

Abstract—Numerous attempts have been made to devise

systems that make the work of a visually impaired person easier.
These researches have focused on a number of issues such as path
finding, obstruction detection, face recognition, sign recognition,
to name a few. The aim of this paper is to outline a system, based
on Microsoft Kinect that will provide some of these features in a
unified manner. The system is based on a number of open source
tools such as: OpenCV, OpenKinect, Tesseract and Espeak.
Features that have been incorporated building this aiding tool are
object detection and recognition, face detection and recognition,
object location determination, optical character recognition and
audio feedback. One of the key components of this research is to
ensure considerable amount of accuracy and at the same time be
extremely efficient in terms of hardware resource required. Since
the system is an aggregation of multiple components, their
accuracies are measured independently from online and offline
point of view (where applicable). The best component (face
recognition) showed an accuracy of 90%. The weakest component
(text recognition) yielded an accuracy of 65%. The proposed
system is able to detect and recognize face/text/chair in a frame
within 2.25 seconds.

Index Terms--Navigational aid; Visual impairment; Human
computer interaction (HCI); 3D camera; Kinect.

I. INTRODUCTION

The proposed work here is motivated by the need of a
navigational aid system for blind and visually impaired people.
In spite of the success of computer vision technology in several
other fields (such as robot navigation, surveillance, and user
interface), very few computer vision systems and algorithms
are currently employed to aid visually impaired people.
However, computer vision and mobile computing are powerful
tools with great potential to enable a range of assistive
technologies for the growing population of blind and visually
impaired. Recent technology developments in computer vision,

 This work is partially supported by City University of Hong Kong (Project
6987017).

Mahmud Ridwan is with the Computer Vision & Cybernetics Research
Group, SECS, Independent University, Bashundhara, Dhaka 1229, Bangladesh
(e-mail: Mahmud.ridwan@hotmail.com).

Ehtesham Choudhury is with the Computer Vision & Cybernetics Research
Group, SECS, Independent University, Bashundhara, Dhaka 1229, Bangladesh
(e-mail: ehteshamc@gmail.com).

Bruce Poon is with the School of Electrical & Information Engineering,
University of Sydney, NSW 2006, Australia (e-mail:
bruce.poon@sydney.edu.au).

M. Ashraful Amin is with the Computer Vision & Cybernetics Research
Group, SECS, Independent University, Bashundhara, Dhaka 1229,
Bangladesh. (e-mail: aminmdashraful@ieee.org).

Hong Yan is with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong, China (e-mail:h.yan@cityu.edu.hk)

digital cameras, and portable computers make it possible to
develop practical computer vision-based algorithms to help
visually impaired to independently explore unfamiliar
environments and improve the quality of their daily life.

Visual information is the backbone behind any navigational
task. Visually impaired people are on darkest side of advantage
as they do not have appropriate information of the surrounded
environment. So far, the most highly used helpful medium by
these people are cane and guide dog. In this context, we propose
a computer vision based system that will not only guide its
visually impaired user through providing information about the
obstacles around him/her but also inform the user about the
environment around him/her by recognizing objects and
determining their location.

Object detection and recognition has gained a lot of
popularity lately. With increasing computational performance,
it has become easier to ensure better accuracy. Although a
number of researchers have proposed various useful
approaches to object, face and text detection [1-11], work
related to detecting an object and then determining its location
in a 3D environment is scarce. Moreover, the primary input
device used in our system, Microsoft Kinect, is relatively new
and has yet to receive the attention it deserves.

Object detection [1-4] is usually heavily concerned about
detecting objects with accuracy being the most important factor
of the system performance. Sliding window, being a very
primitive technique, made most of the object detection
algorithm implementation very slow. Most of the approaches
defined in the above mentioned works used such technique and
their performance bottleneck was the sliding window algorithm
itself. These methods basically suffered from repeated cropping
and resizing to detect objects of different sizes and orientations,
hence they became very slow. However, method proposed by
Viola & Jones [5] overcame shortcomings of these systems.
The main strength of this algorithm was that the classifier
cascade used could be resized itself to match the size of the
sliding window in every iteration. That saved a lot of
computation and could eventually result in faster performance.
Moreover, the authors improved the efficiency of objected
detection by including integral image and AdaBoost along with
the cascading classifiers.

