

Software Risk Factors: A Survey and

Software Risk Mitigation Intelligent Decision

Network Using Rule Based Technique

* Muhammad Asif, Jamil Ahmed, and Abdul Hannan

Abstract—Software industry has been rapidly growing from

the last couple of decades. Due to this growth and advancement

many issues are going to be occurred. There are number of

factors that affect the whole software development process.

This research has focused on the most important risk factors

that affect the overall software project and risk mitigation

reviewed from the literature and my own experience. The main

aim of this research is to collect the most important risk factors

and risk mitigation for the development of intelligent network

using an Artificial Intelligence technique known as Rule Based

System. This is helpful for the project managers to make

decisions. For the accomplishment of this task Firstly an

exploratory survey has been conducted to prioritize the twenty

requirements and fifty software risk mitigation factors. A

sample of 200 respondents is selected out of which 100 are the

university students and 100 are the IT professionals of a well

reputed software house. Secondly a Rule Based technique is

used to generate the risk mitigation intelligent network. Rules

have been stored in the form of risk mitigation in relationship

with risk factors. The system follows five steps of execution.

First of all risk factors has been prioritized based upon the

associations of risk factors and risk mitigation. Secondly, it

creates new relationships between them. Thirdly, enter these

relationships as rules into the Knowledge Base or Rule Base. At

the fourth stage, an RBS engine executes these rules and finally

an intelligent risk mitigation network is generated.

Index Terms—Software Risk Factors, Software Risk

Mitigation, Intelligent Decision Network, Artificial Intelligence

in Software Engineering, Rule Based System.

I. INTRODUCTION

OFTWARE project development is a very complex

and critical job in software engineering [1]. Software

development lifecycle (SDLC) plays a vital role in any

software development activity. It includes different phases

such as analysis, design, detail design, implementation and

maintenance. The verification and validation is associated

with every phase of SDLC. Using Artificial Intelligence in

software engineering provides new ways of software

development.

Manuscript received December 08, 2013.
*Corresponding Author: Mr. Muhammad Asif (member IAENG, no:

133742) is a PhD Scholar of Abasyn University, Islamabad, Pakistan.

(Phone: +92518438320; fax: +92518438325; e-mail: masifkhan_2055
@yahoo.com)

Dr. Jamil Ahmed is the Vice Chancellor of Abasyn University,

Islamabad, Pakistan. (email: jamil.ahmad@abasyn.edu.pk).
Mr. Abdul Hannan is a PhD Scholar of Abasyn University,

Islamabad, Pakistan. (email: abdul.hannan@abasyn.edu.pk).

 There are certain factors that affect the project scope,

planning objectives, scheduling, budget and implementation

[2]. These factors are known as risks. Risks are basically

negative factors that create hurdles during the execution of

software project or risks are even those events that can

threaten the software success. Risks can be handled or

managed but it is necessary to analyze and identify the

hypothetical risks. There are possible risk factors that are

certain or uncertain and risk mitigation from the literature

[1] [2] [3]. Certain risks are those risks that are known and

uncertain risks that are unknown [1]. Risks may be

dependent or independent in nature. Dependent risks are

those that are occurred with the presence of some other

risks. And independent risks are those that are generated

without the dependency of some other risks [6]. Software

project failure causes might lead the project to a closed end

of a street. Internal risks are those that come from inside the

organization and threaten it. On the other hand external risks

always come externally i.e. risks that are hard to handle and

control [4].

This research work is based on two phases. Firstly, an

exploratory research has been conducted to figure out the

risk factors and assigned ranks on the basis of respondent’s

feedback. Secondly, an intelligent risk mitigation network

has been established through an Artificial Intelligence

technique generally known as Rule Based System (RBS). It

is very difficult to identify and control all of the risks during

software development but this research work can make an

Artificial Intelligence system which stores the risk factors

and risk mitigation in the form of relationships in the

Knowledge Base to generate a network to facilitate the

project managers for decision making. It reduces the failure

factors of projects.

II. SOFTWARE RISK FACTORS

In this section following are the important risk factors

collected from the literature review.

