
 

 

 
Abstract—Numerous attempts have been made to devise 

systems that make the work of a visually impaired person easier. 
These researches have focused on a number of issues such as path 
finding, obstruction detection, face recognition, sign recognition, 
to name a few. The aim of this paper is to outline a system, based 
on Microsoft Kinect that will provide some of these features in a 
unified manner. The system is based on a number of open source 
tools such as: OpenCV, OpenKinect, Tesseract and Espeak. 
Features that have been incorporated building this aiding tool are 
object detection and recognition, face detection and recognition, 
object location determination, optical character recognition and 
audio feedback. One of the key components of this research is to 
ensure considerable amount of accuracy and at the same time be 
extremely efficient in terms of hardware resource required. Since 
the system is an aggregation of multiple components, their 
accuracies are measured independently from online and offline 
point of view (where applicable). The best component (face 
recognition) showed an accuracy of 90%. The weakest component 
(text recognition) yielded an accuracy of 65%. The proposed 
system is able to detect and recognize face/text/chair in a frame 
within 2.25 seconds. 
 

Index Terms--Navigational aid; Visual impairment; Human 
computer interaction (HCI); 3D camera; Kinect.   
 

I. INTRODUCTION 

The proposed work here is motivated by the need of a 
navigational aid system for blind and visually impaired people. 
In spite of the success of computer vision technology in several 
other fields (such as robot navigation, surveillance, and user 
interface), very few computer vision systems and algorithms 
are currently employed to aid visually impaired people. 
However, computer vision and mobile computing are powerful 
tools with great potential to enable a range of assistive 
technologies for the growing population of blind and visually 
impaired. Recent technology developments in computer vision, 
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digital cameras, and portable computers make it possible to 
develop practical computer vision-based algorithms to help 
visually impaired to independently explore unfamiliar 
environments and improve the quality of their daily life. 

Visual information is the backbone behind any navigational 
task. Visually impaired people are on darkest side of advantage 
as they do not have appropriate information of the surrounded 
environment. So far, the most highly used helpful medium by 
these people are cane and guide dog. In this context, we propose 
a computer vision based system that will not only guide its 
visually impaired user through providing information about the 
obstacles around him/her but also inform the user about the 
environment around him/her by recognizing objects and 
determining their location. 

Object detection and recognition has gained a lot of 
popularity lately. With increasing computational performance, 
it has become easier to ensure better accuracy. Although a 
number of researchers have proposed various useful 
approaches to object, face and text detection [1-11], work 
related to detecting an object and then determining its location 
in a 3D environment is scarce. Moreover, the primary input 
device used in our system, Microsoft Kinect, is relatively new 
and has yet to receive the attention it deserves. 

Object detection [1-4] is usually heavily concerned about 
detecting objects with accuracy being the most important factor 
of the system performance. Sliding window, being a very 
primitive technique, made most of the object detection 
algorithm implementation very slow. Most of the approaches 
defined in the above mentioned works used such technique and 
their performance bottleneck was the sliding window algorithm 
itself. These methods basically suffered from repeated cropping 
and resizing to detect objects of different sizes and orientations, 
hence they became very slow. However, method proposed by 
Viola & Jones [5] overcame shortcomings of these systems. 
The main strength of this algorithm was that the classifier 
cascade used could be resized itself to match the size of the 
sliding window in every iteration. That saved a lot of 
computation and could eventually result in faster performance. 
Moreover, the authors improved the efficiency of objected 
detection by including integral image and AdaBoost along with 
the cascading classifiers. 

Several methods on shape based recognition can be found in 
the work of Sclaroff and Pentland in [6]. They suggested an 
eigenvector or modal matching based approaches [7-9]. In this 
approach, sample points in the image were casted into a finite 
element spring-mass model and correspondences are found by 
comparing modes of vibration. There existed several 
approaches to recognize shape which were based on spatial 
configuration. Along with spatial configuration of the points, 
gray-level information was also used to get bunch of 
distinguished key points. 
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Eigenface method for face recognition [10] identifies faces 
faster which makes it more suitable for real time applications. 
The fundamental steps of the approach involve finding the face, 
extracting it from the image, projecting it onto the “face space” 
or more technically the space defined by the “Eigenfaces”. 
More importantly, the method described in this paper has the 
ability to learn new faces in an unsupervised manner. This is in 
fact a critical requirement in our application. 

