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Abstract—Linkage pattern mining is a data mining technique 

that finds frequent patterns appearing repeatedly across 

multiple sequential data. This technique does not assume 

similarity or correlation between the frequent patterns in a 

linkage pattern; hence it is expected as a promising approach for 

discovering causal association among events in multiple sensor 

data, such as physiological signals in different regions and 

crustal movements at different points. However, existing 

methods have focused only on detecting linkage patterns without 

noises/fluctuations in sequential data. The objective of this study 

is to develop a new noise-robust linkage pattern mining method. 

The proposed method excludes pseudo patterns derived from 

noises by closed itemset mining from interval graphs regarding 

frequent patterns so that only noiseless and maximal linkage 

patterns can be extracted. In this paper, the proposed method is 

applied to artificial sequential datasets in which linkage patterns 

are embedded. As a result, it is shown that the proposed method 

can adequately detect not only embedded linkage patterns 

without noise but also previously undetectable embedded 

linkage patterns with noise. 

 
Index Terms— linkage pattern, interval graph, closed itemset, 

sequential pattern mining 

 

I. INTRODUCTION 

equential pattern mining is a promising and effective data 

mining method for finding frequent patterns in large-scale 

sequential data. Since Agrawal et al. [1] constructed the 

foundations of sequential pattern mining in 1995, a variety of 

new effective algorithms have been developed [2, 3] and have 

also been applied in a wide range of fields, such as Web log 

analysis [4], market basket analysis [5], behavior analysis [6], 

and DNA sequence analysis [7]. Research into sequential 

pattern mining can be broadly classified into two types: the 

targeting of single-sequence data and that of multiple 

sequence data. The former aims to find repeating and 

frequently occurring patterns in sequential data (frequent 

patterns or episodes) [8-12]. The latter focuses on detecting 

the same or similar subsequences among sequential data 

[13-15]. 
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Fig. 1.  A linkage pattern repeating across three sequential data 

 

Recently, Miura and Okada [16] proposed a method for 

mining linkage pattern that is a set of patterns repeating across 

multiple sequence data. In Miura’s method, linkage patterns 

were extracted by using an interval graph representation of 

frequent patterns in the sequential data. The feature of linkage 

pattern mining lies in the point that it does not assume 

similarity or correlation among different sequential data 

patterns. Figure 1 shows an example of a linkage pattern {A, 

B, C} that appears across three sets of sequential data. As we 

can see from this diagram, even if patterns that frequently 

occur in respective sequential data do not show similarity to 

each other, the set of those patterns is extracted as a linkage 

pattern if it continually appears within the same time frame. In 

[16], it was demonstrated that Miura’s method showed good 

performance on sequential data without noises/fluctuations, 

but meanwhile it was also suggested that noise or fluctuations 

within the sequential data can significantly affect the accuracy 

of extracting linkage patterns. 

The aim of this study is to improve Miura’s method and to 

develop a noise-robust linkage pattern mining method. In the 

proposed method, closed itemset mining is employed to 

exclude randomly generated noise patterns and to obtain only 

frequent and maximal patterns among different interval 

graphs. In this paper, we show the comparative results for the 

performances between the proposed method and Miura’s 

methods (hereinafter referred to as “the previous method”) 

using artificial sequential data.  

This paper is structured as follows. Section 2 defines closed 

itemsets. Section 3 discusses problems with the previous 

method and the procedure of the proposed method. Section 4 

explains the experimental performance evaluation methods 

using artificial sequential datasets. Section 5 states the results  
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of these experiments and presents some observations. Section 

6 provides an overall summary of the paper.  

 

II. DEFINITION OF CLOSED ITEMSET 

Let I = {1, 2, …, n} be the set of items. A transaction 

database on I is a set T = {t1, t2,…, tm} such that each ti is 

included in I. Each ti is called a transaction. ||T|| is the size of 

the transaction database. A set  is called an itemset. A 

transaction including P is called an occurrence of P. The set 

of occurrences of P is expressed as T(P) . The size of a set of 

occurrences for P is referred to as the frequency of P.  

An itemset P is called a closed itemset if no other itemset Q 

satisfies T(P) = T(Q), . For a given constant called a 

minimum support (hereafter minsup), P is frequent if 

. A frequent and closed itemset is called a 

frequent closed itemset. 

In this paper, an exhaustive search on closed itemsets that 

occur in more than a minsup in a transaction database is 

referred to as a closed itemset mining. 

