
 

Abstract— Accurately predicting cancer patient survival 

rates is crucial for cancer prognosis. TNM is a widely used 3-

predictor based prediction model that involves Tumor extent, 

lymph Node involvement and Metastasis. However, using only 

three prognostic factors limits its prediction accuracy. To 

overcome this limitation, machine learning techniques and 

statistical analysis have been deployed. For example, the 

Ensemble Algorithm of Clustering of Cancer Data (EACCD) 

has been developed by Chen et al. with the improved survival 

rate prediction. EACCD first uses Partitioning Around Medoids 

(PAM) clustering algorithm to calculate dissimilarity for 

survival curves and then refine it with an ensemble average to 

obtain so-called learnt dissimilarity. In this paper, we propose a 

Group Algorithm for Cancer Data (GACD) by redefining the 

learnt dissimilarity with weights to improve algorithm 

efficiency. In addition, we investigate how GACD depends on 

the clustering algorithms with the Fuzzy clustering algorithm 

and devise a geometrical metric to evaluate the quality of the 

grouping results. Furthermore, we evaluate the consistency of 

grouping results from two nearly equal-sized datasets.  Our 

experimental results show that the Fuzzy and PAM algorithms 

produce different grouping results, weighted dissimilarity 

method improves the overall accuracy, and the grouping results 

from two nearly equal-size datasets have almost consistent 

survival curves and dendrograms. 

 
Index Terms—Survival Rate, Prediction, TNM, Clustering 

Algorithm 

I. INTRODUCTION 

he American Joint Committee on Cancer (AJCC) 

classification proposed that the same anatomic and 

histology share similar growth and outcomes [1]. Many 

analysis methods of cancer patient data adhere to this 

assumption and therefore a classification scheme becomes 

crucial for cancer diagnosis. A staging-based classification 

scheme, TNM system involves three important prognostic 

factors, local tumor growth (T), lymph nodes (N) and 

metastasis (M) [1]. However, as in-depth studies and 

significant progresses were made in the current cancer 

research, three prognostic factors (T, N, and M) are not 

enough for accurately predicting the survival outcome. For 

better prognosis and treatment, several approaches intend to 

expand the TNM system by involving more prognostic 

factors [2]-[6]. 

An improved prognostic system usually consists of groups 

of patients, and the patients in the same group have similar 

survival outcomes. Hence, designing efficient clustering 

algorithms to group similar patients is quite useful for the 

survival prediction. Since cancer data include a large amount 

of censored observations, applying traditional clustering 
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algorithm on the censored data leads to distorted grouping 

result [7]. Hence, there is a need to develop a clustering 

algorithm cooperated with censored data. Based on the 

assumption that patients with the same levels of prognostic 

factors have similar survival outcomes, finding groups in 

patients is therefore equivalent to finding groups in all the 

available combinations of levels of prognostic factors [2].  

For the survival times of the patients in one combination, an 

overview of the survival distribution in their life history can 

be portrayed as a survival curve by the Kaplan-Meier 

Estimator [8]. The dissimilarity between two survival curves 

is usually estimated by the log-rank test [9]. Both techniques, 

Kaplan-Meier Estimator and log-rank test, take censored data 

into account. Consequently, the aim for a prognostic system 

to predict the survival outcome reduces to group survival 

curves.  

The ensemble algorithm of clustering of cancer data 

(EACCD) was developed to improve the TNM systems [2]. 

The patients are first grouped by the combinations of levels 

of prognostic factors, which significantly reduce the size of 

the dataset. The extracted combinations are then grouped by 

a hierarchical clustering algorithm. The selection of 

clustering criterions in the hierarchical clustering has been 

discussed in [7], which indicates that complete or average 

linkage yields a reasonable grouping result while single 

linkage could generate misleading ones. The measure of 

dissimilarity is another essential factor that impacts the 

grouping result. The initial dissimilarity of combinations is 

measured by the log-rank test. Other tests such as Gehan-

Wilcoxon’s test, Tarone and Ware’s test generate similar 

results to the log-rank test [7]. As the test statistic of the log-

rank test is sensitive to the size of the combination [7], the 

initial dissimilarity is standardized by an ensemble clustering 

method referred to as the learning step. The EACCD 

algorithm [2] intended to calculate the ensemble average 

based on a large number of random clustering outputs through 

voting. However, if an un-randomized PAM algorithm is 

employed, we can obtain the reasonable accuracy with the 

number of runs less than the number of combinations. 