Text recognition problem in general has reached a state where 
texts of known fonts scanned in the correct orientation can yield 
almost accuracy of complete perfection. However, in our case, 
both fonts and the orientation are unknown, and every image is 
bound to have noise along with texts that we intend to extract. 
This is where the approach of Tesseract [11] comes in. It was 
first designed by HP Labs and was later developed by Google. 
The approach performs a series of preprocessing actions on the 
image before executing the OCR step. Unlike other OCR 
techniques, this approach is tolerant of varying orientations, 
and given that the system has been trained with a few serif and 
sans-serif font, it can handle virtually any non-cursive font 
texts. 

II.   METHODOLOGY 

Our system has been designed as a stack of components, each 
capable of working independently to carry out their 
corresponding task. Figure 1 is a pictorial representation of the 
architecture: 

 

 
Figure 1. Components and architecture of our system. 

 
 These components are discussed in following sections.  

 
2.1 Data Acquisition 

 
Kinect being a proprietary technology does not provide 

unrestricted access to its hardware. However, there is array of 
device driver to choose from. We chose an open source 
(OpenKinect [12]) driver to get the maximum insight into how 
this device works. With some driver interaction and little 
concurrency techniques, we were able to prepare the 
framework outlined above where each layer worked almost 
independently of each other but in a coherent fashion. To be 
able to adapt to various hardware without overwhelming the 
underlying system, we used an event driven mechanism. 
Instead of putting a pressure on the system to deliver frames of 
data as fast as possible, each component would run 

independently and react to events that would occur throughout 
the system. The frame-buffer component’s sole responsibility 
was to always keep a frame of data at hand and always keep it 
up to date. Any other layer requesting a frame of data would 
immediately get that frame in hand, instead of forcing the frame 
buffer component to retrieve a new frame every time it was 
asked for one. A sample of the frame available from Microsoft 
Kinect is given in Figure 2. 

 

 
Figure 2. Two types of frames available from the frame buffer. 
 
2.2  Object Classification 

 
Frames of data collected from the frame buffer are passed 

through a few cascades of object recognizer. Each of these 
cascades is trained to recognize different types of objects in 
general. The training phase involved the use of standard high 
definition video camera. The video was then turned into a 
sequence of images in which a subset was picked out and 
marked entirely by hand the locations of various objects in the 
scene. After a phase of Haar-training [13], the cascades were 
ready. Our initial attempt included two cascades: for chairs and 
faces. 

 The cascades, being independent of each other, give the 
advantage of modularity and the possibility of easily extending 
the system to support even more objects in the future. During 
the detection of the objects, the classifier module tries to mark 
regions of interest on the image and tag them with the names of 
possible class of objects found in those regions. The depth 
frame, as received from the frame-buffer at that point, is also 
marked with appropriate tags so that the next step, where more 
detailed information is determined can use those data quickly to 
find the regions of interest and their properties. In Figure 3, one 
frame containing a human face detected correctly is depicted.  

 

 
Figure 3. Depth frame (Left: raw; Right: regions of interests 

marked). 
 
 Since we know which cascade was responsible for the 

detection and marking of each regions of interest, it is easy to 
classify those regions as either objects or faces. Furthermore, 
two specific calculations are performed within this same 
component as they are common to every region of interest. 
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They are distance and angles of the region of interests from the 
geometric center of the point of view. 