Several methods on shape based recognition can be found in
the work of Sclaroff and Pentland in [6]. They suggested an
eigenvector or modal matching based approaches [7-9]. In this
approach, sample points in the image were casted into a finite
element spring-mass model and correspondences are found by
comparing modes of vibration. There existed several
approaches to recognize shape which were based on spatial
configuration. Along with spatial configuration of the points,
gray-level information was also used to get bunch of
distinguished key points.

A Navigational Aid System for Visually
Impaired Using Microsoft Kinect

Mahmud Ridwan, Ehtesham Choudhury, Bruce Poon, M. Ashraful Amin, Hong Yan

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Eigenface method for face recognition [10] identifies faces
faster which makes it more suitable for real time applications.
The fundamental steps of the approach involve finding the face,
extracting it from the image, projecting it onto the “face space”
or more technically the space defined by the “Eigenfaces”.
More importantly, the method described in this paper has the
ability to learn new faces in an unsupervised manner. This is in
fact a critical requirement in our application.

Text recognition problem in general has reached a state where
texts of known fonts scanned in the correct orientation can yield
almost accuracy of complete perfection. However, in our case,
both fonts and the orientation are unknown, and every image is
bound to have noise along with texts that we intend to extract.
This is where the approach of Tesseract [11] comes in. It was
first designed by HP Labs and was later developed by Google.
The approach performs a series of preprocessing actions on the
image before executing the OCR step. Unlike other OCR
techniques, this approach is tolerant of varying orientations,
and given that the system has been trained with a few serif and
sans-serif font, it can handle virtually any non-cursive font
texts.

II. METHODOLOGY

Our system has been designed as a stack of components, each
capable of working independently to carry out their
corresponding task. Figure 1 is a pictorial representation of the
architecture:

Figure 1. Components and architecture of our system.

 These components are discussed in following sections.

2.1 Data Acquisition

Kinect being a proprietary technology does not provide

unrestricted access to its hardware. However, there is array of
device driver to choose from. We chose an open source
(OpenKinect [12]) driver to get the maximum insight into how
this device works. With some driver interaction and little
concurrency techniques, we were able to prepare the
framework outlined above where each layer worked almost
independently of each other but in a coherent fashion. To be
able to adapt to various hardware without overwhelming the
underlying system, we used an event driven mechanism.
Instead of putting a pressure on the system to deliver frames of
data as fast as possible, each component would run

independently and react to events that would occur throughout
the system. The frame-buffer component’s sole responsibility
was to always keep a frame of data at hand and always keep it
up to date. Any other layer requesting a frame of data would
immediately get that frame in hand, instead of forcing the frame
buffer component to retrieve a new frame every time it was
asked for one. A sample of the frame available from Microsoft
Kinect is given in Figure 2.

Figure 2. Two types of frames available from the frame buffer.

2.2 Object Classification

Frames of data collected from the frame buffer are passed

through a few cascades of object recognizer. Each of these
cascades is trained to recognize different types of objects in
general. The training phase involved the use of standard high
definition video camera. The video was then turned into a
sequence of images in which a subset was picked out and
marked entirely by hand the locations of various objects in the
scene. After a phase of Haar-training [13], the cascades were
ready. Our initial attempt included two cascades: for chairs and
faces.

 The cascades, being independent of each other, give the
advantage of modularity and the possibility of easily extending
the system to support even more objects in the future. During
the detection of the objects, the classifier module tries to mark
regions of interest on the image and tag them with the names of
possible class of objects found in those regions. The depth
frame, as received from the frame-buffer at that point, is also
marked with appropriate tags so that the next step, where more
detailed information is determined can use those data quickly to
find the regions of interest and their properties. In Figure 3, one
frame containing a human face detected correctly is depicted.

Figure 3. Depth frame (Left: raw; Right: regions of interests

marked).

 Since we know which cascade was responsible for the

detection and marking of each regions of interest, it is easy to
classify those regions as either objects or faces. Furthermore,
two specific calculations are performed within this same
component as they are common to every region of interest.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

They are distance and angles of the region of interests from the
geometric center of the point of view.

 Every detected object in the system is annotated with a tuple
of two values: the approximate distance between the object and
the sensor and the angle the object makes with the z-axis of the
sensor. These values are calculated using the positional
information provided by the object detector and the depth data
obtained from the Kinect. Now, the challenge is to get the
correct distance of the located object. We cannot just depend on
the exact pixel coordinate of the detected object location to find
out the distance. Kinect usually measures the distance using its
infrared camera. Using this camera for each and every pixel
located in the 2D image provides the distance measure in a
specified unit. Now, this may be a case that for some pixels
which fail to extract the distance value due to some
environmental problem and provide a built in zero value in
those pixels. Therefore, for the accurate extraction of the
distance value, we have followed an algorithm which will not
be affected by the environmental problem that may lead to an
invalid distance measure. The main idea of the algorithm is to
take chunk of area of pixels dynamically around the detected
object and find out the median of distances. The algorithms are
stated below.