A. Unrealistic deadlines

Software project may fail when deadlines are not properly

set. It includes time and schedule. Project initialization,

finishing date and time must be realistic otherwise it may

cause a great deal of harm [1] [3] [4].

B. Improper budget

Cost estimation of a project is very crucial in terms of

project success and failure. Low cost with high expectations

of large projects may cause project failure. An organization

cannot bear the expenses of a project [1] [3] [5].

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

C. Lack of resources

Software and hardware resources are not quite up to the

mark. Lack of resources in terms of man power is also a

critical risk factor of software failure [1] [3] [4].

D. Personnel hiring

Extensive hiring and firing in a software team may lead a

software project to a critical stage. Also the staff is not

properly organized to proper tasks [6] [7].

E. Understanding problems of customers

Most of the occasion customers are not technical in terms

of software terminologies and don’t understand the

developer’s point of view [4] [5].

F. Understanding problem of developers

 Sometimes developers perceive different meanings of

provided information by the clients [4] [5].

G. Size of the project

Most of the time managers could not justify the project

because of its relatively huge size. Large projects with

minimum resources may affect the overall success rate [3]

[6].

H. Inappropriate design

Software designers have a major role in the success or

failure of the project. If project design is not appropriate

then it may be disastrous [2] [4].

I. Inappropriate technology

Information technology and computer science both are

dynamic in nature. Technology is progressing by leaps and

bounds. Selecting an inadequate or obsolete technology for

the software development is definitely going towards a

project failure [2] [4].

J. Implementation

While implementation there is a need of skillful person.

Other real-time factors may also create disturbance during

the development such as lack of software or hardware

resources in the market [3].

K. Market demand obsolete

Sometimes market demand obsoletes while project is still

in progress [1].

L. Improper planning

During analysis, an improper definition of goals and

objectives may result project failure. A good plan leads to a

success and a bad plan can cause failure [1] [6] [7]. There is

a great chance of unclear requirements in the planning and

analysis phase.

M. Improper marketing techniques

Most of the software projects have been completed

successfully but due to non-technical marketing team, it may

affect the whole project badly [4] [6].

N. Higher management decisions

Higher management always plays a vital role in the

project success or failure. Strong and positive decisions lead

towards the successful achievement of the goals but bad

decisions always leads to a zero level [1] [7].

O. Improper scope definition

Project scope should always be defined precisely. Little

diversion from a scope ultimately affects the goals [4] [5].

P. Lack of experience of project manager

Project manager is the leader and the most responsible

person. Inexperience manager is very harmful and

dangerous for the project and the team [4] [7].

Q. Cultural diversity

World is now a global village, so the software teams are

full of diverse members in terms of culture, gender, social,

language etc. There should be a team with full of

coordination and collaboration [3] [4].

R. Lack of motivation

Team members should be motivated for the achievement

of the goals otherwise objectives cannot be met according to

the plan [6].

S. Government factors

Legislative factors are very critical and continuous.

Government and its legislation have been changing

frequently. Their rules and regulations affect the software

industry [1] [3].

T. Improper feasibility Study

Feasibility report is a backbone of any software project

success. Feasibility study aims at SWOT (Strength,

Weakness, Opportunity and Threats) analysis [6]. Wrong

analysis will lead towards a bad feasibility report. Feasibility

refers to five areas TELOS (Technical, Economic, Legal,

Operational and Scheduling).

III. SOFTWARE RISK MITIGATION

This section contains 50 risk mitigation factors reviewed

from the literature [5] [7] [8] and my own experience

against the risk factors in section II.

1) Clear Idea of the requirements: All the requirements

should be well defined and unambiguous.

2) Proper Feasibility Report making: A thorough and

complete feasibility study is required which then leads to a

project success and allows decision makers to strive towards

a successful project.

3) Requirements Specification: A complete Software

Requirements Specification (SRS) is needed. It is a

complete description of the project. It includes functional

and non-functional requirements.

4) IT Consultants: An IT consultant is the one who works

with all the stake holders. They are also well aware of the

latest technologies and implementations.

