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Abstract—The focus of fuzzy c-means clustering method
is normally used on numerical data. However, most data
existing in databases are both categorical and numerical. To
date, clustering methods have been developed to analyze only
complete data. Although we sometimes encounter data sets that
contain one or more missing feature values (incomplete data),
traditional clustering methods cannot be used for such data.
Thus, we study this theme and discuss clustering methods that
can handle mixed numerical and categorical incomplete data.
In this paper, we propose an algorithm that uses the missing
categorical data imputation method and distances between
numerical data that contain missing values. Finally, we show
through numerical experiments that our proposed method is
applicable to real data.

Index Terms—Clustering, Fuzzy c-means, incomplete data,
mixed data, Partial distance.

I. I NTRODUCTION

CLUSTERING is the most popular method for dis-
covering group and data structures in datasets. It is

used for example in data and web mining. Fuzzy clustering
allows each datum to belong to some clusters. Thus data
are classified into an optimal cluster accurately[1]. Thek-
means algorithm is the most popular algorithm used in
scientific and industrial applications because of its simplicity
and efficiency. Whereask-means gives satisfactory results
for numeric attributes, it is not appropriate for data sets
containing categorical attributes because it is not possible
to find a mean of categorical value. Although, traditional
clustering methods handle only numerical data, real world
data sets contain mixed (numerical and categorical) data.
Therefore, traditional clustering methods cannot be applied
to mixed data sets. Recently, clustering methods that deal
with mixed data sets have been developed[4][5].

Moreover, when we analyze real world data sets, we
encounter incomplete data. Incomplete data are found for
example through data input errors, inaccurate measures,
and noise. Traditional clustering methods cannot be directly
applied to data sets that contain incomplete data, so we need
to treat such data. A common approach to analyzing data
with missing values is to remove attributes and/or instances
with large fractions of missing values. However, this ap-
proach excludes partial data from analytical consideration
and hence compromises the reliability of results. Therefore,
we need analytical tools that handle incomplete categorical
data, a process that is called imputation. To date, many
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imputation methods have been proposed, but most apply only
to numerical variables. Thus, when analyzing categorical data
or mixed data containing missing values, one has to eliminate
from consideration data with missing values. Moreover, an
imputation method applicable to fuzzy clustering is rare.

Fuzzy c-means(FCM) clustering is a very popular fuzzy
extension of k-means. However, FCM for mixed data cannot
be applied to data that contains missing data. Therefore, we
use the imputation method for missing categorical data, and
then we apply FCM clustering for mixed data. If we en-
counter missing numerical data, we use the PDS distance[7]
instead of the Euclidean distance.

In this paper, we describe the development of a fuzzy
clustering algorithm for mixed data with missing numerical
and categorical data. The next section introduces the FCM
algorithm. Section III presents the clustering algorithm for
mixed data. Sections IV and V introduce the missing categor-
ical imputation method, and the notion of distance between
data that contain missing values. Section VI proposes a fuzzy
clustering algorithm that can treat mixed incomplete data.

A. Fuzzyc-means clustering

The FCM algorithm proposed by Dunn[1] and extended
by Bezdek[2] is one of the most well-known algorithms in
fuzzy clustering analysis. This algorithm uses the squared-
norm to measure similarities between cluster centers and data
points. It can only be effective in clustering spherical clusters.
To cluster more general datasets, a number of algorithms
have been proposed by replacing the squared-norm with other
similarity measures[3]. The notation that we use throughout
is as follows. Letxi = (xij), i = 1, . . . , n, j = 1, . . .m is
a feature value of theith data vector,c is the number of
clusters.bc = (bc1, . . . , bcm)T is the cluster center of the
cth cluster,uci is the degree to whichxi belongs to thecth

cluster. Then,uci satisfies the following constraint

C∑
c=1

uci = 1, i = 1, . . . , n (1)

The FCM algorithm for solving equation (2) alternates the
optimizations ofLfcm over the variablesu andb

Lfcm =
C∑

c=1

n∑
i=1

uθ
ci

 m∑
j=1

(xij − bcj)
2

 (2)

whereθ is the fuzzification parameter (θ >1). Minimizing
theu values of (2) are less fuzzy for values ofθ near 1 and
fuzzier for large values ofθ. The choiceθ = 2 is widely
accepted as a good choice of fuzzification parameter.
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1) Fuzzy c-means clustering for mixed databases:The
FCM algorithm has been widely used and adapted. However,
only numerical data can be treated; categorical data cannot.
When we analyze categorical data, we have to implement
a quantification of such data. For example, suppose we ob-
tainedn sample data that havem categorical data consisting
of Kj categories.