 

III. METHOD 

Figure 2 shows the procedure of the proposed method. In 

this figure, the figure 2a, 2b, and 2d are steps implemented in 

the previous method: extracting and labeling frequent patterns 

from each sequence (Figure 2a), generating interval graphs 

based on overlapping labels on the time axis (Figure 2b), and 

outputting the linkage pattern (Figure 2d). In the proposed 

method, a new step (Figure 2c) is introduced; the closed 

itemset mining from the generated interval graphs. This 

resolves the problem that linkage patterns are contaminated 

by noise data as presented in the previous methods. These 

steps are explained in detail below. 

A. Frequent pattern extraction and labeling 

First, normalization and discretization are executed on each 

sequential data as pre-processing. In the normalization, 

sequential data are converted to a scale from 0 to 1. In the  

 

discretization, the range of normalized data (0–1) is divided at 

the D stages, and a discrete value from 0 to D-1 is allocated to 

the data. 

Next, repeatedly occurring frequent patterns are extracted 

from each sequential data using Mannila’s algorithm [8]. This 

algorithm uses the maximum window width w and minimum 

number of occurrences θ of the frequent pattern as input 

parameters, where w and θ are natural numbers.  

Labeling is the process of applying the same label to the 

same frequent pattern. This process is run after excluding 

frequent patterns with a length less than or equal to w/2. When 

multiple frequent patterns occur within the same sequential 

data and the same time frames, labeling is performed for the 

maximum length frequent pattern. 

B.  Interval graph generation 

Hereafter, a labeled frequent pattern is referred to as a label. 

In this step, interval graphs are generated from the interval 

representation of each label. An interval graph is obtained by 

associating each label with a node and an overlap of any two 

labels on the time axis between sequential data with an edge 

[17-19]. In other words, an interval graph is a set of frequent 

patterns that occur in a linked manner in the same time frame 

between different sequential data.  

The previous method outputs the interval graph with the 

highest frequency as a linkage pattern. However, frequent 

patterns that are constructed as a result of noise (pseudo 

patterns) cause the following problems. If different pseudo 

pattern labels are attached to all of the same interval graphs, 

the maximum frequency will be 1. In this case, these interval 

graphs are considered as completely different ones in spite of 

an identical linkage pattern. This is the critical problem that 

reduces the accuracy of linkage pattern mining. 

C.  Extraction of linkage patterns based on closed itemset 

Since pseudo patterns tend to randomly occur on the time 

axis, the probability that the same pseudo pattern is included 

in multiple same interval graphs will be extremely low. 

Therefore, it is expected that pseudo patterns can be excluded 

by extracting label sets that commonly occur in multiple  

Fig. 2.  Procedure of the presented method 
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interval graphs. In the proposed method, pseudo patterns are 
excluded by mining closed itemset on the obtained interval 

graphs. 

Figure 2c presents the manner of excluding pseudo patterns 

from interval graphs. Each interval graph is seen as a 

transaction, and each node in the interval graph is regarded as 

an item. By applying the closed itemset mining to this 

transaction database, we can extract the maximal node sets 

(closed itemsets) that are shared in minsup or more interval 

graphs. Finally, the closed itemset with the highest frequency 

is output as the linkage pattern. By the above step, it is 

possible to extract linkage patterns with greater accuracy, 

since randomly constructed pseudo patterns can be excluded. 

Figure 2c illustrates an example of how the pseudo patterns nA, 

nB, and nC are excluded; only the authentic linkage patterns 

{A, B, C} are appropriately extracted.  

In this study, we use linear closed itemset miner (LCM) 

[14] that is a fast and exhaustive closed itemset mining 

algorithm. 
 

IV. EXPERIMENTS 

The performance of the proposed method was evaluated 

using artificially created sequential datasets (artificial 

datasets). 

A. Artificial datasets 

Each artificial datasets was composed of three sequential 

data. The sequential data were generated by inserting 10 

linkage patterns (embedded linkage patterns) into random 

sequential data created using uniform random numbers. For 

this experiment, we created five non-noise artificial datasets 

(Dataset1–Dataset5) that include no noise within embedded 

linkage patterns. Figure 3 shows a section of each artificial 

dataset. The formats of linkage patterns embedded in each 

dataset are as follows. Dataset1 is an artificial dataset in which 

equal length frequent patterns were embedded with the same  

 

start time across the three sequential data (Figure 3a). 

Dataset2 is an artificial dataset in which equal length frequent 

patterns were embedded with different start times across the 

three sequential data (Figure 3b). Dataset3 is an artificial 

dataset where different length frequent patterns for each of the 

three sequential data were embedded at the same time (Figure 

3c). Dataset4 is an artificial dataset in which frequent patterns 

with different lengths for each of the three sequential data 

were embedded at different times (Figure 3d). Dataset5 was 

an artificial dataset in which one or two types of frequent 

patterns were embedded with different lengths and different 

start times for each of the three sequential data (Figure 3e). 