2.2.1 Determining Distance

Median Finding Algorithm
One of the most naive way of finding the median of a

collection of integers is the following algorithm:

1	
2	
3	
4	
5	
6	

def	median(arr):	
			arr.sort()	
			if	len(arr)	%	2	==	0:	
						return	(arr[len(a)/2‐1]	+	arr[len(a)/2])/2	
			else:	
						return	arr[len(a)/2]	

This algorithm runs on a time complexity of O(n log n), due to
the sort step of sorting the array. However, as the values of the
array elements are in the range [0, 255], we can simply take
advantage of a variation of the counting sort algorithm:

1	
2	
3	
4	
5	
6	
7	
8	
9	

def	median(arr):	
			counts	=	[0]	*	256	
			for	v	in	arr:	
						++counts[v]	
			tmp	=	0	
			for	I,	v	in	enumerate(counts):	
						tmp	+=	v	
						if	tmp	>=	len(arr)/2:	
									return	v	

This algorithm runs on a time complexity of O(n) which is

slightly faster than the traditional approach.

2.2.2 Determining Angular Displacement

The object detector is capable of providing coordinates in
terms of pixels, considering the center of the image to be the
origin.

These coordinates in pixels were then converted to absolute
distance in meters using a linear scaling followed by the use of
Pythagoras formula. The coefficients of the linear scaling
formula were determined experimentally: The long wooden
stick, 1 meter in length was placed 3 meters away from the
camera. The number of pixel it covered in the image was
measured. The coefficients were then computed from the
available information. This process was repeated by keeping
the stick at 4, 5 and 6 meters distances to ensure that the linear
scaling was effective enough and that such subtle change in the
distance did not have any significant effect on the accuracy of
the scaling process. This gave us the distance of the object on
the xy-plane.

The sensor provides depth information in a non-standard unit.
According to its specification, Kinect is capable of determining
distance ranging between 2 and 7 meters. The depth value, as
provided by the device drivers, ranges between 0 and 255.

The distance was calculated by multiplying a constant factor
with the depth value provided by the driver. The constant factor
was initially set to 0.027 which maps a value of 0 to 2 meters
and a value of 256 to 7 meters. Although this gave pretty close
results for most cases, it was later adjusted a little bit to counter
the inaccuracy of the device itself. The final value of the
constant factor was determined through trial and error.

With these data combined, the angle between the object and
the z-axis was computed by finding cos inverse of the ratio of
the two distances: the absolute distance and the distance
between the origin and the projection of the object on xy-plane.

2.2.3 Chair detection

 A Logitech HD Camera has been used to take video shoot of
the concerned object in various environments. The reason
behind taking high definition video shoot is to capture
maximum details of an object in real environment.

For all type of objects, we tracked them in different shape and
environment and took 360 degree video shoot each time for one
minute. As our system was tested in our university campus, our
prime focus was to shoot video of different backgrounds
(negative samples) and store into our system. After that, all
those videos were separated into thousands of frames. After this
stage, we successfully gathered huge number of images of
different objects from various angles in different scenarios.
 For training, each object had to be identified and marked
manually in the images. Out of the thousands of images, we
took a large sample of few hundreds and marked them
manually. For convenience, a small tool was created that would
show each image in sequence and took the markings using a
GUI and then stored in a description file. Some sample images
are given in Figure 4.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Figure 4. Marked images and relevant description file output.

 The training phase of the system runs for a large amount of
time. The end result is the aforementioned cascade file which is
then easily loaded into our system. The vector file, from which
the cascades are trained, was inspected to see some of the
examples of how the training system is perceiving the data. A
few such example images are given in Figure 5.

Figure 5. Images from vector file.

