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Abstract—A wind turbine, by itself, is already a fairly
complex system with highly nonlinear dynamics. Wind speed
and torque fluctuations can change the dynamic parameters of
wind energy conversion systems (WECS), so that the parameter
will be a function of time. The quasi-ARX neural networks are
nonlinear models, while the multi-layer parceptron (MLP) net-
work is an embedded system to give the unknown parameters
of the regression vector. Unknown parameter is the coefficient
of nonlinear autoregressive moving average (ARMA) models
and consists of two parts, linear and nonlinear parts. With
a quasi-ARX model as an identifier, we design an adaptive
controller for WECS. Logic switch function is used to ensure
the stability and control accuracy. In this paper, the objective
of WECS controller is to track the maximum power point
tracking (MPPT) is used to maximize the power output of the
wind turbine. However, from user’s point of view, there are
two majors. First, quasi-ARX neural network model is used to
identification and prediction of nonlinear system, and second,
by using using minimum variance controller with switching
law, the proposed model successfully is used to track MPPT of
WECS.

Index Terms—wind energy conversion systems (WECS),
quasi-ARX neural networks, nonlinear parameter estimation,
wind turbine control, switching controller.

I. INTRODUCTION

HE growing concern over environmental degradation
resulting from combustion of fossil fuels and fluctuating
oil prices has raised awareness about alternative energy op-
tions [1], [2]. Wind energy is non-depletable, site-dependent,
nonpolluting, and potential sources of alternative energy op-
tions. The wind generation rely purely on weather conditions;
the highest level of energy injected into the electricity grid
can occur at times when the cost of the electricity is also
high. This will improve the high capital intensive installation
cost required for such renewable energy generation systems
to be recovered earlier and hence improve future investment
opportunities [3].
There are many challenges for designing an effective
control system for the wind energy conversion systems
(WECS). The system variables must be regulated in the
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presence of severe fluctuations in the input turbine power
caused by erratic variations in the wind speed. Fluctuations
in turbine power can lead to harmful effects on the system
[4]. Large variations in the drive train torsional torque can
occur, thus reducing the life time of the mechanical parts
of the system. Another challenge is the presence of non-
linearity in the system dynamics and the continuous variation
of the operating point depending on the average wind speed.
The control system must cope with these variations to ensure
good performance over the whole range of operation of the
WECS. The One of control strategy are made based on
identification and prediction of WECS systems such as model
predictive control (MPC) [5].

The estimated parameters neural networks have been used
to identify and control nonlinear dynamical systems because
of its ability to approximate arbitrary map to any desired
accuracy [6]. Some researchers have used neural networks
directly to identify and control nonlinear systems [6], [7].
However, from a users point of view, there are two major
criticisms on those neural network models. One is that their
parameters do not have useful interpretations. The second
is that they do not have a friendly interface for controller
design and system analysis [8], [9]. Quasi-ARX model is
a nonlinear model constructed by neural network. Based
on Taylor expansion series, nonlinear system has a linear
correlation between the information vector and its nonlinear
coefficients [10], [11], [12]. Nonlinear coefficients serve as
the parameters of ARX model, can be executed by using
multi-input multi-output model, and also can be implemented
by neuro fuzzy, wavelet, radial basis function, and multi layer
parceptron (MLP) networks [13].

The control system is the key technology of the wind
energy conversion process in order to extract maximum
energy from the incident wind. Thus, maximum power point
tracking (MPPT) control schemes have been reported which
operate by varying the generator speed in order to optimize
wind turbine aerodynamic efficiency [14]. The effectiveness
of controller is to track maximum power point tracking which
are employed to maximize the wind turbine output power.
In this work, we propose a nonlinear adaptive controller by
using quasi-ARX neural networks model as an identifier. A
MLP neural networks is embedded system injected to the
quasi-ARX model as a kernel and the nonlinear parameters
are its output. By using the quasi-ARX model as a predictor,
we estimate nonlinear parameters and design an adaptive
feedback controller derived from the output of predictor.
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II. DYNAMIC MODELING OF WECS SYSTEM
A. Wind Speed Modeling

The power produced by a wind turbine generator (WTG)
at a particular site is highly dependent on the wind regime
at that location. There is a number of ways that wind
speed can and has been modeled in power system reliability
evaluation. This method uses the ARMA model to predict
wind speeds in the reliability evaluation process and is
designated as the ARMA approach. An ARMA model with p
autoregressive terms and ¢ moving average terms is denoted
as ARMA(p,q). The ARMA model created for the Swift
Current site in Saskatchewan, Canada based on 1996 to 2003
data is shown in the following [15]:

s(t) =
+0.0379s(t — 4) + v(t) — 0.50300(t — 1)
—0.2924v(t — 2) 4 0.1317u(t — 3)
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The simulated wind speed at hour ¢, designated as V' (t), can

be calculated as follows:

V(t) = u(t) + o(t)s(t).

where p(t) is the mean observed wind speed at hour and
o(t) is the standard deviation of the observed wind speed at
hour.