Considering the limited number of votes during the learning 

step, we should find a way to improve the accuracy of 

dissimilarity measurement. We consider the fact that the 

probability of a combination falling into a cluster depends on 

the number of available clusters. It is evident that the 

probability of two combinations falling into the same cluster 

is higher in the 2-cluster configuration than in the 11-cluster 

configuration. Therefore, these two clustering configurations 

should not be treated equally. To address this issue, we 

redefine the measurement of the learnt dissimilarity by taking 

each configuration only once and adding the weight to 

include the dependency of grouping probability mentioned 

above so as to improve the quality of the measurement.  
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Within the learning step, different clustering algorithms 

can be employed for calculating dissimilarity. There are two 

restrictions on selecting clustering algorithms: (1) it needs to 

be a partitioning algorithm; (2) it can operate on the 

dissimilarity matrix. Since the hierarchical clustering is not 

appropriate for a single partitioning of the dataset, and the 

dissimilarity is not measured by the Euclidean distance, 

hierarchical clustering or K-Means clustering algorithm is not 

applicable. Fuzzy clustering algorithm [10] satisfies both 

restrictions.  

The experimental results of the EACCD for various types 

of cancer [2] [7] [11] and an analysis of the impacts of 

different algorithm settings [7] have been previously 

reported. In addition, it is known that the outcome of 

clustering algorithms depends on the object functions and is 

also affected by the local minimum issues. So far, there exists 

no quantitative metric to evaluate the quality of these results. 

We devise a geometrical metric based on the enclosed area 

between survival curves and show that it can effectively 

compare the quality of various grouping results.  

The rest of the paper is organized as follows. In section 2, 

we review some related concepts in survival analysis and 

clustering algorithms. In section 3, we define a weighted 

learning dissimilarity in the learning step. A newly devised 

evaluation metric for grouping results is proposed in section 

4. In section 5, we present dataset as well as the algorithms 

used in the experiments. We describe and analyze 

experimental results in section 6 and conclude in section 7.  

II. BACKGROUND 

The two essential elements in the EACCD are survival 

analysis and clustering procedures. In this section, we first 

provide a brief introduction on survival analysis and then 

describe clustering algorithms. 

A. Survival analysis 

Survival analysis includes numerous statistical methods for 

analyzing survival times [12][13]. The survival time is an 

important element in the survival analysis that measures the 

length of the time period from the diagnosis of a disease to a 

specific event (e.g., death, lost to follow-up). The cancer data 

usually include censored and uncensored times. The censored 

time is not equal to the exact survival time. In survival 

analysis, both censored and uncensored times have to be 

taken into account. 

There are two commonly used techniques in survival 

analysis: Kaplan-Meier estimator and log-rank test. The 

Kaplan-Meier estimator provides an overview of survival 

distribution with estimated survival probabilities. The log-

rank test typically evaluates whether the survival distributions 

for two groups of patients are statistically different. Both 

methods can operate on the censored and uncensored times. 

B. Clustering algorithms 

Clustering techniques are used to find groups or clusters 

from a large amount of data objects so that the objects in the 

same cluster are as similar as possible. Clustering has been 

applied to various fields including medicine. Commonly used 

clustering procedures include partitioning approaches and 

hierarchical approaches. The partitioning algorithm divides a 

given dataset into a series of subsets based on a certain 

criterion while the hierarchical method organizes the dataset 

into a representation that reveals the intrinsic hierarchical 

structure of the dataset.  

PAM algorithm is a typical partitioning clustering 

algorithm. It tries to find the centrally located object called 

medoid in each cluster. The remaining objects are then 

assigned to the closest medoid. The goal of the algorithm is 

to minimize the average dissimilarity of objects to their 

closest medoids. The standard PAM algorithm includes 

BUILD phase and SWAP phase [10]. The BUILD phase 

determines initial medoids, and the SWAP phase intends to 

improve the quality of clustering result by swapping medoids 

with non-medoids. Both the BUILD and SWAP phases 

produce deterministic results. PAM is a hard partitioning 

clustering algorithm, which can operate on a dissimilarity 

matrix dataset. It satisfies the two restrictions on the 

candidate algorithms for the EACCD and is the original 

algorithm used in the EACCD. 