Then, thejth item data can be expressed as an (n×Kj)
dummy variable matrixGj = {gijk}, i = 1, . . . , n, k =
1, . . . ,Kj

gijk =

{
1, datai contains categoryk

0, otherwise
(3)

Hondaet al. proposed a method that combined the quan-
tification of categorical data and the fuzzy clustering of
numerical data[5]. The variables up to(m−q) are numerical;
the rest is categorical. Calculating

L =

C∑
c=1

n∑
i=1

uθ
ci

m−q∑
j=1

(xij − bcj)
2 +

m∑
j=m−q+1

(gT
ijqj − bcj)

2


(4)

whereqj is a categorical score, which can be computed as
follows

qj =

(
GT

j

( C∑
c=1

Uθ
c

)
Gj

)−1( C∑
c=1

bcjG
T
j U

θ
c 1n

)
(5)

To obtain a unique solution, we impose the following con-
straint.

1T
nGjqj = 0 (6)

qT
j G

T
j Gjqj = n (7)

Algorithm: Fuzzy c-means algorithm for mixed databases

1. Initialize membershipuci, c = 1, . . . , C, i = 1, . . . , n
and cluster centerbcj , c = 1, . . . , C, then normalize
uci satisfying (1).

2. Update category scoreqj , j = m−q+1, . . . ,m, using
equation (5) according to constraint conditions (6) and
(7). We then interpretgT

ijqj as thejth numerical score
xij .

3. Update cluster centerbcj using

bcj =

∑n
i=1 u

θ
cixij∑n

i=1 u
θ
ci

(8)

4. Updatemembershipuci using

uci =

(
C∑
l=1

(
Dci

Dli

) 1
θ−1

)−1

(9)

where
Dci = ∥xi − bc∥2 (10)

If xi = bc, uci = 1/Ci

5. Let ϵ judgment value for convergence. CompareuNEW
ci

to uOLD
ci using

max
c,i

∥uNEW
ci − uOLD

ci ∥ < ϵ (11)

If true then stop, otherwise return to Step2.

II. M ISSING CATEGORICAL DATA IMPUTATION METHOD

Recently, missing data imputation has been recognized
and developed as an important task. However, we are not
accustomed to combining the clustering algorithm and the
imputation method. Most missing data imputations are re-
stricted to only numerical data. There are a few methods
that permit missing categorical data or mixed data impu-
tation[8][9]. If attributes and/or instances are missing, we
do not apply the clustering algorithm. Instead, we apply the
imputation method to fill the missing values, and then we
can apply the clustering algorithm. In this paper, we use the
missing categorical data imputation method, a“novel rough
set model based on similarity”, as proposed by Senet al[7].
DEFINITION1. (Missing Attribute Set) An incomplete in-
formation system is denotedS =< U,A, V, f >; with
attribute setA = {ak|k = 1, 2, . . . ,m}; V is the domain of
the attribute.V = Vk, Vk is the domain of the attributeak,
which is the category value.ak(xi) is the value of attribute
ak of objectxi, and ”∗” means missing value. The missing
attribute set (MAS) of objectxi is defined as follows:

MASi = {k | ak(xi) = ∗, k = 1, 2, . . . ,m}

DEFINITION2. (Similarity between objects) For two ob-
jects xi ∈ U and xj ∈ U , their similarity Pk(xi, xj) of
attributeak is defined as

Pk(xi, xj) =

{
1, ak(xi) = ak(xj) ∧ ak(xi) ̸= ∗ ∧ ak(xj) ̸= ∗
0, ak(xi) ̸= ak(xj) ∨ ak(xi) = ∗ ∨ ak(xj) = ∗