B. Dynamic Modeling of WECS

The power captured by a wind turbine is given by
Py, = 0.50mCp(\, B)R*V3 (3)

where p is the air density (typically 1.25 kg/m3), R is radius
of blades ( in meter), Cp(A,8) is the wind-turbine power
coefficient, and V' is the wind speed (in m/s). The coefficient
Cp(A, B) depends on the pitch angle of the blades /5 (in
degrees) and the tip-speed ratio A, which is defined as the
ratio of the linear velocity of the blade tip (w;R) to the wind
speed V as follows:

Fig. 1. Power coefficient versus tip-speed ratio, for various blade pitch
angles .
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Fig. 2. Structural diagram of WECS systems.

curves) and the maximum power point curve (dashed curve)
attained at each wind speed, for a blade pitch angle of 0°.
The aerodynamic torque on the wind turbine rotor can be
obtained using the following relationships:

P prCp(\, B)RPV?

Tm =
Wt 2\

(7

(-L)tR 1.5
A= v “) 5
where w; is the wind turbine shaft speed (in rad/s). =

The relation of Cp versus A of a three-blade horizontal- § il
axis wind turbine for various blade pitch angles [ is illus- g

trated in Fig. 1. The curves have been obtained by using the 2.6l
following equation that is commonly used in wind turbine %
simulators [5], [16]: E

_ 116 7 . —21/X; % 3 6
Cp(A,B) = 0.5176( N 0.4 —5)e + 0.0068A Wind turbine speed [rad/s]
) Fig. 3. Power-speed characteristics of wind turbine, for various wind speeds
1 1 0.035 ©) at pitch angle 0°.

N, A+00083 B+l

WECS can be structured into several interconnected sub-
system models as shown in Fig. 2. This system consists of
wind turbine, a drive train, and a generation unit.

The objective of the proposed control is to maximize the
power that the turbine extracts. This can be achieved if C'p
is maximized. To maximize C'p, A must be kept constant
at its optimum value , regardless of the wind speed. Fig. 3
illustrates the steady-state power-speed characteristics (solid
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The basic idea of the proposed MPPT technique is to
retrieve the optimal rotor speed w; (meaning the speed
corresponding to the maximum generable power) for any
instantaneous value of the wind speed. In Fig. 2, the input
signals coming from the turbine control system are the
generator torque set point Ty .. and the desired pitch angle
Bres. The measured outputs are assumed to be the turbine
rotor speed w;. The wind speed V is the disturbance signal

IMECS 2014



affecting the WECS. Its model is given as

0 = wi—uw, (8)
Jgwg(t) = K0+ Bews — Bswg + Ty(wg, Ty ref)(9)
tht(t) = —KSH—BSwt +Bswg +Tm(ﬂ, V) (10)

The generator torque Ty, is a nonlinear function of w, and
the control variable Ty ,.r. The generator usually operates
in the linear region of its torque characteristic which can,
therefore, be approximated by a linear form

Ty = Bywg — Ty res- (11)
The pitch actuator is modelled as a first-order dynamic

system with saturation in the amplitude and derivative of
the pitch angle 3 as [4], [5].

B= "8+ ~Brer. (12)
T T

It can be seen that the overall WECS model described

in (3)-(12) is nonlinear. Fig. 4 shows the block diagram

of a control scheme to track the optimal rotor speed to

maximize the power that the turbine extracts. The control
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Fig. 4. Block diagram of nonlinear dynamic of WECS.

system acts on the generator in order to apply the reference
electromagnetic torque 7y .y and on the pitch actuator in
order to control the pitch angle of the blades 3. The system
parameters are given as follows [17]:

Turbine and drive train parameters

R=30.30m,K 4=15.66x10° N/m,Bs=30.29x10?N.ms/rad,

J;=83.00x10*kg.m?

Generator parameters

By=15.99 N.ms/rad, J;=5.9 kg.m?

Pitch actuator

7=100 ms.