Fuzzy algorithm is a partitioning clustering method that 

allows some ambiguity in the data instead of a crispy 

partition. Each object can be assigned to multiple clusters by 

the degree of belongings. A fuzzy clustering becomes a hard 

clustering when each object is assigned to the cluster where 

its degree of belongings is the maximum. Fuzzy algorithm 

can either operate on the dissimilarity matrix dataset or 

dimensional data matrix. Therefore, Fuzzy can be treated as 

an alternative algorithm of the PAM [14] in the EACCD. The 

Fuzzy function implemented in R [15][16] limits the number 

of clusters from 1 to n/2-1 where n is the number of objects. 

The detailed algorithm can be found in Kaufman’s book [10].  

Hierarchical clustering seeks to build a set of nested 

clusters that are organized as a tree. It can be either bottom up 

approach that starts from each individual object and merges 

the closest clusters in each step, or top down approach where 

splitting is recursively performed. The output of hierarchical 

clustering is usually presented in a dendrogram. EACCD can 

use any linkage function to build up the tree in a bottom up 

manner. The previous study of linkage functions shows that 

the complete and average are the preferred linkages [7].  

III. ENSEMBLE ALGORITHM WITH WEIGHTED LEARNING 

DISSIMILARITY 

EACCD computes the learnt dissimilarity based on 

multiple runs of different clustering algorithms. When only 

one clustering algorithm (e.g., PAM) is used, variable output 

is required from the EACCD algorithm. However, a 

clustering algorithm without variable output can still be used 

with EACCD. In this section, we propose a weighted learning 

dissimilarity computed by using the standard PAM algorithm 

that generates deterministic results. Our approach only 

requires n-2 runs of the PAM where n is the number of 

combinations, thus significantly reducing the computational 

time.  

A. EACCD Algorithm 

EACCD is an algorithm to group cancer patients. More 

specifically, it is employed to group combinations. A 

combination is defined to be a subset of the cancer data that 

corresponds to one possible combination of levels in various 

prognostic factors. The approach includes four steps: (a) 

extract combinations from the original dataset; (b) generate 
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initial dissimilarities by the log-rank test; (c) learn new 

dissimilarities by a sequence of PAM procedures; (d) use 

hierarchical clustering with average linkage to produce 

groups of patients. In EACCD, the survival curves of 

combinations are plotted by the Kaplan-Meier estimator. 

B. Grouping Algorithm for Cancer Data 

The dissimilarity between combinations is measured by the 

log-rank test and multiple partitioning procedures. Different 

implementations of the partitioning algorithm could have 

different impacts on the measure of dissimilarity. The 

EACCD algorithm requires a large number of random 

clustering outputs to calculate an ensemble average as the 

learnt dissimilarity. In our approach, the standard PAM can 

be used to generate n-2 partitioning outputs, and the new 

learnt dissimilarity is defined as the average value of the 

weighted partitioning outputs. 

The calculation for dissimilarity is done in the steps (b) and 

(c) of the original EACCD. Step (b) initializes the 

dissimilarity by the log-rank test statistic, and step (c) 

standardizes it to the learnt dissimilarity. The detailed 

learning step is as follows: n combinations {x1, x2, … , xn} are 

divided into k clusters by the PAM algorithm, and k is 

randomly selected from 2 to n-1. This procedure is repeated 

for m times (m is a large number such as 10000) in which each 

iteration produces a partition of these combinations. Thus m 

partitions are obtained from m runs of PAM. For the lth run, 

the dissimilarity of combinations is defined as dl(i,j) =1 if the 

lth partition assigns xi and xj into different cluster and dl(i,j) = 

0 otherwise. The learnt dissimilarity is based on the results of 

all m runs: 

𝑑𝑖𝑠(𝑥𝑖 , 𝑥𝑗) =
∑ 𝑑𝑙(𝑖,𝑗)𝑚

𝑙=1

𝑚
                             (1) 

The learnt dissimilarity is the probability of two 

combinations assigned to different clusters. If two 

combinations are assigned to the same cluster for the majority 

of iterations, the learnt dissimilarity will approach to 0. It is 

therefore very likely that the patients from these two 

combinations share one survival curve. Note that (1) is 

designed for any implementation (of the PAM algorithm) that 

provides a “random” output.  

