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Abstract—A new concept of discernibility degree of a 

condition attribute value and a new rough set theory based 
classification rule generation algorithm are proposed. The first 
key feature of the new algorithm, in comparison with standard 
rough set method and other rule induction methods, is its 
ability to calculate the core value without attributes reduction 
before; the second feature is not calculating the core values for 
the inconsistent examples; and the third feature is that in rule 
generation for inconsistent examples the condition attribute 
value that has the maximum discernibility degree should be 
selected first. Experimental results  on 28 medical data sets 
show that the classification accuracy is much better than the 
standard rough set based classification algorithms, its variants, 
and a little better than C4.5, and RIPPERk.

Index Terms—C4.5, CBA,  classification rule, rough sets, 
JRip 

I. INTRODUCTION
ule learning has played an important role in machine 
learning and is known for inducing interpretable and 

comprehensible classifiers. Methods from statistical 
machine learning, on the other hand, have traditionally 
focused on predictive accuracy, often at the expense of 
interpretability. The goal of this work is to obtain highly 
predictive, yet interpretable classifiers. 

The main rule based techniques are decision trees based 
rule learner [1], sequential covering [2], associative rules, 
and rough set [3] based methods, representative algorithms 
or softwares are C4.5, RIPPERk, CBA [4], and ROSETTA 
[5].

It is well known that C4.5 and RIPPERk are two excellent 
classifiers in classification performance, and there are little 
rule based algorithms comparable to them in classification 
accuracy[6-10] including the rough sets based classifiers.

Can rough set based rule generation methods be revised to 
get higher classification accuracy? This paper introduces a 
new rough set based rule generation method to construct a 
higher accuracy classifier compared to C4.5 and RIPPERk.

In standard rough set method an attribute reduction step 
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should be carried out before rule generation, which may 
delete some important attributes and some attribute values 
may become indispensable that may not in original attribute 
set. And in standard rough set theory the method of inducing 
rules for the inconsistent examples are the same as for the 
consistent examples. However, the precision of the rules 
induced from inconsistent examples may be improved, 
because an inconsistent example in original decision table is 
a rule that has the original precision that may lower than the 
rule generated by selecting some of original condition 
attribute values as its antecedent. 

In order to overcome these two shortcomings the new 
algorithm generates the core value for every consistent 
example first and generate rule on basis of it directly. And 
for inconsistent examples not generating core value first and 
selecting the condition attribute value first that has the 
maximum discernibility degree in rule inducing.

CBA use exhaustive search to find all the associative 
rules that satisfy the user-specified minimum support and 
minimum confidence. Two problems should be overcome in 
CBA that are the time complexity of exhaustive search and 
how to select good ones from very large amount of rules to 
final rules set to form the classifier.

 RIPPERk producing decision lists are also known as 
sequential covering algorithms, since rules are learnt one at 
a time. For each rule, all instances covered by this rule are 
removed from the data set and the next rule is learnt from 
the remaining instances. The problem encountered in 
RIPPERk is that there are fewer rules induced to be selected 
for forming a better classifier.

C4.5 generates rules by transforming the decision tree 
into rules, the problem in C4.5 is that the post-pruning 
strategy, though its ability to avoid over-fitting in noise data 
sets, may reduce the accuracy in perfect data sets.

II. PRELIMINARY CONCEPTS OF ROUGH SET THEORY

Rough set theory was developed by Zdzislaw Pawlak in 
the early 1980’s. It offers mathematical tools to discover 
patterns hidden in data. It can be used for feature selection, 
data reduction, decision rule generation, and pattern 
extraction etc.

A. Condition Attributes and Decision Attributes
Usually we distinguish in an information table two classes 

of attributes, called condition and decision (action) 
attributes. For example, attributes Headache, Muscle-pain 
and Temperature can be considered as condition attributes, 
whereas the attribute Flu as a decision attribute.
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B. Decision Systems/Tables 
DS is a pair ( , { })U A d , U is a non-empty finite set of 

objects. A is a non-empty finite set of condition attributes 
such that : aa U V  for every a A , aV  is called the 

value set of a. d A  , is the decision  attribute (instead of 
one we can consider more decision attributes).