III. CONTROL STRATEGY

To control a given system, the controller design includes
two steps: the first step for identification and prediction of
WECS by quasi-ARX neural network model; and the second
step for deriving and implementing control law. In Fig. 5, we
shows the adaptive controller scheme based on quasi-ARX
model. To regulate turbine speed at MPPT operating point
is performed by using blade pitch control, with generator
torque assumed to be constant.
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Fig. 5. Block diagram of the MPPT controller of WECS.

A. System Identification

Through using Taylor expansion series [8], [10], nonlinear
continuous function can be presented as

y(t) = o+ T (OR(H(1)) + e(t) (13)
where
N(@(t) = lawe - aen,.0) b bmn,.pl” and ¢(t) =
[yt — 1) — y(t — ny) ult — 1)---u(t — ny,)|" are

Taylor coefficients (nonlinear parameter estimation) and the
information or input regression vector, respectively. ¢(t) €
R"="«tny s the dimension of information vector, equals
to the sum of n, and n, that represent orders of time delay
in input and output data. R(¢(¢)) € R"="«""v is a function
called as the core-part sub-model to parameterize the input
regression vector. e(t) and yo are gaussian white noise added
to the system and initial condition of output, respectively.
Assumption 1. The pairs of the input and output of training
data are bounded.

Assumption 2. The input and output of nonlinear function
N(¢(t)) are bounded.

By performing Taylor expansion series, nonlinear system
is decomposed into linear correlation between the informa-
tion vector and its coefficients. It is the same in form like
ARX model with nonlinear coefficients. If the system is
linear, then the coefficients are constant; and if the system is
nonlinear, then the coefficients are not constant or nonlinear.
By putting nonlinear function into its coefficients, quasi-
linear ARX model is defined as follows,

y(t, o(t)) = bapu(t —1) + -+ bgn, pyu(t — nu)

—a@pny(t —1) = —a@, ny(t —ny). (14)

The system identification are performed by quasi-ARX neu-
ral network model is shown in Fig. 6. The embedded of MLP
network of quasi-ARX model has input dimension of ¢(t) is
equal to n, the number of hidden layer is m and the number
of output layer is n. The quasi-ARX incorporating neural
network can be expressed as,

y(t,o(t) = " (HR(e(1)) (15)
R(p(t) = WolWi(g(t)+B)+0.  (16)

where Q = {W;,Ws, B,0}, W, € R™™™ Wy € R"™™ B €
R™=L are the weights matrix the first and the second layer.
0 € R™! is the bias vector of output nodes, and I' is
the diagonal nonlinear operator with identical sigmoidal
elements on hidden nodes.
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Quasi-ARX neural network with MLP network as embedded

If model in (15) satisfies to mapping the input-output of the
system, and Assumption 1. and Assumption 2. are fulfilled,
then we can estimate the output of the system at time (¢+d).
The equation (15) is regressed at time (¢ + d) to calculate
the output at d step ahead prediction, described as,

y(t + d7 ¢<t + d)) = B(l’ter)u(t +d— 1) + o+

Dny t+d)u(t — 1y +d) — a1 payy(t — 1+ d)
— = Ay i)Yt —ny + d) (17)

where, p(t +d) = [yt +d—1)ylt+d—2)---y(t+d—
ny)u(t+d—1)u(t+d—2)-u(t+d—n,)]T, for online
step ahead prediction d is equal to one.

The learning algorithm for quasi-ARX model is per-
formed by the back propagation error algorithm for em-
bedded MLP network and LSE algorithm for the to
update 6. Let we introduce two sub-models z(k) =
y(t, 6(1))—6(8) Wa (k)DW1 (k) (9(t)+B(k))]T, and 2, (k) =
y(t, o)) — ¢(t)0(k)T, and k is the learning number. The
step of learning algorithm of quasi-ARX neural network is
described by,

1) set k = 0 for initial conditions, #(k) = 0; and small

initial values to W1 (k), Wa(k), and B(k), then set
k =1, where k is the learning number.

2) calculate z;(k), then estimate 6(k) for by using a least-
squares error algorithm.

3) calculate z,(k), then estimate W;(k), Wa(k), and
B(k). Tt is realized by using the well-known back-
propagation (BP) algorithm.

4) use the (16) to update R(k, ¢(t))

5) stop if pre-specified conditions are met and update
R(¢(t)) by using R(k, ¢(t)), otherwise go to Step 2,
and repeat the estimation of 0(k), and W1 (k), Wa(k),
and B(k), set k =k + 1.