When an un-randomized PAM algorithm (e.g., the 

standard PAM) is utilized, equation (1) can be greatly 

simplified. Let n denotes the total number of combinations. A 

partition with k clusters corresponds to one possible 

partitioning output. If k can be selected from 2 to n-1, the 

standard PAM algorithm can only provide up to n-2 different 

partitioning outputs. Therefore, we can modify the learnt 

dissimilarity (1) into (2):  

           𝑑𝑖𝑠2(𝑥𝑖 , 𝑥𝑗) =
∑ 𝑑𝑘(𝑖,𝑗)𝑛−1

𝑘=2

𝑛−2
                              (2) 

It is evident that intensity of dissimilarity is not the same 

over all the clustering configurations. For example, the 

probability of two combinations falling into the same cluster 

is higher in the 2-cluster configuration than in the 11-cluster 

configuration. However, equation (2) treats all the 

configurations equally. To consider the difference in the 

intensities of dissimilarity among these clustering 

configurations, we add weights to the dissimilarity as shown 

in (3)  

           𝑑𝑖𝑠3(𝑥𝑖 , 𝑥𝑗) = ∑ 𝑤𝑘𝑑𝑘(𝑖, 𝑗)𝑛−1
𝑘=2                     (3) 

In (3), wk is the weight such as 0≤wk≤1 and ∑ 𝑤𝑘 = 1.𝑛−1
𝑘=2  

The weight quantifies the likelihood that two combinations 

fall into the different clusters. We show how to calculate the 

weights below. 

It is obvious that the larger the number of clusters is, the 

more likely two objects will be assigned to different clusters. 

It implies that the intensity of the learnt dissimilarity is low. 

Hence, a smaller weight should be assigned to 𝑑𝑘(𝑖, 𝑗) with a 

larger k. Assuming the weight is inversely proportional to k, 

and then we have: 

 𝑤𝑘 = 𝐶 ∗
1

𝑘
                                           (4) 

where C is a constant. From (4) and  ∑ (𝑤𝑘)𝑛−1
𝑘=2 = 1, C is 

determined by 

𝐶 =  
1

∑ (1 𝑘⁄ )𝑛−1
𝑘=2

                                        (5) 

Using (3), (4) and (5), we see that dis3 can be written as: 

𝑑𝑖𝑠3(𝑥𝑖 , 𝑥𝑗) = ∑
1

𝑘∗∑ (1 𝑖)⁄𝑛−1
𝑖=2

𝑑𝑘(𝑖, 𝑗)𝑛−1
𝑘=2            (6) 

 

IV. EVALUATION METRIC 

The EACCD algorithm has been applied to studies for lung 

cancer [2], breast cancer [7] and melanoma [11]. However, 

there is no quantitative metric to evaluate the quality of 

grouping results. Currently, the commonly used evaluation is 

simply done by visually comparing survival curves. The 

closest curves are expected to be combined first. However, 

this method is error-prone and subjective especially when the 

curves are close.  

We propose a geometrical metric to evaluate grouping 

results of GACD by quantifying the dissimilarity between 

two curves with the area enclosed between these two curves 

as illustrated in Fig. 1. The dissimilarity of two curves is 

measured as the shaded area as shown in Fig. 1.  

 
 
Fig. 1.    Geometrical dissimilarity metric 

 

To evaluate the quality of grouping results represented 

with a dendrogram, we can compare whether the associated 

merging order is correlated with the order of geometrical 

metric of curves. In this study, the linear correlation 

coefficient [17] between the learnt dissimilarity and 

geometrical dissimilarity is used to evaluate the quality of the 

grouping result. 
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V. EXPERIMENTS 

In this section, we performed a series of experiments to 

assess the impact of different clustering algorithms on the 

grouping results. In addition, we will verify the effectiveness 

of our weighted dissimilarity and geometrical metric, and 

consistency of grouping results. 

 

A. Dataset  

The dataset used in this study is the SEER data [16] that 

contains 202,219 records of breast cancer patients from the 

year 1990 to 2000.  The factors we studied include tumor size 

(T) and node status (N). For convenience, the combination is 

represented by the levels of the factors, as shown in Table 1. 

For example, 32 denotes the patients for whom tumor size is 

greater than 5cm and 1~3 nodes contain tumor. There are 12 

combinations in our dataset after discarding the combinations 

consisting of less than 100 patients. 