5) Proper Communication Channel: Communication

between employees and stakeholders should be held

regularly. e.g. daily or weekly meetings.

6) Retaining and preservation of Good Employees: To

keep the experienced and good employees in contact. They

are real assets of any organization.

7) Bonuses: A reward in terms of special salary packages

and extra pays etc. It helps to boost the motivation of

employees.

8) Attractive packages: Attractive salary at which the

team members work more effectively.

9) Developers Faithfulness: Developers must be very

motivated and very clear direction towards completion of

the work and have full confidence on the project manager.

10) Proper Team Structure: Team should be properly

structured and managed. Centralized team structure should

be adopted to mitigate risks.

11) Proper backup plans: Backup plans should be given

preferences because if there is no backup plan then there can

be a complete loss.

12) Define Goals and Objectives: Goals and objectives

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

should be focus in a project plan otherwise it is difficult to

complete a project successfully. Goals are the desired results

which a project manager wants to achieve in a finite time.

13) Ensure Communications and Milestones: Ensure to

achieve deliverables and milestones through proper

collaboration and communication within a given time

period.

14) Leadership: Leadership is very important for the

achievement of any goal successfully. Leader should be very

creative and innovative.

15) Past Experience: Past experience may lead to a

success. Experiences of previous projects are helpful for the

successful completion of a project.

16) Proper use of methodologies and Software process

models: All the models and methods must be appropriate

and up to the mark of the current technologies. e.g.; software

process models.

17) Work Unit Culture: The environment and working

people are very crucial to any organization. It focuses on

team work.

18) On the job and off the job training: On-the job

training should be given to employees in the working hours

and off-the job training should be away from the working

environment.

19) Respect and Honour of Employees: Respect and

Honour should be given to all the employees. Dignity and

appreciation of the employees should be taken care of.

20) Employee Attitude: Employee attitude towards work

should be positive and constructive.

21) Employee Skill: Talented and Skilled employee is the

main asset of the organization.

22) Employee Awareness: Employee should know the

situations, policies and documents. Employee Awareness

training programs must be provided.

23) Continuous Review: Continuous review process is

very important in every phase of software development life

cycle. Formal Technical reviews should be conducted in

regular intervals.

24) Project Scheduling: Project scheduling includes

milestones and deliverables on proper dates. e.g.; Activity

Network Diagram and Bar Chart Diagram.

25) Prototyping: Make an initial version of the software

that meets the user’s requirements.

26) User Involvement: User must be involved in the

development process of software regularly.

27) Use Statistical Methods: Always use mathematical

models and methods for the solution of issues.

28) Choice of technology after thorough research of

available tools and technologies: Tools and technologies

should be used properly and flexible with future trends and

techniques.

29) Human Resource Role: Human resources are the set

of personalities who are responsible for making an

organization’s workforce. This work force should be

creative and technically skillful people.

30) Proper Testing Techniques: Proper software testing

will lead to a successful and mature product. For example

Black box testing, White Box testing, Integration testing,

Unit Testing etc.

31) Proper Sales Marketing Team: An experienced and

qualified marketing team is required.

32) Identification of Success Criteria: The goals and aims

that must be achieved.

33) Policy Setting and Enforcement: Clear and fair

policies should be implemented and enforce people to

follow them.

34) Scrub able requirements: Requirements that are

specific and according to the needs of the customers.

35) Top Management Commitment: Higher officials are

the decision makers of any organization. They should be

very flexible and innovative.

36) Facilitated Application Specification Technique: A

technique for requirements elicitation for software

development and mediator between client and developer.

37) Centralization: There should be a centralized control

mechanism for software project execution.

38) Intuitive and Creative: Innovative thinking and

creative ideas is the key to successful achievement of goals.

39) Positive behaviour and problem solving skills:

Positive behaviour is a key to success of any project. If

direction is focused and attitude is positive then everything

goes in right direction without any ambiguities.

40) Security Checklist and Authentication Process: A

complete list of checks for the maintenance of security and

the verification of product.

41) Set Key Performance Indicator: A key performance

indicator (KPIs) is a measure of efficiency and performance.