2.2.4 Face Recognition

 In face recognition, it is well known that the likelihood of

having noise in the input is very high. In fact, noises caused by
variation in lighting, pose etc is very common. Yet, every face
bears some features that are quite unaffected by such variations
and noises. For example, objects such as eyes, nose, ears and
their relative distances. These features can be extracted quite
easily using principle component analysis. The first obstacle of
such a process is acquiring the images and preprocessing them.
However, as that is not a part of our focus in this experiment,
the set of images obtained here are already preprocessed to
requirement. The second task of this approach in face
recognition is to generate the eigenfaces of these images. The
eigenfaces are a set of eigenvectors that are used to represent
the features of the set of known faces. The approach of using
eigenfaces for recognition was developed by Sirovich and
Kirby (1987) [14]. The eigenfaces generation process mainly
involves performing principal component analysis on the
sample data. The process performed on the testing data is
similar to the previous process but is slightly different in terms
of what is used to normalize the data and also the eigenface
used is the one that had already been generated in the previous
step. The experiment was repeated several times with slight
variation in algorithm constants especially the constant that
defines the precision of the eigenface, that is the number of
eigenface vectors used in those of the aforementioned steps of
the process.

2.2.5 Text Recognition

 For text recognition, we rely on the open source tools called
Tesseract [11]. However, the obstacle that we really have to
overcome to ensure a good text extraction mechanism involved
the fact that the images containing text being fed to Tesseract
will be completely arbitrary. Tesseract is optimized to extract
text from well format and well scanned document images. The
system, on the other hand, will only receive images from a
Kinect device and those images may contain text in virtually
any form.

During the preprocessing stage, our goal was to eliminate the
effects of the background and noises on the image as much as
possible. This involved applying a series of filters (sharpening,
monochrome etc) to the image to reduce such unwanted
elements and made the text as vivid as possible. The end result
would be an image where the background was almost
eliminated and the text would remain as a thin skeletal
wireframe. Since this would work only for large texts in the
image and that would cover basically all signboards and
markers, the compromise was worthwhile.

 Once the image was passed through the Tesseract, the
recognized text was then passed through another small snippet
of code which resolved some unexpected character issues. For
example, it replaced all '$' signs appearing next to characters
(other than digits) into the English character’s’. The text was
further spell checked and common errors were fixed. This made
the end result much more readable and hence easier for the text
to audio engine to processes it better. In Figure 6, we provide a
sample notice at the library processed by our system.

Figure 6.Image preprocessing for text recognition.

2.3 Feedback

The output unit is the least complex unit of the whole system.

It is comprised of a python program that actually works on the
text that is supplied by our central processing unit. As we know
earlier, the central processing unit actually uses the object
classifiers and marks the object in the image frame. After that,
the processing unit performs other calculations, sorts out the
distance and location of the desired object and formulates a text
describing the information. This text works like the input of the
output unit. The output unit processes this text using a python

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

package named “ESpeak” [15]. “ESpeak” is a voice synthesizer.
It converts the text to speech. Therefore, the output unit gets the
formulated text after object detection and location
determination from the central processing unit which then
converts the text to speech using “ESpeak” and deliver to the
user.

III. PERFORMANCE EVALUATION

 Performance of the proposed system is evaluated from two

view points: offline performance and online performance
(real-time performance).

3.1 Offline Performance Evaluation

3.1.1 Offline Face Detection Accuracy

 The performance analysis of offline face detection was

evaluated using three different datasets: PIE [16], UMIST [17]
and CBCL [18]. Each dataset contains around a thousand facial
images, cropped to facial region only and there are slight
variations in angle of image acquiring in those images. The
following chart (Figure 7) shows the number of true positives,
false negatives and false positives for each dataset. The total
height represents the actual size of the each dataset.

Figure 7. Performance with various datasets.

3.1.2 Offline Distance & Angle Calculation Accuracy

The distance measured used data obtained using the depth
map of Kinect. Since the distance calculation formula was
designed to account for trigonometric approximations, the
expected error of the formula was supposed to be constant.
However, due to the error inherent in the sensor itself and its
depth measuring capabilities, there was an increase in error
with increase in distance. Moreover, since the sensor was
designed to work only within a short range of distance,
distances calculated for objects within the first 2 meters and the
distance beyond 9 meters were completely invalid and ignored.
Figure 8 shows the average error percentages with various
distances. In our experiment, the values for Mean & Median
are the same. As such, the lines plotted for Mean & Median
overlap each other.

Figure 8. Error in distance calculation using data from depth

map (Lower is better).

3.1.3 Offline Face Recognition Accuracy

 Face recognition was performed using a small number of
subjects. For each subject, around 50 images were captured.
The number of images used to train was varied and the
performance was measured. Figure 9 shows the face
recognition accuracies with various training data sizes.

