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Abstract—A novel scheme of fault tolerance for input/state
asynchronous sequential machines is presented in this pa-
per. The machine may undergo unauthorized state transitions
caused by adversarial inputs. The considered faults have the
feature of intermittency in their influences so that the adverse
effect persists for some finite time after initial occurrence. Since
strong fault tolerance is impossible, we define the notion of weak
fault tolerance and propose a fault tolerant control law for
which the closed-loop system recovers the nominal input/state
behavior with a bounded delay. The existence condition and
design procedure for a controller are addressed based on
corrective control theory for asynchronous sequential machines.
An illustrative example is provided for demonstrating the
proposed fault tolerant control scheme.

Index Terms—asynchronous sequential machines, corrective
control, state feedback, intermittent faults, fault tolerance.

I. Introduction

In this paper, we study the problem of fault tolerance for
asynchronous sequential machines. Governed by no global
synchronizing clock, asynchronous machines offer several
advantages over synchronous machines such as fast response,
low power consumption, less emission of electro-magnetic
noise, etc [1]. On the other hand, asynchronous machines
are more difficult to design than synchronous machines since
we need to realize handshaking between the components of
asynchronous machines in order to perform the necessary
synchronization, communication, and sequencing of oper-
ations. Thus, a majority of the previous studies on asyn-
chronous machines were mainly about their design principles
and related problems [1]–[3].

Our study takes an alternative view on asynchronous
machines: a control theoretic technique to compensate the
behavior of an existent asynchronous machine without resort
to re-design of its inner logic. This scheme, corrective control
theory as it is often called, can be said to lay a novel
foundation on asynchronous machines, because it proves,
both theoretically and experimentally, that the asynchronous
machine is also controllable in a similar way to continuous-
time systems in the framework of feedback control. Notice
that the controlled behavior of an asynchronous machine
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must be interpreted in the aspect of stable-state operations. In
corrective control, the original definition of state transitions
of a machine is intact, as the inner logic of the machine
remains the same throughout the control algorithm. Instead,
the controller accelerates the feedback trajectory to the
limit—ideally, in zero time—in asynchronous mechanism
so that any control procedure is completed instantaneously.
Thus, the closed-loop system can show the desired behavior
while the interaction between the system and the controller
is unnoticeable.

For the past decade, corrective control has been success-
fully applied to the problem of eliminating various defi-
ciencies in the operation of asynchronous sequential ma-
chines. [4]–[7] address the model matching problem for asyn-
chronous machines with critical races. [8] presents dynamic
feedback controllers for input/output asynchronous machines
in which the information on the output values of the machine
is unavailable to the controller. In [9] and [10], state feedback
controllers are used to eliminate the effects of infinite cycles
on asynchronous sequential machines. [11]–[14] develop
corrective controllers for diagnosing and tolerating transient
faults that cause a violation of state transition character-
istics of asynchronous machines. [15] and [16] apply the
foregoing theoretic results on asynchronous digital systems
implemented in FPGA. In [17], a corrective controller is
presented to realize model matching with the constraint
that some external input characters are uncontrollable. A
similar study with the application to error counters can be
found in [18]. [19] and [20] present fault tolerant corrective
control schemes for tolerating permanent faults occurring to
input/output machines. Finally, [21] addresses identification
and corrective control of asynchronous machines with un-
specified transition parts based on an adaptive control law.

The objective of this paper is to propose a fault tolerant
corrective controller for input/state asynchronous sequential
machines subject to intermittent faults. Intermittent faults are
defined as violation of the system’s normal behavior occur-
ring repeatedly or at intervals [22]. In this study, we stipulate
that the occurrence of an intermittent fault makes the machine
go through an unauthorized state transition. Thus, if not
recovered immediately, further change of the external input
would cause the mismatch of input/state behaviors. In this
respect, the outcome of the intermittent faults is the same as
that of the transient faults studied in [11]–[14]. But, unlike
the case of transient faults, instantaneous counteracting to
the original state of the machine is impossible due to the
feature of the intermittent faults. If the intermittent fault does
not vanish, the machine would be expelled from the original
state again even if it could reach the state by a fault tolerant
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control scheme.
Since strong fault tolerance is infeasible in our setting,

we propose the notion of weak fault tolerance, namely the
closed-loop system recovers the normal input/state behavior
within a bounded delay after fault occurrence. Note that [23],
[24] present a similar subject, namely the system recovers
from any fault within a bounded delay. But, as their studies
are based on supervisory control of discrete-event systems
[25], they cannot be applied to asynchronous machines. We
propose a novel structure of corrective controllers that realize
bounded-delay fault tolerance. To this end, analyses on stable
reachability of the controlled machine are conducted to
characterize the fault tolerance capability of the machine.
Until accomplishing perfect input/state matching, the closed-
loop system must endure some interval in which the normal
specification of the machine’s behavior is violated. An illus-
trative example is provided for demonstrating the proposed
fault tolerant control scheme.