42) Stress testing: It can determine the stability and

efficiency of a system. System is under heavy load during

testing to uncover errors and measure efficiency.

43) Regular Updates: Project updates and new

technologies should be properly managed with regularities.

44) Assess Past Communications: Information collection

or Requirements gathering is crucial in software

development phases. Communication should be very clear

and strong in order to grasp the ideas. Past problems and

their solutions should be taken care of. Assessment of past

communication is very critical.

45) Contingency Plan: A plan for possible future

circumstances and events.

46) Trouble Shooting: Tracing and correction of errors

and faults in a software system.

47) Reusability: Reusability refers to the possibility that a

piece of component can be used again. This includes new

additional functionalities and modifications. It reduces the

bugs and implementation time.

48) Project Tracking and Control: Analyzing project

development from the beginning to the end of the project.

49) Impact Assessment: To assess the impact of risks on

the software that has to be built.

50) Consistent Commitment: Consistency with

commitment is very important towards success. Software

Elicitation is a requirement discovery stage.

IV. CASE STUDY: A SURVEY

An exploratory survey has been conducted to prioritize

these twenty requirements. This survey has been divided

into two parts.

1) Sample of 100 students (Male/Female) of a university

has been selected. These 100 students are randomly selected

from MIT, MCS, BCS, and BIT sections.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

2) Sample of 100 IT professionals from an IT department

of a well reputed software house has been randomly

selected. These IT professionals include IT managers, Team

leaders, Senior Software Engineers, Software Engineers,

Designers, Software Analysts and Quality Assurance

Engineers.

A survey has been conducted from a sample of 200

respondents. On the basis of their feedback ratings have

been assigned to certain software risk factors in terms of

percentages accordingly. Open-Ended questions have been

asked about these 20 software risk factors from the

respondents. This is also an experience survey in which

opinions of experts have been collected. These risk factors

have been categorized into different rankings based upon the

number of occurrences in percentage. These are prioritized

from 1 to 20 on the basis of respondent’s feedback. Table I.

given below shows the ratings of these factors.

TABLE I. SOFTWARE RISK FACTORS RATING

V. SOFTWARE RISK MITIGATION INTELLIGENT

 DECISION NETWORK THROUGH RULE BASE

Rule Based System (RBS) is an Artificial Intelligence

technique. An RBS has been used to provide a solution to

real world problem by using expert knowledge. Rules are

the better representation of expert knowledge [13]. A Rule

Based System has three components, A Rule Based Engine

(An Inference Engine), A Knowledge Base (KB) and

Working Memory (WM) [12]. Software risk factors and

risk mitigation are stored in the form of rules in the

Knowledge Base. Domain Engineers or Domain Experts

stores data in the form of relationships between software

risk factors and risk mitigation. Rules are basically

conjunction of conditions of risk mitigations. An RBS takes

risk factors as inputs and generates an intelligent decision

network of risk mitigation nodes by an inference engine. A

framework of RBS is given in Fig. 1.

Fig. 1: A Generic RBS Framework

Initially 20 risk factors and 50 risk mitigation factors have

been worked out. This system will be effective as

knowledge base increases. An RBS engine accepts software

risk factors as inputs. It searches already existing rules in the

form of relationships between Risk factors and risk

mitigation from the knowledge base. If Rule(s) found then

an RBS inference engine apply the selected rule(s) and

generates a network of nodes that represents software risk

mitigation against the risk factors. On the other hand if

rule(s) not found then this engine will follow the five steps

of execution. a) First of all it prioritizes the risk factors on

the basis of already stored knowledge in the form of

relationships between risk factors and risk mitigation. b)

Create new relationships of the input factors with risk

mitigation. These relationships will be created through

probability of occurrence of risks. c) Add these relationships

in the form of rules into the Knowledge Base or Rule Base.

d) Apply these newly created rules from the KB. e) Generate

an intelligent risk mitigation network. See Fig.3.