(12)
Then the similarity of the two objects of all attributes is

defined as:

P (xi, xj) =


0, ∃ak ∈ A(ak(xi) ̸= ak(xj) ∧ ak(xi) ̸= ∗
∧ak(xj) ̸= ∗∑m

k=1 Pk(xi, xj), others
(13)

The similarity matrix isM(i, j) = P (xi, xj).
DEFINITION3. (Nearest undifferentiated set (NS) of an
object) The NS of objectxi ∈ U is defined as a setNSi of
objects that have a maximum similarity:

NSi = {j | (M(i, j) = max
xk∧k ̸=i

(M(i, k))) ∧M(i, j) > 0}

Algorithm: Missing Categorical Data Imputation
1. Set parameternum = 0 to record the quantity of

imputation data in the current iteration; for all the
xi ∈ U , if xi has missing attribute, compute its missing
attribute setMASi and nearest undifferentiated set
NSi;

2. For all the objectsxi that have missing attributes,
which meansMASi ̸= ϕ, do the perform loop for
all the k ∈ MASi in order:

2.1 if |NSi| = 0,
break(to deal with the next missing attribute object);

2.2 if |NSi| = 1, assumej ∈ NSi andak(xj) ̸= ∗, then:

ak(xi) = ak(xj);

num++;
2.3 if |NSi| ≥ 2,

2.3.1 If there existsm,n ∈ NSi satisfied
(ak(xm) ̸= ∗) ∧ (ak(xn) ̸= ∗) ∧ (ak(xm) ̸= ak(xn)),

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



set:

ak(xi) = ∗;

2.3.2 Otherwise, if there existsj0 ∈ N andak(xj0) :
num++;

3. if num > 0, return to Step1, otherwise, go to step4;
4. End. Other methods can be used.

III. D ISTANCES BETWEEN DATA THAT CONTAIN MISSING

VALUES

In some situations, the feature vectors inX =
{x1, . . . ,xn} can have missing feature values. Any data
with some missing feature values are called incomplete data.
The original FCM algorithm and the FCM algorithm for
mixed databases is a useful tool, but it is not directly ap-
plicable to data that contain missing values. Hathawayet al.
proposed four approaches to incomplete data[6]: the whole
data strategy(WDS), the partial distance strategy(PDS), the
optimal completion strategy(OCS), and the nearest prototype
strategy(NPS). In WDS, if the proportion of incomplete data
is small, then it may be useful to simply delete all incomplete
data and apply FCM to the remaining complete data. WDS
should be used only ifnp

nx
≤ 0.75, wherenp = |XP | and

ns = |X| · m. The cases when missing values∥XM∥ are
sufficiently large that the use of the WDS cannot be justified
entails calculating partial (squared Euclidean) distances using
all available (non-missing) feature values, and then scaling
this quantity by the reciprocal of the proportion of compo-
nents used. For this study, we used the PDS approach for
mixed databases containing incomplete data.

In the PDS approach, the general formula for the partial
distance calculation ofDci is

Dci =
m

Ii

m∑
j=1

(xij − bcj)
2Iij (14)

where

Iij =

{
0 (xij ∈ XM )

1 (xij ∈ XP )
for 1 ≤ i ≤ n, 1 ≤ j ≤ m (15)

Ii =

m∑
j=1

Iij (16)

XP = {xij | the value for xij is present in X}

XM = {xij | the value for xij is missing from X}

For example, letm = 3 and n = 4. Denoting missing
values by *,

X =


1
∗
∗
4
∗


Then,XP = {x1 = 1, x4 = 4} , XM = {x2, x3, x5}, and

Dci = ∥xi − bc∥22
= ∥(1 ∗ ∗ 4 ∗)T − (5 6 7 8 9)T∥22

=
5

(5− 3)
((1− 5)2 + (4− 8)2)

(17)

The PDS version of the FCM algorithm, is obtained by
making two modifications of the FCM algorithm. First, we
calculateDci in (10) for incomplete data according to (14)
– (16). Second, we replace the calculation ofb in (8) with

bcj =

∑n
i=1 u

θ
ciIijxcj∑n

i=1 u
θ
ciIij

(18)

