.001 0.001
Kb 0.001 0.001 0.001 0.001

B. Obstacle avoidance

1) Obstacle avoidance: From (operation) data given by
an examinee to avoid obstacle, fuzzy inference rule for each
model is constructed. As shown in Fig.3, the distance d
and the angle θ between mobile object and obstacle are
selected as 2 input variables. The mobile object moves with
the vector A=(Ax, Ay) at each step, where the element
Ax of A is constant and the element Ay of A is only
determined as an output from fuzzy inference. Learning
data to avoid obstacle given by an examine are shown as
100 points in Fig.4. From the data, fuzzy inference rule to
perform the trace of Fig.4 is constructed for each model,
where the simulation condition is shown in Table III. The
number of partitions for each model is 5. Fig.5 shows the
results for the moves of mobile object from the starting places
at (0.1, 0), (0.2, 0), · · · , (0.8, 0), (0.9, 0). In both SIRMs and
DIRMS models, obstacle avoidance is successful as shown
in Fig.5. Further, test simulations with the place of obstacle
different from the place in learning are performed with the
same fuzzy inference rule for each model. As shown in Fig.6,
the results are successful for both models.

2) Obstacle avoidance and arriving at the designated
place: As shown in Fig.7, the distance d1 and the angle θ1

y

0
x

d

vector A

obstacle

Ax

Ay

mobile object

Fig. 3. Simulation on obstacle avoidance.
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Fig. 4. Learning data denoted by dots, to avoid obstacle.
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(b) DIRMs.
Fig. 5. Simulation result for obstacle avoidance starting from various places
learning

between mobile object and obstacle and the distance d2 and
the angle θ2 between mobile object and the designated place
are selected as input variables. The problem is to construct
fuzzy inference rule that mobile object avoids obstacle and
arrives at the designated place. From (operation) data, fuzzy
inference rule for each model is constructed as shown as 200
points in Fig.8. The number of partitions for each model
is 5. As the same method as the above, the mobile object
moves with the vector A at each step. where Ay of A is
output variable. The simulation condition is shown in Table
III. The simulation results for SIRMs and DIRMs models
are unsuccessful and successful, respectively, as shown in
Fig.9. Fig.9 shows the results of moves of mobile object
for starting places at (0.1, 0), (0.2, 0), · · · , (0.8, 0), (0.9, 0)
after learning. In Fig.9(a), mobile agent collides with ob-
stacle in simulation of starting place at (0.4, 0). Further,
test simulations with the places, (1, 0.35), different from
the designated place in learning are performed for DIRMs.
The results are also successful in DIRMs model as shown
in Fig.10. Lastly, we performed the same simulations for the
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Fig. 6. Simulation for obstacle avoidance placed at different place after
learning.
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Fig. 7. Simulation on obstacle avoidance and arriving at the goal.

constructive DIRMs model. As a result, all simulations are
also successful in the constructive DIRMs. Therefore, the
number 6 of modules for DIRMs model can be reduced to
the model composed of 3 modules.

V. CONCLUSION

It is well known that the construction of fuzzy system with
a large number of input variables involves many difficulties
such as large time complexities and getting stuck in a shallow
local minimum. As one model to overcome them, SIRMs
model has been proposed. However, such a simple model
does not always achieve good performance in complex non-
linear systems. Therefore, we have proposed the DIRMs
model, in which each module is composed of two variables.
DIRMs model is superior in pattern classification to SIRMs
one as shown in the paper. Further, we have shown that
DIRMs model is more effective than SIRMs model in the
control problem as obstacle avoidance. It means that there
exists the control problem with the need of cooperation of
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(1, 0.35).
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Fig. 9. Simulation for obstacle avoidance and arriving at the different
designated place after learning.
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Fig. 10. Simulation for obstacle avoidance with the different designated
place (1, 0.35) from learning.

two variables at a time as EX-OR problem. As a future work,
we will consider theoretical characterization of SIRMs and
DIRMs models.
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