Probability of occurrence of risks is based on two types of

risks i.e. Dependent Risks and Independent Risks [6]. Also

the relationships between risk factors and risk mitigation are

created using probability. Probability of independent risks

have been shown mathematically as P(Risk4 and Risk5) =

P(Risk4∩Risk5) = P(Risk4)P(Risk5). Probability of

dependent risks have been shown mathematically as

P(Risk2|Risk1)P(Risk2∩Risk1)/P(Risk1). Risk (Risk

Factors and Risk Mitigation) taxonomy of dependent and

independent risks is shown in Fig.2.

Fig. 2: Risk Taxonomy

There are total no. of 20 rules of software risk mitigation

[9] [10] against certain software risk factors. This decision

network would be helpful in making decisions as decision

support system by Asif, M. [11].

Rating Software Risk factor

Frequency in

Percentage

1 Improper feasibility report 90%

2

Higher management

decisions 88%

3

Understanding problems of

customers 85%

4

Understanding problem of

developers 82%

5 Improper planning 80%

6 Improper scope definition 78%

7

Lack of experience of project

manager 76%

8 Government factors 75%

9 Implementation 72%

10 Cultural diversity 70%

11 Lack of motivation 68%

12 Personnel hiring 67%

13 Unrealistic deadlines 60%

14 Inappropriate design 55%

15 Improper budget 52%

16 Inappropriate technology 49%

17 Lack of resources 44%

18 Size of the project 40%

19

Improper marketing

techniques 35%

20 Market demand obsolete 30%

Risk 1

Risk 2 Risk 3

Risk 4 Risk 5 Risk 6 Risk 7 Risk 8

Risk Factors Risk Mitigation

Inference

Engine

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Fig. 3 represents an Intelligent Network Engine.