B. Controller Design

The quasi-ARX prediction model is improved to guarantee
system stability expressed by

y(t, o(t)) oT (N(o(t), x (1)) (18)
N(o(t), x(t)) = x(E)WoIT'Wi(o(t)+ B)+6. (19)

where WoI'W1(¢(t) + B) is nonlinear part, 6 is linear part.
Obviously, through introducing the switching function x(t),
the improved quasi-ARX neural network model is different
from the conventional quasi-ARX model. When x(¢) = 1, it is

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

a nonlinear prediction model which can insure the prediction
accuracy. And when x(¢) = 0, it is a linear prediction model
which can insure the control stability [18].

The linear part error and nonlinear part error, respectively
is defined as follows :

e1(t) y(t+d) — ot +d)T6.
ea(t) = y(t+d)— ot +d)R(o(t + d)).

The switching criterion function are described as follows:

(20)
2y

L @R - 142)
MO = D50 el - BTl B
+ ¢ Y, (I—aa®l?).i=1,2 22)
l=t—N+1
0 = {5 s @)

The value of A is determined by designer where A <
d(t)R(¢(¢)). The detail of switching technique and its sta-
bility analysis refer to [18].

A minimum variance controller is used for WECS, define
as follows,

M(t+1)= <;(y(t +d) —y*(t+d)* + ;\u(t)2> (24)

where A is a weight of control input, the controller can be
obtained by solving,

OM(t+1)
ou

In the case where a conventional neural network is used as
a prediction model, a controller can not be derived directly
from an identified model because of the nonlinearities. How-
ever, the quasi-ARX neural network model is linear in the
input variable u(t). Therefore, a controller is derived from
the proposed model [8], [18]:

b Y wlt —
u(t) = 76%(25)_'_/\(“71(75) blg, o(t))q)u(t — 1)

+ oyt +1) —alg™ o()y(h)

=0 (25)

(26)

IV. SIMULATION AND RESULTS

To further demonstrate the effectiveness of the proposed
MPPT control strategy, the control action is to arrange blade
pitch ratio S to track angular velocities of turbine operating in
MPPT point. The pitch angle command signal is determined
by the wind speed and pitch angle. Wind speed is generated
by ARMA model with the mean observed wind speed of
w1(t) = 12 m/s and the standard deviation of the observed
wind speed of o(t) = 1.5. The results of simulation in detail
are shown in Fig. 7 - Fig. 13. In order to obtain maximum
output power from a wind turbine generator system, it is
necessary to drive the wind turbine at an optimal rotor speed
for a particular wind speed.

The kernel of MIMO multi layer parceptron neural net-
works has one hidden layer, n,=3, ny,=4, and m=n,, +mn,=7.
The parameter of switching criterion c=1.2 and N=3. Fig. 7
and Fig. 8 illustrate the WECS response in the MPPT
operating point. Before t = 0s,V = 12.48m/s, MPPT
power tracking 1.45MW, B = 0deg, angular velocity
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wy = 4.12rad/s. When the wind speed change to decrease

or increase the MPPT power also should be change in order
to keep maximum operating point of WECS with arrange

= 002: | | turbine rotor speed w; by controlling blade pitch ratio 5.
% oz | | Fig. 9 and Fig. 10 shows the control signal and wind turbine
o1s | | rotor speed tracking. The dot dash line denotes the output of
s o1l system using proposed method and solid line denotes rotor
%’ 0.05 speed reference w; in MPPT operating point, respectively.
% 0 H The tracking error of turbine rotor speed is shown in
© 005 : 1 = = = 2 Fig. 11. Switching function between nonlinear and linear part
Time (sec) to keep system stability and control accuracy is shown in

Fig. 12. The performance of the proposed controller is also
measured by the rooted mean squared (RM.S) error index
versus time shown in Fig. 13 defined as,
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V. CONCLUSION

Fig. 10. Trajectory of w; of minimum variance controller with switching . . .
based quasi-ARX model. In this paper, quasi-ARX neural network model is used to

identification and prediction nonlinear system. The controller

design is derived from the proposed model with switching

s function to keep system stability. Switching law a made by
logical signal 0 for linear part and 1 for nonlinear part,
as we know quasi-ARX neural network model is divided
05 ¢ 1 into two part; nonlinear and linear. The quasi-ARX model
oll ; also has good properties, it is used to modeling a system
into linear correlation between regression vector and its
coefficients, so it is easy to derive the controller law by using
0 5 10 1 20 25 30 local linear properties in nonlinear system such as minimum

Time (sec) variance controller. By using minimum variance controller

Fig. 11. Tracking error of turbine angular velocity. with switching law, the proposed model successfully is used
to track maximum power point tracking (MPPT) of WECS.

Rotor speed

tracking error (rad/s)
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