C. Indiscernibility 
The equivalence relation: A binary relation R X X  , 

which is reflexive (xRx for any object x), symmetric (if xRy 
then yRx), and transitive (if xRy and yRz then xRz). The 
equivalence class [ ]Rx of an element x X consists of all 
objects y X  such that xRy. Let T = (U, A) be an 
information system, then with any B A  there is an 
associated equivalence relation:

2/ ( ) {( , ') | , ( ) ( ')}ISU IND B x x U a B a x a x     

Where ( , ') ( )ISx x IND B  is called the B-indiscernibility 
relation.
If ( , ') ( )ISx x IND B , then objects x and x’ are indiscernible 
from each other by attributes from B.

D. Dispensable & indispensable attribute values for an 
example x

Suppose we are given a dependency C D where C is 
relative D-reduct of C. We say that value of attribute aC, 
is D-dispensable for xU, if

[x] C  [x] D implies [x] C{a}  [x]D                           (2)

otherwise the value of attribute a is D-indispensable for x.

E. Attribute set independent for an example x
If for every attribute aC value of a is D-indispensable 

for x, then C will be called D-independent (orthogonal) for 
x.

F. Value core for an example x
The set of all D-indispensable for x values of attributes in 

C will be called the D-core of C for x (the value core), and 
will be denoted ( )x

DCORE C .

G. Value reduct for an example x 
Subset C'  C is a D-reduct of C for x (a value reduct), iff C' 
is D-independent for x and

[x] C  [x] D implies [x] C'  [x] D                                                              (3)
We have also the following property

( ) Re ( )xx
D DCORE C d C 

where )(CdRe x
D  is the family of all D-reducts of C for x.

H. Rough Membership
The rough membership function quantifies the degree of 
relative overlap between the set X and the equivalence class 
[ ]Bx to which x belongs : [0,1]B

X U  .

| [ ] |( )
| [ ] |

B B
X

B

x Xx
x


  

I. Decision Rule and its generalization
Each row of a decision table determines a decision rule, 

which specifies decisions (actions) that should be taken 
when conditions pointed out by condition attributes are 
satisfied. For example, the condition (Headache=no) and 
(Muscle-pain=yes) and (Temperature=high) determines 
uniquely the decision (Flu=yes). Objects in a decision table 
are used as labels of decision rules.

Given condition attributes set  1 2, , , nC C C C   and 
decision attribute set D, an example is an original and 
specific rule r in the form of ( ( ))i iC C x  , iC C  , with 
the rule strength  , if there is another attribute set R, 

R C  exists; the rule 'r of the form ( ( ))i iC C x  , 
iC R , 

with the same rule strength  , holds, and there are not any 

attribute set 'R R , the other rule ''r of the form of 
( ( ))i iC C x  , '

iC R , with the same rule strength  , 
holds, we have that R is one of the minimum reducts of 
example x with respect to C; and 'r  is one of the 
generalization of the rule r of x.

J.Inconsistent Decision Rule and Inconsistent Examples
Decision rules (or examples) that have the same 

conditions but different decisions are called inconsistent; 
otherwise the rules are referred to as consistent. Decision 
tables containing inconsistent decision rules are called 
inconsistent; otherwise the table is consistent.

K. Discernibility Degree of a Condition Attribute Value
Discernibility degree of a condition attribute value is 

defined as DIS that

( ( )) { ( ) ( )}j j jDIS C x y C y C x  

III. NEW CLASSIFICATION RULE INDUCTION ALGORITHM

A. Algorithm RGD

Input: Data set U, condition attribute set C, decision 
attribute set D

Output: Set of decision rules

begin

    getDIS(A, I);

    getInconsistentExamples();

    getCoreValue ();
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    getRules();

end

B. Method getDIS(A, I)

begin

        Attribute set A, instance set I

       ( , )DIS A I 

        for each example x

             ( , ) { }DIS A I x

            for each attribute a

                for each example y ( y x );