Fig.3. An Intelligent Decision Network Engine

Rule 1: Improper feasibility report {Clear Idea of the

requirements, Proper Feasibility Report making,

Requirements Specification, Scrub able requirements,

Choice of technology after thorough research of available

tools and technologies, Define Goals and Objectives}

Rule 2: Higher management decisions {IT Consultants,

Work Unit Culture, Proper Communication Channel, Top

Management Commitment, FAST}

Rule 3: Understanding problems of customers {Proper

Communication Channel, Work Unit Culture, Proper Sales

Marketing Team, Employee Attitude, Employee Skill,

Employee Awareness}

Rule 4: Understanding problem of developers {Retaining

and preservation of Good Employees, Bonuses, Attractive

packages, Developers Faithfulness, Proper Team Structure,

and Centralization}

Rule 5: Improper planning {Proper Team Structure,

Proper backup plans, Requirements Specification, Clear

Idea of the requirements, Define Goals and Objectives}

Rule 6: Improper scope definition {Goals and Objectives,

Ensure Communications and Milestones, Clear Idea of the

requirements, Leadership, Continuous Review and

Identification of Success Criteria}

Rule 7: Lack of experience of project manager

{Leadership, Past Experience, IT Consultants, Proper Team

Structure, Proper backup plans, Continuous Review, Proper

Communication Channel, Intuitive and Creative}

Rule 8: Government factors {Policy Setting and

Enforcement, Positive behaviour and problem solving skills,

Security Checklist and Authentication Process}

Rule 9: Implementation {Clear Idea of the requirements,

Proper use of methodologies and Software process models,

Proper Feasibility Report making, Requirements

Specification, Developers Faithfulness, Top Management

Commitment, Set KPIs, Ensure Communications and

Milestones}

Rule 10: Cultural diversity {Work Unit Culture,

Leadership, Proper Team Structure, Stress testing}

Rule 11: Lack of motivation {On the job and off the job

training, Retaining of Good Employees, Bonuses, Attractive

packages, Respect/ Honour of Employees, Positive

behaviour, problem solving skills}

Rule 12: Personnel hiring {Retaining and preservation of

Good Employees, Employee Attitude, Employee Skill,

Employee Awareness, Work Unit Culture, Human Resource

Role, Proper Team Structure}

Rule 13: Unrealistic deadlines {Continuous Review,

Project Scheduling, Regular Updates, Proper Feasibility

Report making, Proper use of methodologies and Software

process models, Assess Past Communications, Prototyping,

Contingency Plan}

Rule 14: Inappropriate design {Prototyping, User

Involvement, Use Statistical Methods, Employee Skill, and

Employee Awareness}

Rule 15: Improper budget {IT Consultants, Choice of

technology after thorough research of available tools and

technologies, Proper Feasibility Report making,

Requirements Specification}

Rule 16: Inappropriate technology {Choice of technology

after thorough research of available tools and technologies,

Trouble Shooting}

Rule 17: Lack of resources {Retaining and preservation

of Good Employees, HR Role, and Reusability}

Rule 18: Size of the project {Testing Techniques, Clear

requirements, Goals and Objectives, Ensure

Communications/ Milestones, Choice of technology, Project

Tracking and Control, Impact Assessment}

Rule 19: Improper marketing techniques {Proper Sales

Marketing Team, on the job and off the job training,

Consistent Commitment, User Involvement, Use Statistical

Methods}

Rule 20: Market demand obsolete {Identification of

Success Criteria, policy setting and Enforcement, Impact

Assessment, Regular Updates}

No Yes

Start

Rule

exists?

Input Risk Factors

Select rule(s) in the form of Risk

Factors with Mitigation from

Knowledge Base (KB)

Apply Rules

Generate Risk Mitigation

Network

Exit

Prioritized Risk Factors and stored in

Working Memory (WM)

Create Relationship of Risks Factors

with Risk Mitigation

Enter the Relationships in the form of

Rules into Knowledge Base

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Fig. 4 has shown software risk mitigation intelligent decision network and nodes are numbered according to section III.

Fig.4. Software Risk Mitigation Intelligent Decision Network

17 5

22 37

32

23

12

23

11

36 21

35
20

9

1

14

10

11

3

50

49

3
5

31

8

Inappropriate design

Improper budget

48

12 28

10

28

27

13

26

43

34

14

Start

47

46

18

2

33
17

7

1

29

12

35

9

3

2

15

13

16

39

1

4

40

1

4 5

6

10

12

14

33

1

17

18

6

28

4

32

30

31

10

45

25

Improper planning

Improper scope
definition

Lack of experience

of project manager

Improper

marketing

techniques

Personnel hiring

Unrealistic deadlines

Inappropriate technology

Lack of

resources

Size of

the
project

Improper

feasibility

Higher management decisions

Understanding problems of customers

Understanding problem of developers

Market

demand

obsolete

39

29
44

17

19

16

22

3

21

42

8

22
2

10

2

27

43

21 7

6 23

25

26

28

20
6 24

Govt
factors

Impleme
ntation

Cultural diversity

 report

Lack of

motivation

49

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

The decision network in fig.4 has been generated through

nodes of software risk mitigation as discussed in section III.

These connected nodes provide paths to risk factors as a

consequence of risk mitigations. Numbers have been

assigned to nodes of a network for mitigation of risks. The

rectangles in the diagram describe the risk factors specified

in section II. The associations between risk factors and risk

mitigation have been generated after the execution of rules

stored in the knowledge base. E.g. Rule No. 11 Lack of

Motivation of software development team members is a risk

factor. When there is no motivation of employees from the

project manager then there is a great chance of bad work

environment. An RBS engine executes this rule and makes

decision in conjunction of giving on-the job and off -the job

training to employees, Good and skill full employees should

be taken care of, Bonuses should be given to the employees,

Attractive and smart salary packages should be announced,

Respect and Honour of Employees should be maintained,

Positive behaviour should be shown to the good employees

and manager must have problem solving skills to handle

hurdles. And the whole decision network is maintained in

this manner.

VI. DISCUSSION AND CONCLUSION

This research work has been fruitful and result oriented.