II. Notation and Basics

We represent an input/state asynchronous machine Σ as
the following finite state machine:

Σ “ pA, X, x0, f q ,

where A is the input set, X is the state set, x0 P X is the
initial state, and f : XˆA Ñ X is the state transition function
defined as a partial function onto XˆA. Σ operates according
to the recursion

xk`1 “ f pxk, ukq, k “ 0, 1, 2, . . . ,

where u0u1u2 . . . is the input sequence and x0x1x2 . . . is the
state sequence generated by Σ starting from the initial state
x0. The step counter k advances by one upon a change of
input or state.

A sate–input pair px, uq P X ˆ A is valid if f is defined at
px, uq. px, uq is a stable combination if it is a fixed point of
f , i.e., if f px, uq “ x. Σ stays at px, uq indefinitely as long
as the external input remains unchanged. px, uq is a transient
combination if f px, uq , x. Consider a case where Σ is at a
stable combination px, u1q when the external input switches
to u for which px, uq is a transient combination. This change
gives rise to a chain of transient transitions

x1 “ f px, uq,

x2 “ f px1, uq,

...

In asynchronous mechanism, Σ passes through the transient
states x1, x2, . . . very quickly (in zero time, ideally). Assum-
ing that no infinite cycles exist in the behavior of Σ, Σ reaches
a stable state xk “ f pxk, uq. xk is termed the next stable
state of px, uq [5]. Since the transient states underlying in the
chain of transitions are unnoticeable, we properly exclude all
transient states and express only the stable transition from
a stable state to its next stable state. The stable recursion
function

s : X ˆ A Ñ X

embodies all the stable transitions of Σ. For a valid pair px, uq,
spx, uq is defined as the next stable state of px, uq. s is often
extended from input characters to sequences recursively: for

x P X and u1u2 ¨ ¨ ¨ uk P A`, where A` is the set of all non-
empty strings of characters of A,

spx, u1u2 ¨ ¨ ¨ ukq :“ spspx, u1q, u2 ¨ ¨ ¨ ukq.

To include the set of intermittent faults, we partition the
input set A into two mutually exclusive subsets

A :“ AN 9YAT ,

where AN is the normal input set and AT is the set of
intermittent fault inputs. Suppose that Σ has been staying at
a stable combination px, uq P X ˆ AN , when an intermittent
fault w P AT defined at the state x infiltrates into Σ. Σ then
undergoes an unauthorized state transition, namely its state
is switched without any change of the external input. As the
result of the fault occurrence, Σ will move to the deviated
state spx,wq. For immediate fault tolerance, Σ must be driven
to return to the original state x instantaneously after the
fault occurrence, i.e., before further change of the external
input. However, such an objective is impossible to achieve
in this case, because the intermittent fault imposes a restraint
that its adverse effect lasts for some finite time after initial
occurrence. Thus even if Σ could return to the original state x
right after the fault occurrence, it would experience another
unauthorized transition to spx,wq.

ΣC
v xu

w

x

Σ
c

Fig. 1. Corrective control system.

Fig. 1 is the structure of the corrective control system for
an input/state asynchronous machine Σ, adapted from the
former researches [5], [11]. C is the corrective controller
that has the form of an input/output asynchronous sequential
machine. v P AN is the external input, u P AN is the control
input generated by C, and x P X is the state (or output) of
Σ delivered to C as the state feedback. We denote by Σc

the closed-loop system represented by the diagram. w P AT

is the intermittent fault occurring to Σ. Complying with the
feature of adversarial entities, we suppose that w is neither
observable nor disable by the controller C. Upon occurrence,
w overrides the present value of u. Hence, the input to Σ is
determined as one of u and w whose value changes at the
last.

When dealing with asynchronous sequential machines, we
have to be careful to avoid any operation that may result in
an unpredictable response of the machine. In particular, we
must avoid changing the input character while a machine
is in transition transitions. If, on the contrary, the input
character of an asynchronous machine is changed while the
machine undergoes a chain of transitions, asynchrony and
the rapid speed at which transient transitions occur prevent
an exact characterization of the machine’s state at the instant
at which the input character changes. Since we do not know
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the exact state at which the input change occurs, switching
the input while a machine is in transitions may result in an
unpredictable outcome.