Figure 9. Face recognition accuracy with varying size of

training data.

3.2 Online or Real-time Performance Evaluation

Since the system performed fairly well in offline tests, we
used the same algorithms and approaches in our real-time use
with slight optimizations. The performance measure then all
came down to how quickly it processed every frame. In table 1,
the time required for each major component processing for in a
frame is provided.

Table 1.Execution time for each component.
Configuration Speed (Average)

All components 2.25 seconds per frame

Face recognition 1.7 seconds per frame

Text recognition 0.8 seconds per frame

Face and text recognition 1.9 seconds per frame

Object detection 2 seconds per frame

Face recognition and object detection 2.2 seconds per frame

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

IV CONCLUSION

In conclusion, we come to understand that it is possible to
build a system that can come in aid to those who really need it
with the available technologies all around us. People with
visual impairment, those who are deprived of this very
important sensory system, always tend to lead a difficult life.
However, with a system such as this, their life can only get
better. Our experiment shows that a complex system such as
this can be built from a number of existing, stable components.
At the same time, we can make it run efficiently using limited
resources.

In our experiment, the whole system had been built upon
several very simple principles. It was structured in a modular
way for greater extensibility. Each chosen component was
lightweight and open source for better availability, or was
implemented customized to suit our needs. It was independent
which reduced the number of articulation points of failure.
Overall, the whole system was just one simple pipeline of
processing techniques that started from two simple frames of
data (rgb and depth) and ended at the generation of audio
feedback.

At the end of the experiment, although we had a stable and
efficient system, there was a considerable number of areas
where it could be improved even more especially in terms of
accuracy of some of the components. For example, object
detection could be improved by employing a better training
dataset and spending much more time in the training phase,
tweaking the system to reach optimal performance quality.

REFERENCES
[1] A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. W eak hypotheses and
 boosting for generic object detection and recognition. In Proceedings of
 ECCV 2004.
[2] D. G. Lowe. Object recognition from local scale-invariant features. In IEEE
 Transactions on Pattern Analysis and Machine Intelligence, volume 2,
 pages 1150 –1157, 1999.
[3] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by

unsupervised scale-invariant learning. In Proceedings of Computer Vision
and Pattern Recognition, volume 2, pages 264–271, 2003.

[4] S.Mahamud,M. Hebert, and J. Shi. Object recognition using boosted
discriminants. In Proceedings of Computer Vision and Pattern Recognition,
volume 1, pages 551–558, 2001.

[5] P. Viola, M. Jones. Rapid Object Detection using Boosted Cascade of
Simple Features. In Proceedings of Conference on Computer Vision and
Pattern Recognition, 2009.

[6] S. Sclaroff and A. Pentland. Modal Matching for Correspondence and
Recognition. In IEEE Transactions. Pattern Analysis and Machine
Intelligence, vol 17,no. 6,pp. 545-561, 1995.

[7] G. Scott and H. Longuet-Higgins. An Algorithm for Associating the
Features of Two Images. In proceedings of Royal Soc. London, vol. 244,pp.
21-26, 1991.

[8] L.S. Shapiro and J.M. Brady. Feature-Based Correspondence: An
Eigenvector Approach. Image and Vision Computing, vol. 10, no. 5, pp.
283-288, 1992.

[9] S. Umeyama. An Eigendecomposition Approach to Weighted Graph
Matching Problems. IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 10, no. 1,pp. 71-96, 1991.

[10] M. A. Turk, A. P. Pentland. Face Recognition Using Eigenfaces.
[11] Tesseract open source OCR engine.
 http://code.google.com/p/tesseract-ocr/
[12] Open source OpenKinect project.
 http://openkinect.org/wiki/Main_Page

[13] Open Source Computer Vision Harr training.
 http://opencv.org/
 http://docs.opencv.org/doc/user_guide/ug_traincascade.html
[14] L. Sirovich and M. Kirby (1987). "Low-dimensional procedure for the

characterization of human faces". Journal of the Optical Society of
America, pp. 519-524

[15] ESpeak – A Voice Synthesizer.
http://espeak.sourceforge.net/docindex.html

[16] The CMU Multi-PIE Face Database.
 http://www.multipie.org/
[17] The Shefield (previously UMIST) Face Database.
 http://www.shef.ac.uk/eee/research/iel/research/face
[18] MIT Center for Biological and Computational Learning Face Database.

http://cbcl.mit.edu/software-datasets/FaceData2.html

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