 Every detected object in the system is annotated with a tuple 
of two values: the approximate distance between the object and 
the sensor and the angle the object makes with the z-axis of the 
sensor. These values are calculated using the positional 
information provided by the object detector and the depth data 
obtained from the Kinect. Now, the challenge is to get the 
correct distance of the located object. We cannot just depend on 
the exact pixel coordinate of the detected object location to find 
out the distance. Kinect usually measures the distance using its 
infrared camera. Using this camera for each and every pixel 
located in the 2D image provides the distance measure in a 
specified unit. Now, this may be a case that for some pixels 
which fail to extract the distance value due to some 
environmental problem and provide a built in zero value in 
those pixels. Therefore, for the accurate extraction of the 
distance value, we have followed an algorithm which will not 
be affected by the environmental problem that may lead to an 
invalid distance measure. The main idea of the algorithm is to 
take chunk of area of pixels dynamically around the detected 
object and find out the median of distances. The algorithms are 
stated below. 
 
2.2.1  Determining Distance 

 
Median Finding Algorithm 
One  of  the  most  naive  way  of   finding  the  median  of  a 

collection of integers is the following algorithm: 
 
1	
2	
3	
4	
5	
6	

def	median(arr):	
			arr.sort()	
			if	len(arr)	%	2	==	0:	
						return	(arr[len(a)/2‐1]	+	arr[len(a)/2])/2	
			else:	
						return	arr[len(a)/2]	

 
This algorithm runs on a time complexity of O(n log n), due to 
the sort step of sorting the array. However, as the values of the 
array elements are in the range [0, 255], we can simply take 
advantage of a variation of the counting sort algorithm: 

 
1	
2	
3	
4	
5	
6	
7	
8	
9	

def	median(arr):	
			counts	=	[0]	*	256	
			for	v	in	arr:	
						++counts[v]	
			tmp	=	0	
			for	I,	v	in	enumerate(counts):	
						tmp	+=	v	
						if	tmp	>=	len(arr)/2:	
									return	v	

 
 
This algorithm runs on a time complexity of O(n) which is 

slightly faster than the traditional approach. 
 
 

 
 

2.2.2  Determining Angular Displacement 
 

The object detector is capable of providing coordinates in 
terms of pixels, considering the center of the image to be the 
origin.  

These coordinates in pixels were then converted to absolute 
distance in meters using a linear scaling followed by the use of 
Pythagoras formula. The coefficients of the linear scaling 
formula were determined experimentally: The long wooden 
stick, 1 meter in length was placed 3 meters away from the 
camera. The number of pixel it covered in the image was 
measured. The coefficients were then computed from the 
available information. This process was repeated by keeping 
the stick at 4, 5 and 6 meters distances to ensure that the linear 
scaling was effective enough and that such subtle change in the 
distance did not have any significant effect on the accuracy of 
the scaling process. This gave us the distance of the object on 
the xy-plane. 

The sensor provides depth information in a non-standard unit. 
According to its specification, Kinect is capable of determining 
distance ranging between 2 and 7 meters. The depth value, as 
provided by the device drivers, ranges between 0 and 255.  

The distance was calculated by multiplying a constant factor 
with the depth value provided by the driver. The constant factor 
was initially set to 0.027 which maps a value of 0 to 2 meters 
and a value of 256 to 7 meters. Although this gave pretty close 
results for most cases, it was later adjusted a little bit to counter 
the inaccuracy of the device itself. The final value of the 
constant factor was determined through trial and error. 

With these data combined, the angle between the object and 
the z-axis was computed by finding cos inverse of the ratio of 
the two distances: the absolute distance and the distance 
between the origin and the projection of the object on xy-plane. 

 
2.2.3  Chair detection 
 

 A Logitech HD Camera has been used to take video shoot of 
the concerned object in various environments. The reason 
behind taking high definition video shoot is to capture 
maximum details of an object in real environment.  