To avoid such potential uncertainty, a common operating
policy for asynchronous machines is to preserve the principle
of fundamental mode operation [26], namely to prohibit
changes to the input while a machine is in transition. Under
this operating policy, input changes are allowed only when
the machine is in a stable state. Then, the state of the machine
at which the input change occurs is well defined, and, as a
result, so is the effect of the input change on the response
of the machine. Adopting the former studies on the system
configuration [12], [21], we write the following condition for
the closed-loop system Σc of Fig. 1 to guarantee fundamental
mode operation.

Condition 1. The closed-loop system Σc of Fig. 1 operates
in fundamental mode when all the following conditions are
valid:

i) Σ stays at a stable state while C undergoes transient
transitions.

ii) C stays at a stable state while Σ undergoes transient
transitions.

iii) The external input v and the intermittent fault w change
only when Σ and C are both in stable states, and only
one at a time.

Parts i) and ii) of Condition 1 must be implemented during
the design of the controller C; part iii) on the other hand, is
a restriction on the operation of the closed-loop system Σc.
We should expect that w, an independent adversarial entity,
enters into Σ only when both Σ and C are at stable states.
Nonetheless, as transitions of asynchronous machines occur
very quickly, this assumption does not impose a burdensome
requirement on the system.

III. Stable Reachability

The existence condition for a corrective controller de-
pends on the stable reachability of the machine Σ. Given
Σ “ pA, X, x0, f q, let X :“ tx1, . . . , xnu.

Definition 1. Given Σ “ pA, X, x0, f q with A “ AN 9YAT , a
state x j P X is said to be stably reachable from xi P X if there
exists a string of nominal input characters t “ v1v2 ¨ ¨ ¨ vk P

A`
N such that spxi, tq “ x j [5].

To quantify the stable reachability, we introduce a numer-
ical matrix, called the skeleton matrix [5], as follows.

Definition 2. Given Σ “ pA, X, x0, f q with A “ AN 9YAT , the
one-step skeleton matrix K1pΣq is an n ˆ n matrix of zeros
and ones with the entries

K1
i, jpΣq “

"

1 Dv P AN s.t. x j “ spxi, vq

0 else

@i, j P t1, . . . , nu.

The skeleton matrix KpΣq is an n ˆ n matrix of zeros and
ones with the entries

Ki, jpΣq “

"

1 Dt P A`
N s.t. x j “ spxi, tq and 1 ď |t| ď n ´ 1

0 else

@i, j P t1, . . . , nu,

where A`
N is the set that includes all nonempty strings of

characters of AN and |t| denotes the length of the string t.

K1
i, jpΣq “ 1 implies that x j can be reachable from xi by

a unit input character in AN , whereas Ki, jpΣq “ 1 represents
that x j can be reachable from xi by an input sequence, i.e.,
by multiple steps of stable transitions. Stable reachability is
a crucial requirement for guaranteeing a corrective controller
for asynchronous machines [5]. In elucidating stable reach-
ability, it is sufficient to consider input strings whose length
is less than or equal to n ´ 1, where n is the cardinality of
the state set X [5].

For a state xi P X, define R1pxiq and Rpxiq as the sets of
states that are one-step stably reachable and stably reachable
from xi, respectively. We can express R1pxiq and Rpxiq using
K1pΣq and KpΣq as follows.

R1pxiq “ tx j P X|K1
i, jpΣq “ 1u

Rpxiq “ tx j P X|Ki, jpΣq “ 1u.

Clearly, R1pxiq Ď Rpxiq for any state xi.

Lemma 1. For a state xi P X of Σ “ pA, X, x0, f q with the
state set X “ tx1, . . . , xnu,

Rpx jq Ď Rpxiq, @x j P Rpxiq.

Proof: If xk P Rpx jq, there exists an input string t1 P A`
N

such that spx j, t1q “ xk. Since x j P Rpxiq, there exists an input
string t2 P A`

N such that spxi, t2q “ x j. Then, spxi, t2t1q “ xk

where t2t1 is the concatenation of t2 an t1. By definition, xk

is stably reachable from xi and we have xk P Rpxiq. l

Lemma 1 implies that the set of stably reachable states
from the present state decreases as Σ proceeds normal state
transitions. In other words, the ranges of states that can be
reached by Σ cannot be enlarged by state transitions. This
property will be used in designing fault tolerant controllers
later in this paper.