                    if ( ) ( )a x a y

                        add y to ( , )DIS A I

                endfor

            endfor

        endfor

        return ( , )DIS A I

end

C. Method getInconsistentExamples(instance inst)

begin

    inconsistent example set INCON 

    for every example ix

        if ( ) ( )
iD i A iDIS x DIS x  

            add ix to INCON

    endfor

    return INCON

end

D. Method getCoreValue ()

begin

    Core value set CORE 

for every consistent example 

        if ( ) ( ( )- ( )) ( )
i jD a aDIS x DIS x DIS x INCON x    , 

( )i j

            add ( )ja x to CORE

endfor

return CORE

end

E. Method getRules()

begin

    rule set RULES   

    rule RULE 

    condition attribute set A

    for every example x

        if x is consistent

            ( ( ))i iRULE C C x   where ( ) ( )iC x CORE x

             for every condition attribute jC  in iA C where 

( ) ( )iC x CORE x

                 add ( )j jC C x  to RULE that maximize 

( )x

              endfor

          endif

          else if x is inconsistent

              ( ( ))i iRULE C C x   that maximize ( )x  

               for every condition attribute jC  in iA C  

                    add ( )j jC C x  to RULE that maximize 
{ } { }( )i jC C x 

                endfor

          endelse

      endfor

      add RULE to RULES

      return RULES

end

IV. EXPERIMENTAL DATA SETS

The data sets were obtained from the repository of 
Machine Learning databases at UCI [11], see their 
characteristics in Table 1. Some data sets are discretized by 
supervised discretization methods with WEKA and denoted 
as like australian_dis, and some data sets are discretized by 
unsupervised discretization methods with WEKA and 
denoted as like autos_undis. The original data sets and their 
corresponding abbreviation are as follows: Arrhythmia, 
blood_tranfusion(Transfus), breast-cancer-wisconsin 
(Prognostic)( b-c-w-p), sick_supdis(sick),  primary-tumor, 
breast-cancer-wisconsin-cell-nucleus-diagnosis-superdis(b-
c-w-c), mammographic_masses_supdis (mammo_dis), 
breast-cancer-wisconsin-digitized-image-diagnosis-
unsuperdis(b-c-w-d), breastCancer, 
Dermatology_supdis(Derm), echocardiogram-
unsupdis(echocardiogram), lung-cancer, 
splice,ecoli_supdis(ecoli_dis), urinary_supdis(urinary)  , 
lymphography Habermans_Survival_unsupdis(Haberman), 
heart_disease_Long_Beach_VA_discrated_unsupdis(heart_
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d), heart-c-supdis(heart-s), hepatitis_unsupdis(hepatitis_dis), 
horse-colic_supdis(hepatitis_dis), SPECT_train(SPECT_t), 
liver-disorders-unsupdis(liver), thyroid_supdis(thyroid), 
pima-diabetes_supdis(pima-diabetes_dis), 
promoter_gene(promoter).

TABLE I. EXPERIMENTAL DATA SETS

Data sets features classes cases
Arrhythmia 133 13 452
Transfus 3 2 748
b-c-w-p 9 2 699
b-c-w-c 27 2 569
b-c-w-d 32 2 198
breastCancer 9 2 286
Derm 34 6 366
echocardiogram 12 2 132
ecoli_dis 7 8 336
Haberman 2 2 306
cleve 11 2 303
hungarian 13 2 467
heart-s 9 2 270
heart_d 13 4 200
hepatitis_dis 18 2 155
horse-colic_dis 27 2 300
liver 7 2 345
lung-cancer 51 2 32
Lymphography 18 4 148
mammo _dis 15 2 961
pima-diabetes_dis 8 2 768
primary-tumor 17 21 339
promoter 58 2 106
sick 30 2 2800
SPECT_t 23 2 80
splice 60 3 3190
thyroid 21 3 3772
urinary 6 4 120

V. EXPERIMENT IMPLEMENTATION

With the Experimenter module of WEKA 14 rule based 
or tree based classification algorithms are compared with the 
new algorithm using a ten-fold cross validation procedure 
that performs 10 randomized train and test runs on the 
dataset. The 14 existing algorithms are CBA, 
ConjunctiveRule, DecisionTable, Explore, J48, JRip, LEM2, 
NNge, OneR, RandomTree, Ridor, Standard Rough Set, 
Variable Precision Rough Set, and ZeroR. Explore, 
LEM2，Standard Rough Set, and Variable Precision Rough 
Set are programmed with JAVA and embedded into WEKA 
3.5.6. The others like JRip are from WEKA. The parameters 
in every algorithm are adopted default ones except that the 
minimum confidence in CBA is adopted 50%.