 
TABLE I 

  DEFINITION OF T AND N IN BREAST CANCER DATASET 

Factors Category Level 

Tumor size (T) 

T ≤ 2cm 1 

2cm < T ≤ 5 cm 2 

T > 5cm 3 

   Node status (N) 

No positive nodes 1 

1~ 3 nodes 2 

4 ~ 10 nodes 3 

> 10 nodes 4 

 

To evaluate the consistency of the GACD grouping results 

from the same type of cancer data, we split the whole dataset 

into two nearly equal-sized subsets. The data in the two 

subsets, Datset1 and Dataset2, are randomly selected from the 

original dataset. The consistency of survival curves and 

dendrograms from these two subsets are used to evaluate the 

performance of the GACD algorithm. 

 

B. Setting of the algorithms 

The PAM and Fuzzy algorithms will be used in our 

experiments. The initial dissimilarity is generated by the log-

rank test. In the learning step, we use the Fuzzy function 

implemented in R, therefore the number of clusters by the 

Fuzzy algorithm is limited from 1 to n/2-1. Equation (2) can 

be modified to 

 𝑑𝑖𝑠4(𝑥𝑖 , 𝑥𝑗) =
∑ 𝑑𝑘(𝑖,𝑗)

𝑛/2−1
𝑘=2

𝑛/2−2
                         (7) 

and modify the (6) to  

 𝑑𝑖𝑠5(𝑥𝑖 , 𝑥𝑗) = ∑
1

𝑘∗∑ (1 𝑖)⁄𝑛/2−1
𝑖=2

𝑑𝑘(𝑖, 𝑗)
𝑛/2−1
𝑘=2           (8) 

The dissimilarity functions used in our study are as 

follows: 

1) Using the Fuzzy algorithm and (7) and (8) 

2) Using the PAM algorithm and (7) and (8) 

3) Combining the results from both the Fuzzy and 

PAM algorithms, using (7) and (8) 

4) Using the PAM algorithm and (2) and (6)  

Eight experiments have been carried out based on the 

dissimilarity functions above. There are four experiments 

with weighted strategy ((6) and (8)) and four experiments 

without the weight ((2) and (7)). In addition, we perform one 

more experiment that omits the learning step to compare it 

with the eight experiments above. 

VI. RESULTS AND ANALYSIS 

A. Compare results from different clustering algorithms 

The experimental results indicate that the structures of the 

dendrograms are similar to each other regardless of whether 

weight is applied. The merging order is the same, while the 

sequence of fusion levels in the dendrogram are slightly 

different. So we only presented the dendrograms generated 

by the weighted learnt dissimilarity. 

 

         
(a) Using Fuzzy algorithm and (8) 

 

 

 
(b) Using PAM algorithm and (8) 

 

 
      (c)   Using Fuzzy+PAM algorithm and (8) 

 

 

 
(d)  Using PAM algorithm and (6) 

 
Fig. 2.  Comparison of dendrograms 
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In the dendrogram shown in Fig. 2 (a), the Fuzzy algorithm 

is employed for computing the learnt dissimilarity, and (8) is 

used as the dissimilarity measure between xi and xj. Starting 

from the bottom level, the dissimilarity in each of following 

groups is 0.0: (21, 31, 12), (32, 23), (33, 24, 34), and (22, 13). 

Since the combinations with the lowest dissimilarity are 

merged as a group, we have four groups of patients at the 

dissimilarity 0.0.  The next two merges occur at 0.16 between 

(21, 31, 12) and 11, and between (33, 24, 34) and 14. Moving 

upwards along the fusion level, all combinations are finally 

merged together at the highest level of dissimilarity. In order 

to make a fair comparison of the Fuzzy and PAM algorithms, 

the dendrogram computed by PAM and (8) is shown in Fig. 

2(b). Fig. 2(c) shows the dendrogram corresponding to the 

case where the learnt dissimilarity is the average of the learnt 

dissimilarities calculated with the Fuzzy and PAM 

algorithms. Although (6) cannot be applied to the Fuzzy 

algorithm, it can be used for the PAM algorithm that can deal 

with the number of clusters from 2 to n-2. The dendrogram in 

Fig. 2(d) is the grouping result for this case. 

 

 
Fig. 3.  Kaplan-Meier survival curves for 12 combinations 

Next we compare the quality of dendrograms. Each 

dendrogram exhibits a relationship among the survival 

curves. The affinity between a dendrogram and the associated 

survival curves is an important factor for the quality 

evaluation. If the merging pattern in the dendrogram is 

similar to the merging order of the associated curves, this 

dendrogram has a good representation. To evaluate the 

merging pattern of a dendrogram, we only need to examine 

each dissimilarity level where a fusion occurs in a bottom-up 

manner.  As an example, Fig. 2 (d) illustrates that (32, 23) is 

the first group merged at the lowest dissimilarity level 0.0. 