In a similar manner to the one-step skeleton matrix K1pΣq

with respect to the normal input set AN , we define the
skeleton matrix with respect to the adversarial input set AT

as follows.

Definition 3. Given Σ “ pA, X, x0, f q with A “ AN 9YAT , the
adversarial skeleton matrix KdpΣq is an nˆn matrix of zeros
and ones with the entries

Kd
i, jpΣq “

"

1 Dw P AT s.t. x j “ spxi,wq and i , j
0 else

@i, j P t1, . . . , nu.

Kd
i, jpΣq “ 1 means that Σ may undergo an unauthorized

state transition from xi to x j by an (unidentified) intermit-
tent fault. i , j in the above definition implies that we
exclude latent adversarial transitions, namely the case where
Σ maintains the present state despite the occurrence of an
intermittent fault. Since no violation of normal behaviors is
manifested in this case, fault tolerant control is not needed.
Also, note that we consider only the unit adversarial input
characters in Definition 3. Since the scheme of fault tolerance
will be initiated upon detecting the fault occurrence, we do
not have to consider further instances of intermittent faults.
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IV. Controller Design

Referring to Fig. 1, C has the following form of an
input/output asynchronous machine:

C :“ pX ˆ AN , AN ,Ξ, ξ0, ϕ, ηq ,

where X ˆ AN is the input set, AN is the output set, Ξ is the
state set, ξ0 P Ξ is the initial state,

ϕ : Ξˆ X ˆ AN Ñ Ξ

is the state transition function, and

η : ΞÑ AN

is the output function (assuming C is a Moore machine
[26]). Since the information on the intermittent fault w is
unavailable, C must conduct fault diagnosis and tolerance
by observing the change of the state feedback x.

C begins with the initial state ξ0 in the first. Suppose that
Σ reaches a state xi for which there exists at least a state
x j with Kd

i, jpΣq “ 1, i.e., an intermittent fault can occur to
Σ at xi. C then transfers to the transition state ξt. Since the
intermittent fault may happen only when Σ is at a stable state,
C prepares possible occurrences of faults at the state ξt. To
this end, set the recursion function ϕ as

ϕpξ0, x, vq “ ξt @px, vq P txiu ˆ Upxiq

ϕpξt, x, vq “ ξt @px, vq P txiu ˆ Upxiq

ϕpξ0, x, vq “ ξ0 @px, vq P X ˆ ANztxiu ˆ Upxiq

where Upxiq Ă AN denotes the set of nominal input charac-
ters that make a stable combination with xi. Since no actual
control is executed at either ξ0 or ξt, C relays the present
external input v to the control input channel u:

ηpξ0q “ v,

ηpξtq “ v.

Suppose further that while the external input remains
unchanged, the state feedback is observed to switch from xi

to x j. We deduce that an intermittent fault w has happened
to Σ, causing the unauthorized transition to x j “ spxi,wq.
Since immediate return to the original state xi is infeasible,
Σ must endure temporary violation of the normal input/state
specification by staying at the state x j. C waits for the
subsequent change of the external input and determines the
next control input according to the incoming external input
and stable reachability of the states. The following definition
of ϕ makes Σ remain at the deviated state x j after the fault
occurrence.

ϕpξt, x j, vq “ ξt @x j s.t. Kd
i, jpΣq “ 1,

where v means that the present external input remains fixed.
Recall that R1pxq and Rpxq are the sets of the states that

are stably reachable from a state x in one or more steps. The
control behavior after the fault occurrence depends on the
relation between R1pxiq and Rpx jq. First, consider the case
of

R1pxiq Ď Rpx jq. (1)

This means that every state that is stably reachable from xi

in one-step is also stably reachable from x j. Hence, we can
find a feedback trajectory from the deviated state x j to any

state that would be reached in response to the new external
input. Suppose that the external input changes to v1 after Σ
reaches x j by fault. Were it not for the occurrence of the
intermittent fault, Σ would stay at the stable state xi and in
response to the new external input v1, would undergo the
normal stable transition to spxi, v1q :“ xk. Since xk P R1pxiq,
xk P Rpx jq and K j,kpΣq “ 1 by (1), and there exists a normal
input string t j,k “ v1 ¨ ¨ ¨ vm P A`

N such that spx j, t j,kq “ xk.
Using t j,k, we can design a corrective controller module that
takes Σ from x j to xk upon receiving the external input v1

[5], [8].
Since |t j,k| “ m, the controller C needs m auxiliary states,

termed ξ1, . . . , ξm P Ξ. The correction procedure from x j to
xk is realized by the following recursive assignment of ϕ and
η.