VI. EXPERIMENTAL RESULTS

 Table 2 describes the experimental results in terms of 
percent correct. The first row lists the 15 algorithms, and the 
first column 28 data sets.  The annotation v or * indicates 
that a specific result is statistically better (v) or worse (*) 
than the baseline scheme (in this case, the new algorithm 
RGD) at the significance level specified (currently 0.05). At 
the bottom of each column after the first column is a count 
(xx/ yy/ zz) of the number of times that the scheme was 
better than (xx), the same as (yy), or worse than (zz), the 
baseline scheme on the datasets used in the experiment. 

TABLE II. PERCENT_CORRECT RESULTS
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Table 3 shows the comparison results about the 14 
algorithms against RGD in term of 8 classification 
performance measures. The 8 measures are (1)mean 
absolute error, (2)percent correct, (3)weighted average area 
under ROC, (4)weighted average  F-measure, (5)weighted 
average IR precision, (6)weighted average IR recall, 
(7)weighted average true negative rate, and (8)weighted 
average true positive rate. The other 6 measures (9-14) are 
for analysis of above performance measures, and they are 
(9) total length of all rules, (10) amount of attributes in the 
rule set, (11) mean length of the rules, (12) mean coverage 
of the rules, (13) mean accuracy of the rules. (14) amount of 
rules in the rule set.

VII. CONCLUSION AND DISCUSSION

(1) From the comparing results in Table 3 it shows that 
RGD achieve a good classification performance across the 
28 medical data sets compared to other 14 algorithms.

(2) Among all the 15 algorithms NNge and Ridor are 
KNN variants and the others are rule or tree based methods. 
Among the rule or tree based methods CBA and RGD have 
the lowest measure of mean absolute error. The only 
consistent factor between CBA and RGD is that they all 
have higher rules’ mean accuracy. So we can infer that the 
measure of mean absolute error of a classifier is strongly 
related to the metric of mean accuracy of the rules.

(3)The rules in LEM2 have bigger mean coverage, but 
longer mean length and lower mean accuracy than RGD. 
The bigger mean coverage because LEM2 select the 
attribute values with biggest coverage to construct a rule. 
The longer mean length and lower mean accuracy is due to 
that LEM2 use the formula (1) as the stop schema when 
forming a rule, and as a result for an inconsistent example 
the rule's length is as long as the example itself, and the final 
classification performance is worsened. 
  (4) The two differences between RGD and Standard Rough 
Set are that Standard Rough Set has the attribute reduction 
step before rule generation and does not handle the 
inconsistent examples. So the metric of amount of attribute 

in rule set in Standard Rough Set is very small (see Table 3) 
and may remove some significant attributes.

TABLE III. PERFORMANCE COMPARISON IN TERM OF 8 MEASURES OF 
15 ALGORITHMS AGAINST RGD

 (5) The measure of mean absolute error of J48 and Jrip is 
higher significantly than RGD, but in terms of percent of 
correct, weighted average IR recall, and weighted average 
true positive rate J48 ranks first. The significant feature of 

CBA     Conju    Decis    Explo     J48     

  1. (2/21/5)(20/8/0) (18/10/0)(11/17/0)(8/19/1)

  2. (2/25/2)(0/17/11)(0/17/11)(0/18/10)(1/27/0)

  3. (2/23/3)(0/13/15)(1/15/12)(1/14/13)(1/26/1)

  4. (3/24/1)(0/16/12)(1/16/11)(0/19/9) (4/23/1)

  5. (3/23/2)(0/15/13)(1/13/14)(1/18/9) (4/23/1)

  6. (2/25/1)(0/19/9) (1/17/10)(0/19/9) (6/22/0)

  7. (3/23/2)(1/14/13)(2/14/12)(1/19/8) (4/23/1)