For all type of objects, we tracked them in different shape and 
environment and took 360 degree video shoot each time for one 
minute. As our system was tested in our university campus, our 
prime focus was to shoot video of different backgrounds 
(negative samples) and store into our system. After that, all 
those videos were separated into thousands of frames. After this 
stage, we successfully gathered huge number of images of 
different objects from various angles in different scenarios. 
 For training, each object had to be identified and marked 
manually in the images. Out of the thousands of images, we 
took a large sample of few hundreds and marked them 
manually. For convenience, a small tool was created that would 
show each image in sequence and took the markings using a 
GUI and then stored in a description file. Some sample images 
are given in Figure 4. 
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Figure 4. Marked images and relevant description file output. 

 
 The training phase of the system runs for a large amount of 
time. The end result is the aforementioned cascade file which is 
then easily loaded into our system. The vector file, from which 
the cascades are trained, was inspected to see some of the 
examples of how the training system is perceiving the data. A 
few such example images are given in Figure 5. 
 

Figure 5. Images from vector file. 
 
2.2.4  Face Recognition 

 
  In face recognition, it is well known that the likelihood of 

having noise in the input is very high. In fact, noises caused by 
variation in lighting, pose etc is very common. Yet, every face 
bears some features that are quite unaffected by such variations 
and noises. For example, objects such as eyes, nose, ears and 
their relative distances. These features can be extracted quite 
easily using principle component analysis. The first obstacle of 
such a process is acquiring the images and preprocessing them. 
However, as that is not a part of our focus in this experiment, 
the set of images obtained here are already preprocessed to 
requirement. The second task of this approach in face 
recognition is to generate the eigenfaces of these images. The 
eigenfaces are a set of eigenvectors that are used to represent 
the features of the set of known faces. The approach of using 
eigenfaces for recognition was developed by Sirovich and 
Kirby (1987) [14]. The eigenfaces generation process mainly 
involves performing principal component analysis on the 
sample data. The process performed on the testing data is 
similar to the previous process but is slightly different in terms 
of what is used to normalize the data and also the eigenface 
used is the one that had already been generated in the previous 
step. The experiment was repeated several times with slight 
variation in algorithm constants especially the constant that 
defines the precision of the eigenface, that is the number of 
eigenface vectors used in those of the aforementioned steps of 
the process. 
 

 

2.2.5  Text Recognition 
 

 For text recognition, we rely on the open source tools called 
Tesseract [11]. However, the obstacle that we really have to 
overcome to ensure a good text extraction mechanism involved 
the fact that the images containing text being fed to Tesseract 
will be completely arbitrary. Tesseract is optimized to extract 
text from well format and well scanned document images. The 
system, on the other hand, will only receive images from a 
Kinect device and those images may contain text in virtually 
any form.  

During the preprocessing stage, our goal was to eliminate the 
effects of the background and noises on the image as much as 
possible. This involved applying a series of filters (sharpening, 
monochrome etc) to the image to reduce such unwanted 
elements and made the text as vivid as possible. The end result 
would be an image where the background was almost 
eliminated and the text would remain as a thin skeletal 
wireframe. Since this would work only for large texts in the 
image and that would cover basically all signboards and 
markers, the compromise was worthwhile.  

 Once the image was passed through the Tesseract, the 
recognized text was then passed through another small snippet 
of code which resolved some unexpected character issues. For 
example, it replaced all '$' signs appearing next to characters 
(other than digits) into the English character’s’. The text was 
further spell checked and common errors were fixed. This made 
the end result much more readable and hence easier for the text 
to audio engine to processes it better. In Figure 6, we provide a 
sample notice at the library processed by our system.  
 

 

 
Figure 6.Image preprocessing for text recognition. 

 
2.3  Feedback 

 
The output unit is the least complex unit of the whole system. 

It is comprised of a python program that actually works on the 
text that is supplied by our central processing unit. As we know 
earlier, the central processing unit actually uses the object 
classifiers and marks the object in the image frame. After that, 
the processing unit performs other calculations, sorts out the 
distance and location of the desired object and formulates a text 
describing the information. This text works like the input of the 
output unit. The output unit processes this text using a python 
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package named “ESpeak” [15]. “ESpeak” is a voice synthesizer. 
It converts the text to speech. Therefore, the output unit gets the 
formulated text after object detection and location 
determination from the central processing unit which then 
converts the text to speech using “ESpeak” and deliver to the 
user. 