ϕpξt, x j, v1q “ ξ1 @v1 P A s.t. spxi, v1q “ xk

ηpξhq “ vh

ϕpξh, xh´1, v1q “ ξh (2)

ϕpξh, xh, v1q “ ξh`1

h “ 1, . . . ,m ´ 1,

where

xh “ spxh´1, vhq,

x0 :“ x j, h “ 1, . . . ,m ´ 1,

denote the intermediate stable states Σ passes through the
feedback trajectory characterized by t j,k.

At ξm, finally, Σ reaches the state xk, achieving the normal
input/state specification with one step delay, i.e., after the
external input changes once. C then returns to the initial
state ξ0. To this end, we set

ηpξmq “ vm

ϕpξm, x, v1q “ ξm @x , xk (3)
ϕpξm, xk, v1q “ ξ0.

Provided that condition (1) is held true, we can design
a feedback trajectory for any other external input that will
enter into the system right after Σ reaches the deviated state
x j.

Now suppose that condition (1) is not valid, i.e.,

R1pxiq * Rpx jq. (4)

Then, there exists a nonempty state set

Dpxi, x jq :“ R1pxiqzRpx jq

whose members are stably reachable from xi but not from
x j. Continuing to use the foregoing notation, let v1 be the
changed external input and let xk “ spxi, v1q be the state
that Σ is supposed to move to in the normal behavior. If xk P

Rpx jq, C can steer Σ toward xk using the correction procedure
that is designed above. On the other hand, if xk < Rpx jq, that
is, if xk P Dpxi, x jq, no corrective control mechanism exists
for driving Σ from x j to xk. In this case, Σ must endure
violation of the normal specification one step more by staying
at the present state x j. Note from Lemma 1 that transferring
to another state does not enhance the stable stability of Σ.
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To signify that the external input changes, C moves to the
second transition state ξ1t in response to v1, as follows.

ϕpξt, x j, v1q “ ξ1t @v1 P Dpxi, x jq

ηpξ1tq “ vs

where vs P Upx jq is an input character that makes a stable
combination with x j. Receiving vs, Σ maintains the present
state x j.

The behavior of C at ξ1t is similar to the case of the
transition state ξt. Since Σ is supposed to stay at xk, the
next input character will make a valid pair with xk and
Σ would move to a state of R1pxkq if it had the normal
behavior. If R1pxkq Ď Rpx jq, for every incoming input
character, there exists a corrective controller module that
takes Σ to the desired state. In particular, let v2 P AN be
the changed input character, and let xl :“ spxk, v2q be the
state that Σ is supposed to reach in the normal behavior.
Since xl P R1pxkq and R1pxkq Ď Rpx jq, xl is stably reachable
from x j (K j,lpΣq “ 1) and thus there exists an input string

t j,l :“ r1r2 ¨ ¨ ¨ rp P A`
N .

As |t j,l| “ p, C needs p more auxiliary states, termed
ξ11, . . . , ξ

1
p P Ξ. In a similar fashion to (2), we design the

control behavior initiating from ξ1t as follows.

ϕpξ1t , x j, v2q “ ξ11 @v2 P A s.t. spxk, v2q “ xl

ηpξ1hq “ rh

ϕpξ1h, z
h´1, v2q “ ξ1h (5)

ϕpξ1h, z
h, v2q “ ξ1h`1

h “ 1, . . . , p ´ 1,

where

zh “ spzh´1, rhq,

z0 :“ x j, h “ 1, . . . , p ´ 1,

denote the intermediate stable states Σ passes through the
feedback trajectory characterized by t j,l. Also adapting the
foregoing assignment (2), we complete the controller design
at the final state ξ1p:

ηpξ1pq “ rp

ϕpξ1p, x, v
2q “ ξ1p @x , xl (6)

ϕpξ1p, xl, v2q “ ξ0.

On the other hand, if R1pxkq * Rpx jq, it is possible
that recovery to the normal input/state specification is not
achievable if the changed input character v2 invokes the
stable transition to a state that is stably reachable from
xk but not from x j. Then, like the former case, C must
advance forward to the third transition state. Σ must again
endure temporary violation of the normal behavior and will
restart the correction procedure according to the next input
character. In this way, the corrective controller C realizes
fault tolerance against the intermittent fault with a bounded
delay. As the steps of delay increase, so does the number of
transition states of C.