IV. FCM FOR MIXED DATABASES WITH INCOMPLETE

DATA

For clustering analysis, treating missing data becomes
especially important when the fraction of missing values is
large and the data are of mixed type. We combine the FCM
algorithm for mixed databases with the imputation method
and the PDS approach to construct a FCM algorithm for
mixed databases containing missing values. Here, we assume
incomplete mixed dataxij , i = 1, . . . , n, j = 1, . . . ,m, the
values up tom−q correspond to numerical data and the rest
is categorical. The dummy valuable matrixGj = {gijk},
k = 1, . . . ,Kj , is described in equation (3). Applying the
FCM algorithm to mixed databases that contain incomplete
data is considered as follows:
Algorithm: FCM for mixed databases containing incom-
plete data

1. If there are missing categorical data, use the imputation
algorithm described in Section IV, and separate the
complete categorical dataxij(i = 1, . . . , n, j = m −
q + 1, . . . ,m)

2. Initialize membershipuci and cluster centerbcj , then
normalizeuci satisfying

∑n
i=1 uci = 1, i = 1, . . . , n.

3. Update the category score

qj =

(
GT

j

( C∑
c=1

Uθ
c

)
Gj

)−1( C∑
c=1

bcjG
T
j U

θ
c 1n

)
(19)

according to the following constraint conditions:

1T
nGjqj = 0 (20)

qT
j G

T
j Gjqj = n. (21)

We interpretgT
ijqj to be thejth numerical scorexij .

4. Update cluster centerbcj using

bcj =

∑n
i=1 u

θ
ciIijxcj∑n

i=1 u
θ
ciIij

(22)

5. Updatemembershipuci using

uci =

(
C∑
l=1

(
Dci

Dli

) 1
θ−1

)−1

(23)

whereDci is calculated form

Dci =
m

Ii

m∑
j=1

(xij − bcj)
2Iij (24)

6. Let ϵ be a set value to judge convergence. Then
compareuNEW

ci to uOLD
ci using

max
c,i

∥uNEW
ci − uOLD

ci ∥ < ϵ (25)

If true, then stop, otherwise return to Step3.
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TABLE I
COMPLETE DATA

a1 a2 a3 a4 a5 a6 a7
x1 51 6 20 5 53 3 3
x2 5 49 4 10 50 1 1
x3 5 4 49 50 10 2 3
x4 5 51 4 9 50 3 1
x5 49 5 20 4 49 3 2
x6 5 4 50 49 9 2 1
x7 5 50 4 10 50 1 3
x8 50 5 19 5 49 2 1
x9 5 51 3 9 50 2 1
x10 49 5 20 5 49 3 3
x11 6 4 51 50 10 3 2
x12 50 4 21 5 50 3 2
x13 4 3 50 50 10 3 3
x14 5 4 49 50 10 1 2
x15 4 50 5 11 49 1 3
x16 50 6 20 5 50 2 1
x17 5 4 50 50 10 1 2
x18 5 49 4 10 51 1 3
x19 5 5 51 51 11 1 1
x20 51 5 20 6 50 3 3

TABLE II
FUZZY CLUSTERING RESULT I

completedata
x1 0.153 0.405 0.442
x2 0.566 0.157 0.277
x3 0.292 0.500 0.208
x4 0.299 0.495 0.207
x5 0.298 0.498 0.204
x6 0.152 0.405 0.443
x7 0.156 0.404 0.440
x8 0.562 0.159 0.279
x9 0.562 0.158 0.281
x10 0.295 0.497 0.208
x11 0.302 0.494 0.205
x12 0.156 0.400 0.445
x13 0.565 0.157 0.278
x14 0.154 0.404 0.442
x15 0.566 0.156 0.278
x16 0.156 0.404 0.440
x17 0.285 0.502 0.213
x18 0.295 0.498 0.207
x19 0.565 0.159 0.276
x20 0.566 0.156 0.278

V. EXPERIMENTAL RESULTS

In this section, we show the performance of our algorithm
for mixed incomplete data.