Therefore (32, 23) constitutes the first group of patients. The 

next merge is between group (21, 12) and (33, 14), since they 

have the second smallest dissimilarity. It is evident from the 

dendrogram that the order of merging reflects the geometric 

affinity between the curves. In other words, if two curves are 

closer to each other, their associated combinations will be 

merged earlier in the dendrogram. As seen in Fig. 3, the curve 

closest to that of combination 21 is 12 while (21, 12) is the 

first group merged at the bottom level in the dendrogram. The 

next closest curve to the group (21, 12) is 31 while 31 is 

merged with (21, 12) in the next upper level. Through 

examining the dendrogram, it is clear that the geometric 

affinity among survival curves is able to reflect the merging 

order in the dendrogram from the bottom to the top level.  

 
TABLE II 

COMPARISON OF CORRELATION COEFFICIENTS 

Algorithms 
Correlation coefficients 

Without weight With weight 

Fuzzy 0.9328 (7) 0.9365 (8) 

PAM 0.8356 (7) 0.8771 (8) 

Fuzzy + PAM 0.8141 (7) 0.8334 (8) 

PAM 0.8210 (2) 0.8922 (6) 

Omit learning step 0.7066 

However, assessing the dissimilarity between two survival 

curves through eyes is subjective and error-prone. Therefore, 

solely relying on observation cannot adequately examine the 

quality of grouping results represented with the dendrograms 

in Fig. 2. Our newly proposed geometrical metric appears to 

be able to effectively address this problem. With the merging 

order, we can obtain a sequence of increasing dissimilarity 

levels along with the geometrical dissimilarities from the 

associated survival curves as shown in Fig. 3. Table 2 lists the 

linear correlation coefficients for each case. A larger 

correlation coefficient implies a better grouping quality in 

terms of the dissimilarity of survival curves. 

 

 

Fig. 4.  Evaluation of the grouping results 

 

Fig. 4 reveals that different clustering algorithms yield 

different grouping results.  In terms of correlation, it appears 

that the Fuzzy algorithm provides a better result compared 

with the PAM. One possible reason for different grouping 

results is that the solutions from both PAM and Fuzzy 

algorithms correspond to local minimums.  

Table 2 indicates that adding weights in the learning step 

leads to a higher correlation in all the cases, even though their 

dendrograms have similar structures. It is expected that the 

effect of adding weights becomes more significant as the 

number of combinations increases.  

If omitting the learning step and using the values from the 

log-rank test statistics as the measurement of the 

dissimilarity, the correlation value is 0.7066 (Fig. 5 shows the 

evaluation result). This number is the lowest among all the 

cases in our study. This result is consistent with the claim in 

[7]. Since the learning step is omitted, the weight strategy 

cannot be applied here.  
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Fig. 5.  Evaluation of the grouping result without learning step 

 

B. Compare results from two nearly equal-sized datasets  

We compare and analyze survival curves and dendrograms 

obtained from two datasets.  Each dataset includes 12 

combinations (same as the original dataset). Their survival 

curves are shown in Fig. 6 and Fig.7. Comparing surviving 

curves in Fig. 6 and Fig. 7, we observe that except the 

combinations 13 and 22, the order of survival curves is almost 

identical.  Their corresponding dendrograms are shown in 

Fig.8 and Fig. 9. As shown in Table III and IV, there are some 

differences in the merging orders between the two data sets. 

For example, the group of (33, 14, 24) in Dataset1 first 

merges to 34 and then (32, 23). But (33, 14, 24) in Dataset2 

first merges (32, 23) and then 34. After 12 curves reduce to 4 

curves, the grouping results are identical.  