 

III.   PERFORMANCE EVALUATION 

 
 Performance of the proposed system is evaluated from two 

view points: offline performance and online performance 
(real-time performance). 

 
3.1  Offline Performance Evaluation 
 
3.1.1  Offline Face Detection Accuracy 

 
 The performance analysis of offline face detection was 

evaluated using three different datasets: PIE [16], UMIST [17] 
and CBCL [18]. Each dataset contains around a thousand facial 
images, cropped to facial region only and there are slight 
variations in angle of image acquiring in those images. The 
following chart (Figure 7) shows the number of true positives, 
false negatives and false positives for each dataset. The total 
height represents the actual size of the each dataset. 
 

 
Figure 7.  Performance with various datasets. 

 
3.1.2  Offline Distance & Angle Calculation Accuracy  
 

The distance measured used data obtained using the depth 
map of Kinect. Since the distance calculation formula was 
designed to account for trigonometric approximations, the 
expected error of the formula was supposed to be constant. 
However, due to the error inherent in the sensor itself and its 
depth measuring capabilities, there was an increase in error 
with increase in distance. Moreover, since the sensor was 
designed to work only within a short range of distance, 
distances calculated for objects within the first 2 meters and the 
distance beyond 9 meters were completely invalid and ignored. 
Figure 8 shows the average error percentages with various 
distances. In our experiment, the values for Mean & Median  
are the same. As such, the lines plotted for Mean & Median 
overlap each other. 

 
Figure 8.  Error in distance calculation using data from depth 

map (Lower is better). 
 
3.1.3  Offline Face Recognition Accuracy 
 

 Face recognition was performed using a small number of 
subjects. For each subject, around 50 images were captured. 
The number of images used to train was varied and the 
performance was measured. Figure 9 shows the face 
recognition accuracies with various  training data sizes. 
 

 
Figure 9. Face recognition accuracy with varying size of 

training data. 
 
3.2  Online or Real-time Performance Evaluation 
 

Since the system performed fairly well in offline tests, we 
used the same algorithms and approaches in our real-time use 
with slight optimizations. The performance measure then all 
came down to how quickly it processed every frame. In table 1, 
the time required for each major component processing for in a 
frame is provided. 
 

Table 1.Execution time for each component. 
Configuration Speed (Average)

All components 2.25 seconds per frame

Face recognition 1.7 seconds per frame

Text recognition 0.8 seconds per frame

Face and text recognition 1.9 seconds per frame

Object detection 2 seconds per frame

Face recognition and object detection 2.2 seconds per frame
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IV CONCLUSION 

In conclusion, we come to understand that it is possible to 
build a system that can come in aid to those who really need it 
with the available technologies all around us. People with 
visual impairment, those who are deprived of this very 
important sensory system, always tend to lead a difficult life. 
However, with a system such as this, their life can only get 
better. Our experiment shows that a complex system such as 
this can be built from a number of existing, stable components. 
At the same time, we can make it run efficiently using limited 
resources.  

In our experiment, the whole system had been built upon 
several very simple principles. It was structured in a modular 
way for greater extensibility. Each chosen component was 
lightweight and open source for better availability, or was 
implemented customized to suit our needs. It was independent 
which reduced the number of articulation points of failure. 
Overall, the whole system was just one simple pipeline of 
processing techniques that started from two simple frames of 
data (rgb and depth) and ended at the generation of audio 
feedback. 

At the end of the experiment, although we had a stable and 
efficient system, there was a considerable number of areas 
where it could be improved even more especially in terms of 
accuracy of some of the components. For example, object 
detection could be improved by employing a better training 
dataset and spending much more time in the training phase, 
tweaking the system to reach optimal performance quality. 
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