A. Artificial data example

We use 20 artificial samples that have seven attributes(a1
to a5 are numerical; the rest is categorical) shown in Table
1. Each categorical item has 3 categories (denoted 1, 2 or
3). As incomplete data sets, we employ data sets in which
25% of the samples have missing attributes.

Table 2 and 3 lists the clustering results to compare
complete and incomplete data. Values in bold font correspond
to clusters to which the sample most belongs. This result
shows that the clustering algorithm is sufficiently useful for
incomplete data.

B. Real data example

We use credit approval datasets from UCI Machine Learn-
ing Repository which have 683 samples, 15 attributes(6 is
numerical and the rest categorical), and 53 missing values.

TABLE III
FUZZY CLUSTERING RESULT II

incompletedata
x1 0.309 0.309 0.383
x2 0.600 0.220 0.180
x3 0.085 0.496 0.418
x4 0.090 0.495 0.415
x5 0.086 0.497 0.417
x6 0.287 0.323 0.390
x7 0.308 0.309 0.382
x8 0.598 0.220 0.182
x9 0.604 0.212 0.184
x10 0.088 0.495 0.417
x11 0.095 0.489 0.416
x12 0.317 0.303 0.380
x13 0.600 0.220 0.180
x14 0.310 0.308 0.382
x15 0.603 0.218 0.178
x16 0.308 0.309 0.382
x17 0.086 0.494 0.420
x18 0.086 0.496 0.417
x19 0.565 0.238 0.197
x20 0.603 0.218 0.178

TABLE IV
ATTRIBUTES AND MISSING VALUES

Attribute type Category Missing
A1 C 2 12
A2 N - 12
A3 N - 0
A4 C 4 4
A5 C 3 4
A6 C 14 4
A7 C 9 4
A8 N - 0
A9 C 2 0
A10 C 2 0
A11 N - 0
A12 C 2 0
A13 C 3 0
A14 N - 13
A15 N - 0

Table 4 lists the type of attribute(”N” is numerical and
”C” is categorical) and the number of missing values. This
database has its own real classification result, i.e., each
sample has been classified into 2 groups ”+” or ”−”. the
fuzzification parameterθ is 1.2. Table 5 presents the result
for this incomplete mixed data using the proposed fuzzy
clustering method. The two pairs of column under headings
”+” and ”−” present the group´ s value to respective cluster1
and cluster2. The number and percentage of samples with
membership value over 10 intervals between 0 and 1 are
found in both parts. Figure 1 also describes the results of
the clustering result; 77% of the ”+” group samples have
high membership in cluster1 and almost all of ”−” group
samples are strongly classified in cluster 2. The result shows
that our proposed method is applicable for these real data.

VI. CONCLUSION

In this paper, we discussed a FCM clustering algorithm
that handles mixed data containing missing values. In our
study, we applied the imputation method to missing categor-
ical data before clustering, followed by the FCM clustering
algorithm. When we encountered numerical missing data,
we used the PDS distance for numerical missing data. To
obtain better performance during the clustering analysis for
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Fig. 1. Fuzzy Clustering Result(Real data)

TABLE V
FUZZY CLUSTERING RESULT(REAL DATA )

+ −
membership sample ratio sample ratio
0< u ≤ 0.1 28 9% 4 1%

0.1<u ≤ 0.2 10 3% 2 1%
0.2<u ≤ 0.3 8 3% 6 2%
0.3<u ≤ 0.4 11 4% 3 1%
0.4<u ≤ 0.5 13 4% 1 0%
0.5<u ≤ 0.6 2 1% 0 0%
0.6<u ≤ 0.7 1 0% 1 0%
0.7<u ≤ 0.8 0 0% 1 0%
0.8<u ≤ 0.9 5 2% 5 1%
0.9<u ≤ 1.0 229 75% 354 94%

mixed data containing missing values, we plan to study other
imputation methods for categorical incomplete data and other
distance measures, for instance, WDS, OCS, and NPS, for
missing numerical values. Furthermore, we will investigate
the influence of the missing portion of data.
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