 
Fig. 6. Kaplan-Meier survival curves from Dataset1 

 

 
Fig. 7. Kaplan-Meier survival curves from Dataset2 

 

 
Fig. 8. Dendrogram from Dataset1 

 
Fig. 9. Dendrogram from Dataset2 

 
TABLE III   

MERGING ORDER FROM DATASET1 

1 [0][1][2][3][4][5][6][7][8][9][10][11] 

2 [0][1][2][3,8][4][5][6][7][9][10][11] 

3 [0][1,4][2][3,8][5][6][7][9][10][11] 

4 [0][1,4][2][3,8][5,9][6][7][10][11] 

5 [0,11][1,4][2][3,8][5,9][6][7][10] 

6 [0,11][1,4][2][3,8][5,9,6][7][10] 

7 [0,11,2][1,4][3,8][5,9,6][7][10] 

8 [0,11,2,3,8][1,4][5,9,6][7][10] 

9 [0,11,2,3,8][1,4][5,9,6,7][10] 

10 [0,11,2,3,8][1,4,5,9,6,7][10] 

11 [0,11,2,3,8,10][1,4,5,9,6,7] 

12 [0,11,2,3,8,10,1,4,5,9,6,7] 

 
TABLE IV   

MERGING ORDER FROM DATASET2 

1 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]  

2 [0,11] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  

3 [0,11] [1,4] [2] [3] [5] [6] [7] [8] [9] [10]  

4 [0,11] [1,4] [2] [3] [5,9] [6] [7] [8] [10]  

5 [0,11] [1,4] [2] [3,8] [5,9] [6] [7] [10]  

6 [0,11] [1,4] [2] [3,8] [5,9,6] [7] [10]  

7 [0,11,2] [1,4] [3,8] [5,9,6] [7] [10]  

8 [0,11,2] [1,4,5,9,6] [3,8] [7] [10]  

9 [0,11,2,3,8] [1,4,5,9,6] [7] [10]  

10 [0,11,2,3,8] [1,4,5,9,6,7] [10]  

11 [0,11,2,3,8,10] [1,4,5,9,6,7]  

12 [0,11,2,3,8,10,1,4,5,9,6,7]  

To quantitatively analyze the differences of survival curves 

between these two datasets, we calculate the log-rank test 

statistics as well as corresponding P values between each pair 

of the survival curves labeled with the same combination. The 

results are shown in Table V. To assess the differences of 

those P values, the P values are also calculated for all pairs of 

combinations in each data set: Dataset1, Dataset2, and the 
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whole dataset, and listed in Tables VI, VII and VIII, 

respectively. Comparing the P values in Table V against those 

in Tables VI, VII and VIII, it is found that the P values in 

Table V are much larger than those in Table VI, VII and VIII. 

That is, the differences between the survival curves in 

Dataset1 and Dataset2 are small since a smaller value of a 

log-rank test statistic or a larger value of P value shows a 

stronger evidence of no difference.  

Based on the results of comparing merging order and P 

values discussed above, we believe that GACD is capable of 

generating consistent grouping results.  
 
 

TABLE V   

THE DIFFERENCE IN SURVIVAL CURVES FROM TWO DATASETS 

 Log-rank test P value 

[0] 2.1 0.15 

[1] 0 0.962 

[2] 0.2 0.636 

[3] 0.8 0.379 

[4] 0.1 0.78 

[5] 0.1 0.814 

[6] 1 0.316 

[7] 0.1 0.718 

[8] 1.4 0.233 

[9] 0 0.983 

[10] 0.1 0.804 

[11] 0.1 0.748 

 
TABLE VI 

P VALUES OF ALL PAIRS OF 12 COMBINATIONS FROM DATASET1 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 

[0] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[1] 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[3] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

[4] 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[5] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[6] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 

[7] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 

[8] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[9] 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.00 

[10] 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 

[11] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
TABLE VII 

P VALUES OF ALL PAIRS OF COMBINATIONS  FROM DATASET2 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 

[0] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[1] 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[3] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

[4] 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[5] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[6] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 

[7] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 

[8] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[9] 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.00 

[10] 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 

[11] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
TABLE VIII 

P VALUES OF ALL PAIRS OF COMBINATIONS  FROM THE WHOLE DATASET 

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 

[0] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[1] 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[3] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[4] 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[5] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[6] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 

[7] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

[8] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

[9] 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 

[10] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

[11] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

VII. CONCLUSION 

To improve efficiency and accuracy in predicting cancer 

patient survival rates, we introduce a Grouping Algorithm for 

Cancer Data (GACD). Experiments show that the grouping 

results of GACD depend on clustering algorithms. In 

addition, adding weights in the learnt dissimilarity calculation 

improves the quality of the grouping result. Moreover, a 

geometrical metric defined as the area enclosed by two 

survival curves is effective in assessing the quality of the 

grouping results. Finally, the grouping results generated by 

GACD show a good consistency between the two nearly 

equal-sized datasets.  