Integration of Artificial Intelligence in Software

Engineering has introduced new dimensions for research

and development. Senior management of the organization

has acknowledged these factors as critical and prominent

during the software development stages. Ratings on the

basis of software risk factors have been assigned and 50

software risk mitigation factors have also been analyzed. On

the basis of these software risks mitigation decision network

has been developed using an Artificial Intelligence

technique known as Rule Based System. This decision

network is the combination of nodes of risk factors in

relation with risk mitigation. This network will be helpful to

mitigate risk factors and classify the risk factors. First 90%

Improper feasibility report, Second 88% Higher

management decisions, Third 85% Communication

problems with customers, Fourth 82% Understanding

problem of developers, Fifth 80% Improper planning, Sixth

78% Improper scope definition, Seventh 76% Lack of

experience of project manager, Eighth 75% Government

factors, Ninth 72% Implementation, Tenth 70% Cultural

diversity, Eleventh 68% Lack of motivation, Twelfth 67%

Personnel hiring, Thirteenth 60% Unrealistic deadlines,

Fourteenth 55% Inappropriate design, Fifteenth 52%

Improper budget, Sixteenth 49% Inappropriate technology,

Seventeenth 44% Lack of resources, Eighteenth 40% Size of

the project, Nineteenth 35% Improper marketing techniques

and Twentieth 30% Market demand obsolete. Causes of

software failure will definitely be reduced when the above

factors are in the mind of project managers.

ACKNOWLEDGMENTS

The support and encouragement of Abasyn University,

Islamabad, Pakistan, Dr. Jamil Ahmed Vice Chancellor

Abasyn University and Mr. Abdul Hannan a Ph.D. Scholar

is enthusiastically acknowledged. I also acknowledge the

encouragement and firm support of my parents (Mr. & Mrs.

Sher Afzal) during this research work.

REFERENCES
[1] Arnuphaptrairong, T. “Top Ten Lists of Software Project

Risks : Evidence from the Literature Survey”, Proceedings of

the International MultiConference of Engineers and Computer

Scientists 2011 Vol 1, IMECS 2011, March 16-18, 2011,

Hong Kong.

[2] Hoodat, H. and H Rashidi. “Classification and analysis of

Risk in Software Engineering”, World Academy of Science ,

engineering and Technology 56 2009.

[3] Khan, Q. , S. Ghayyur. “Software Risks and Mitigation in

Global Software Development”, Journal of Theoretical and

Applied Information Technology 2005-2010 Jatit & LLS.

[4] Pressman, R.S. “Software Engineering A Practitioner’s

Approach”, Seventh Edition, McGraw Hill Higher Education.

ISBN 978–0–07–337597–7. MHID 0–07–337597–7, 2010.

[5] Sakrthidaran, R.T. “How Can An Acquirer Mitigate Risks In

Software Engineering Projects”, The open Software

Engineering Journal, 201, 4, 64-69.

[6] Uzzafer, M. “A Risk Classification Scheme for Software

Projects”, International Journal of Software Engineering and

its Applications Vol. 7, No. 1, January, 2013.

[7] Westfall, L. “Software Risk Management”, The Westfall

Team. 2001.

[8] Shahzad, B., Yousef, A. and Abdullah, “A. Trivial model for

mitigation of risks in software development life cycle”,

International Journal of the Physical Sciences Vol. 6(8), pp.

2072-2082, 18 April, 2011.

[9] Hammer, Michael and Champy, James. “Re-engineering the

Corporation”, A Manifesto for Business Revolution. New

York, NY: HarperCollins Publishers, Inc 2003.

[10] Luftman, Jerry N. “Managing the Information Technology

Resource: Leadership in the Information Age”, Upper Saddle

River, NJ: Pearson Education, Inc 2004.

[11] Asif, M., Sawar, J. and Abdullah, U, “Design of Decision

Support System in Electronic Medical Record Using

Structured Query Language”, DOI:10.7763/IPEDR.V63.3

2013.

[12] “Handbook of Measuring System Design”, edited by Peter

 H. Sydenham and Richard Thorn. 2005 John Wiley

 &Sons, Ltd. ISBN: 0-470-02143-8.p-910-912

[13] Frederick Hayes-Roth. “RULE-BASED SYSTEMS”,

 Communications of the ACM, September 1985 Volume 28

 Number 9 ACM 000l-0782/85/0900-0921.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