V. Example
As an example instance, consider an input/state asyn-

chronous machine Σ “ pA, X, x0, f q whose state flow dia-
gram is shown in Fig. 2. For the simplicity’s sake, we set
f px, uq “ spx, uq for all valid pair px, uq P X ˆ A. Σ has the
following components:

AN “ ta, b, c, d, eu

AT “ twu

X “ tx1, x2, x3, x4, x5u

x0 “ x1.

c

x
1

x
2

x
3

b,e

x
4

a,b

x
5

c,d

e,w

b

a

d b

a

e

e,w

Fig. 2. State flow diagram of Σ.

Referring to Fig. 2, we see that the intermittent fault w may
occur to Σ when the machine stays at the stable combination
px1, cq. Whenever w infiltrates into Σ, Σ undergoes the
unauthorized state transition to spx1,wq “ x2. In order to
investigate whether there exists a corrective controller that
realizes fault tolerance within a bounded delay, we first derive
R1px1q and Rpx2q as

R1px1q “ tx1, x2, x4, x5u

Rpx2q “ tx2, x3, x4u.

Since R1px1q * Rpx2q, one-step recovery to the normal
input/state behavior may not be successful depending on the
next external input character. From R1px1q and Rpx2q, we
induce the difference set

Dpx1, x2q “ R1px1qzRpx2q

“ tx1, x5u.

A slight examination of Fig. 2 shows that among the input
characters that make a valid pair with x1, ta, eu take Σ to
the states that belong to Rpx2q and tc, du to the states that
belong to Dpx1, x2q.
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We first select the control input sequences for the input
characters ta, eu. Referring to Fig. 2, spx1, aq “ x4 and
spx1, eq “ x2. For each state pair, we select the control input
sequences as

x2 Ñ x2 :: t2,2 “ ∅

x2 Ñ x4 :: t2,4 “ ba.

In the above strings, t2,2 “ ∅ implies that the corrective
controller executes no control action when it receives e.
Note that the present state of the machine Σ will be x2 after
undergoing the unauthorized transition. As the present state
x2 complies with the normal input/state specification with
respect to e, no additional correction procedure is required
for e. The controller construction using the sequence t2,4
can be conducted based on the assignments (2) and (3).
The discussion in the previous section leads us to that the
controller C “ pX ˆ AN , AN ,Ξ, ξ0, ϕ, ηq will involve the
states ξ0, ξt, ξ1, ξ2 for materializing the fault tolerant control
procedure up to this phase.

Secondly, consider the situation that after the occurrence
of w, the external input changes to one of tc, du. Specifically,
assume that the external input changes to d. Then, in view of
Fig. 2, Σ should go to spx1, dq “ x5 if it were in the normal
status. As analyzed before, x5 is not stably reachable from
the present state x2. Hence, Σ must endure the temporary
violation of the normal specification, while C transfers from
the transition state ξt to the second transition state ξ1t . In
Fig. 2, we know that

Rpx5q “ tx3, x4, x5u

in which Σ will move to x4 in response to the input character
b, and will stay at x5 if the input character switches to c
(‘switch to d’ is meaningless in the operation of Σ because
the previous character is identical to d). If the next input
character becomes c, Σ must still endure violation of the
normal specification by maintaining the present state. If, on
the other hand, it changes to b, Σ is supposed to move to
x4. As x4 P Rpx2q, we can design a feedback path that
drives Σ from x2 to x4. In fact, we already elucidate that
t2,4 “ ba can serve as the control input sequence that
can realize the feedback trajectory. In a similar fashion to
the foregoing design, C needs two more auxiliary states ξ11
and ξ12 for this correction procedure. The detailed design
algorithm can be implemented using (5) and (6). Hence
the proposed corrective controller achieves recovery to the
normal input/state specification within two steps of input
changes.

VI. Conclusion

A fault tolerant control methodology for asynchronous
sequential machines has been presented in this paper. Since
the considered adversarial entity is the intermittent fault,
immediate recovery to the normal behavior is impossible.
Instead, we have proposed a corrective control scheme that
makes the closed-loop system recover the nominal specifica-
tion of input/state behavior within a bounded delay. After a
fault occurrence, the controller records the reference state
that the machine must reach. According to the incoming
input character, the controller provides an appropriate control
input sequence for which the machine can reach the desired

state. Temporary violation of the normal specification must
be endured for finite steps of input changes. The investigation
on the controller existence has been demonstrated in a case
study.
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