In addition, five artificial data sets 

(Dataset1_noise–Dataset5_noise) that include with noise in 

embedded linkage patterns were created by adding 

fluctuations to each time point in the linkage patterns. The 

fluctuations were generated using normal random numbers 

(standard deviation = 0.01). 

B. Parameter settings 

For frequent pattern extraction, the minimum number of 

occurrences (θ) was fixed at five, and the maximum window 

widths (w) were set to natural numbers within the range of 2 < 

w < 10. The range of w was determined on the basis of the 

following. When w ≤ 2, since all the data at each time point 

will be labeled, data points with the number of occurrences 

greater than θ are all labeled. Further, when w ≥ 2θ, since 

frequent patterns with length greater than w/2 are extracted 

from all windows, each sequential data will be continuously 

and closely labeled. In any cases of the above two, as the 

continuous overlapping of intervals occurs between the 

sequential data, in extreme cases, only one interval graph will  

be generated from all of the sequential data. The minimum 

support (minsup) in closed itemset mining was set to five. 

 

 

 

Fig. 3. Artificial datasets 

 

(a)  (b)  (c)  

(d)  (e)  
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C. Extraction accuracy of linkage patterns 

The extraction accuracies of embedded linkage patterns of 

the previous methods and the proposed method were 

compared using the 10 artificial datasets created above. 

Precision, recall, and F-measure were used as evaluation 

indexes. These indexes were calculated according to the 

following formulas. 

 

Precision = CDP / DDP 

Recall = CDP / EDP 

F-measure = 2 * Precision * Recall / (Precision + Recall) 

 

Here CDP is the number of data points in the correctly 

detected areas of the embedded linkage patterns, DDP is the 

number of data points in the areas of the embedded linkage 

patterns detected by the method, and EDP is the number of 

data points in the embedded linkage patterns. 

V. RESULTS AND DISCUSSION 

A.  Extraction accuracy for non-noise datasets 

Figure 4 and 5 are graphs of precision, recall and 

F-measure when the proposed method and the previous  

method were applied to the five non-noise datasets. In this  

 

 

graphs, the scores in different maximum window width (w) 

are presented. 

As a result, the previous method shows unstable scores for 

the different w. This is caused by the pseudo patterns 

randomly formed by noise being added to embedded linkage 

patterns. In contrast, the proposed method demonstrates 

100% extraction accuracy for all w values. This means that 

the noises included in the interval graphs were suitably 

excluded by closed itemset mining. 

B. Extraction accuracy for noise datasets 

In the previous method, the accuracy of extracting linkage 

patterns shows 0% for all the datasets, because only one 

interval graphs is generated. This is due to the fact that the 

pseudo patterns exist throughout the sequence data. Figure 6 

is graphs of precision, recall and F-measure for the five 

datasets with noise (Dataset1_noise－Dataset5_noise). These 

graphs show the scores for different w. 

Precision shows 80% or more for all w. In particular, when 

w is 5 or more, embedded linkage patterns are perfectly 

extracted from all datasets. This is because pseudo patterns 

are suitably excluded at the step of closed itemset mining.  

Recall tends to decrease as the w increases. In particular, 

when w is 5, the score dramatically decrease in all the datasets. 

This is because the number of frequent patterns extracted 

Fig. 5. Extraction accuracies by the proposed method 

Fig. 4.  Extraction accuracies by the previous method 

Fig. 6. Extraction accuracies for the datasets with noise 
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from each sequence dramatically decreases in w≧5; therefore, 

the obtained interval graphs are also dramatically reduced.  

F-measure decrease significantly by the influence of the 

drastic decline of recall values. As explained in section 4.2, 

we can see that w should be specified to a smaller value in the 

range of 2 < w < 2θ to get higher extraction accuracy. 

 

VI. CONCLUSION 

We have proposed a new noise-robust linkage pattern 

mining method based on closed itemset mining. In the 

proposed method, closed itemset mining was employed to 

exclude randomly generated noise patterns and to obtain only 

frequent and maximal patterns among different interval 

graphs. In this paper, we used artificial data to compare the 

performance of the proposed method and the previous method. 

The results showed that the extraction accuracy of linkage 

patterns was significantly improved by the proposed method. 

In particular, the proposed method was able to appropriately 

detect linkage patterns with noise which were not detected at 

all in the previous method. 

In the future, we will address increasing the speed of the 

frequent pattern mining algorithm. Moreover, we will apply 

the method to large-scale real sequential data that includes 

noise and fluctuations, such as vital data and crustal 

movement data. In addition, the practical applicability of the 

method will be evaluated in terms of the extraction accuracy 

and the computational time. 
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