ACKNOWLEDGMENT 

The authors wish to thank Dr. Dechang Chen for helpful 

discussion.  

REFERENCES 

[1] F. L. Greene, C. C. Compton, A. G. Fritz, J. P. Shah, and D. 

P.Winchester, Eds., AJCC Cancer Staging Atlas, Springer, 

New York, NY, USA, 2006 

[2] D. Chen, K. Xing, D. Henson, L. Sheng, A.M. Schwartz, and 

X. Cheng, “Developing Prognostic Systems of Cancer Patients 

by Ensemble Clustering”. Journal of Biomedicine and 

Biotechnology, vol. 7, 2009 

[3] K. Xing, D. Chen, D. Henson, and L. Sheng, “A clustering-

based approach to predict outcome in cancer patients,” the 6th 

International Conference on Machine Learning and 

Applications (ICMLA ’07), pp. 541–546, Cincinnati, Ohio, 

USA, December 2007. 

[4] H.B. Burke, D.E. Henson, “Criteria for prognostic factors and 

for an enhanced prognostic system”. Cancer. vol. 72, 1993, pp. 

3131-3135 

[5] H.B. Burke, P.H. Goodman, D.B. Rosen, D.E. Henson, J.N. 

Weinstein, F.E. Harrell, J.R. Marks, D.P. Winchester, D.G. 

Bostwick, “Artificial neural networks improve the accuracy of 

cancer survival prediction” Cancer, vol 79, 1997, pp. 857-862 

[6] H.B. Burke, “Outcome prediction and the future of the TNM 

staging system”, Journal of the National Cancer Institute, vol 

96, 2004, pp. 1408-1409 

[7] D. Wu, L. Sheng, E. Xu, K. Xing, D. Chen, “Analysis of an 

Ensemble Algorithm for Clustering Cancer Data”, IEEE 

International Conference on Bioinformatics and Biomedicine 

Workshops (BIBMW), 2012, pp. 754-755 

[8] E.L. Kaplan, P. Meier, “Nonparametric estimation form 

incomplete observations”, Journal of the American Statistical 

Association, val. 53, no.282, 1958, pp. 457-481 

[9] D.P. Harrington and T.R. Fleming, “A class of rank test 

procedure for censored survival data”, Biometrika, vol.69, 

1982, pp. 553-566 

[10] L. Kaufman, P.J. Rousseeuw, Finding groups in data, An 

introduction to cluster analysis Edegem, 1989, Belgium 

[11] D. Wu, C. Yang, S. Wong, J. Meyerle, B. Zhang, D. Chen, “An 

Examination of TNM Staging of Melanoma by a Machine 

Learning Algorithm”. International Conference on 

Computerized Healthcare, 2012 

[12] V. Bewick, L. Cheek, J. Ball (2004) “Survival analysis”, 

Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10 

65034/  

[13] D.G. Kleinbaum, M. Klein, Survival Analysis, a self-learning 

text, third edition, Springer, 2012, New York 

[14] Data Mining Algorithms In R/Clustering/ Partitioning Around 

Medoids (PAM), Available: http://en.wikibooks.org/wiki/ 

Data_Mining_Algorithms_In_R/Clustering/Partitioning_Arou

nd_Medoids_(PAM)  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10%2065034/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10%2065034/
http://en.wikibooks.org/wiki/%20Data_Mining_Algorithms_In_R/Clustering/Partitioning_Around_Medoids_(PAM)
http://en.wikibooks.org/wiki/%20Data_Mining_Algorithms_In_R/Clustering/Partitioning_Around_Medoids_(PAM)
http://en.wikibooks.org/wiki/%20Data_Mining_Algorithms_In_R/Clustering/Partitioning_Around_Medoids_(PAM)


 

[15] Fuzzy Analysis Clustering in R package, Available: 

http://stat.ethz.ch/R-manual/R-patched/library/cluster/html/ 

fanny.html 

[16] The R Project for Statistical Computing, Available: 

http://www.r-project.org/   

[17] A.D. Robert, The complete idiot’s guide to statistics, second 

edition, Alpha, New York, 2007, pp. 312-314 

[18] “SEER”, Available: http://seer.cancer.gov  

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

http://stat.ethz.ch/R-manual/R-patched/library/cluster/html/%20fanny.html
http://stat.ethz.ch/R-manual/R-patched/library/cluster/html/%20fanny.html
http://www.r-project.org/
http://seer.cancer.gov/