  8. (2/25/1)(0/19/9) (1/17/10)(0/19/9) (6/22/0)

  9. (0/0/28) (*/*/*)  (*/*/*) (19/2/7) (*/*/*) 

  10.(0/18/10)(*/*/*)  (*/*/*) (6/15/7) (*/*/*) 

  11.(9/5/14) (*/*/*)  (*/*/*) (19/2/7) (*/*/*) 

  12.(28/0/0) (*/*/*)  (*/*/*) (21/2/5) (*/*/*) 

  13.(10/6/12)(*/*/*)  (*/*/*) (6/14/8) (*/*/*) 

  14.(0/0/28) (*/*/*)  (*/*/*) (19/2/7) (*/*/*) 

       Jrip     LEM2     NNge    OneR    Rand     

  1. (10/17/1)(3/25/0)(0/24/4)(7/15/6) (2/26/0)

  2. (1/27/0)(0/22/6) (1/25/2)(0/19/9) (1/23/4)

  3. (1/23/4)(0/22/6) (0/20/8)(0/12/16)(0/24/4)

  4. (1/27/0)(0/25/3) (2/26/0)(1/17/10)(0/26/2)

  5. (1/27/0)(0/27/1) (1/26/1)(0/18/10)(0/25/3)

  6. (1/27/0)(0/24/4) (2/25/1)(2/18/8) (0/26/2)

  7. (3/22/3)(1/25/2) (2/25/1)(1/15/12)(1/22/5)

  8. (1/27/0)(0/24/4) (2/25/1)(2/18/8) (0/26/2)

  9. (*/*/*) (11/3/14) (*/*/*) (*/*/*)  (*/*/*) 

  10.(*/*/*) (3/24/1)  (*/*/*) (*/*/*)  (*/*/*) 

  11.(*/*/*) (28/0/0)  (*/*/*) (*/*/*)  (*/*/*) 

  12.(*/*/*) (16/6/6)  (*/*/*) (*/*/*)  (*/*/*) 

  13.(*/*/*) (0/9/19)  (*/*/*) (*/*/*)  (*/*/*) 

  14.(*/*/*) (4/1/23)  (*/*/*) (*/*/*)  (*/*/*) 

       Rido     Stan    VPRo     Zero

  1. (0/20/8)(11/17/0)(12/15/1)(23/5/0)

  2. (1/27/0)(1/18/10)(2/16/10)(0/8/20)

  3. (0/24/4)(0/19/9) (0/21/7) (0/6/22)

  4. (3/25/0)(1/20/7) (1/18/9) (0/6/22)

  5. (3/25/0)(1/19/8) (1/18/9) (0/3/25)

  6. (2/26/0)(1/20/7) (2/18/8) (0/9/19)

  7. (4/24/0)(0/20/8) (0/20/8) (0/4/24)

  8. (2/26/0)(1/20/7) (2/18/8) (0/9/19)

  9. (*/*/*) (16/9/3) (16/7/5)  (*/*/*)

  10.(*/*/*) (0/10/18)(0/10/18) (*/*/*)

  11.(*/*/*) (26/2/0) (24/0/4)  (*/*/*)

  12.(*/*/*) (10/13/5)(16/10/2) (*/*/*)

  13.(*/*/*) (7/17/4) (7/10/11) (*/*/*)

  14.(*/*/*) (1/9/18) (2/9/17)  (*/*/*)

1. Mean_absolute_error           2. Percent_correct 
3.Weighted_avg_area_under_ROC   

4. Weighted_avg_F_measure

5.Weighted_avg_IR_precision     

6. Weighted_avg_IR_recall 

7.Weighted_avg_true_negative_rate  

8. Weighted_avg_true_positive_rate 

9.Total_Length_of_All_Rules        

10. amount of attributes in the rule set

11.mean length of the rules        12.mean coverage of 

the rules 

13.mean accuracy of the rules   

14.amount of rules in the rule set.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



J48 and Jrip is their pruning technique that generates many 
rules with larger coverage but lower accuracy resulting the 
lower measure of mean absolute error and higher measure of 
percent of correct.
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