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Abstract—An increasing number of cloud services has been
emerging in the recent years. Amazon, gogrid, rackspace, to
name a few, are several most popular cloud service providers.
Users need a tool to discover the available options and to suggest
the most appropriate alternatives. CB-Cloudle, as a cloud
service search engine, could satisfy such users’ need. In this
work, a centroid-based search engine with the help of a k-means
clustering algorithm is designed and developed as a software
platform specialised in searching for cloud services, aiming to
improve the search effectiveness and efficiency. The centroid-
based approaches were applied to search the cloud services
with instant response. The k-means clustering algorithm was
introduced to discover the groups of similar cloud service
entries using a new similarity matrix to calculate the defined
distance between cloud service entries. The similarity matrix
consists of a non-numeric similarity formula and a numeric
similarity formula.

Index Terms—cloud service, search engine, clustering, cen-
troid, similarity matrix.

I. INTRODUCTION

CLOUD service, also known as cloud computing, is
“a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and
released with minimal management effort or service provider
interaction”[1]. Cloud services consist of cloud computing
services (e.g., scalable virtual servers), cloud network ser-
vices (e.g., domain name systems), cloud storage services
(e.g., amazon S3), etc.. As a result, cloud service is playing
an increasingly important role in such areas as allowing
large enterprises to realise enhanced manageability but less
maintenance and rapid adjustment of resources, and greatly
reducing the cost and risk for startup companies. Instagram
is a good example for this. This generates a great deal of
interests among popular cloud service providers — amazon,
rackspace, gogrid, to name a few — in developing and
improving their cloud services. Such increasingly popularity
gives rise to provide cloud service users with an easy-to-use
cloud service search engine to discover the available cloud
services.

General web search engines (e.g., Google, Bing, Baidu)
crawl, index and rank different types of web information such
as documents, images, videos and so on. The search results
are listed based on certain ranking algorithm with the most
related ones present on the top of the list. A well-performed
web search engine is capable of retrieving the closely relevant
information over the whole internet in an efficient and
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effective way. For instance, Google, as a well known general
web search engine, has done a great job in improving both
the effectiveness of information retrieval and the efficiency of
the query performance. Along with the increasing popularity
of the social networks, most of the recent research about
general web search engine has been relying on integrating
the social connectivity factors into the search results, which is
hence named as social search. For example, a semantic social
search engine utilising social networks Google+, Twitter
and Facebook was described in detail by Zhang et al. [2];
Akiyama et al. [3] took the advantages of both hyperlinks
and social links and implemented a parallel library based on
Open MPI1 to achieve the high system performance.

However, general search engines only provide users with
providers’ links. If a user wants to discover the available
options, view the details and even compare the alternatives
from different providers, he needs to browse each providers’
web pages, analyse the provided cloud service products and
compare their prices one by one. CB-Cloudle, however, helps
to gather all the specified cloud service information from
many different providers and aims to suggest the most appro-
priate alternatives according to users’ requirements. Users,
thus, could view all the details of relevant cloud services,
compare items and prices, and then make the decision based
on all the necessary information.

Currently, most of the popular cloud service providers have
been focusing their work on the development of infrastruc-
tures and web tools for utilising, deploying and managing the
computational resources. CB-Cloudle is a software system
designed specifically to search cloud services provided by the
cloud service providers rather than searching the whole web
information. Kang and Sim [4] first proposed to build a cloud
service search engine and was powered by a cloud ontology.
By applying the concepts and principles of ontology, they
devised the similarity reasoning methods to find the most
related or appropriate cloud services — of similar price or
instance storage capacity — with more possibilities. Three
reasoning methods are supported in [5]: similarity reasoning
to differentiate the concepts of cloud services; compatibility
reasoning to compare two versions of the same service; and
numeric reasoning to calculate the distance between numeric
concepts. However, challenges still exist since concepts and
categories of cloud services are expanding over time and the
corresponding ontology needs to be updated periodically.

This work aims to develop a completely new search
engine CB-Cloudle to search and rank the cloud services
based on the centroids and k-means clustering algorithm.
Centroid are a measure of central tendency of a set of
cloud service entries. A service entry is a specification of

1A High Performance Message Passing Library(http://www.open-
mpi.org/)
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cloud service from cloud service providers. Results show
that CB-Cloudle presents effective search results and efficient
query performance. Therefore, it is of great potential that
by introducing the centroid-based search approach and the
k-means clustering algorithm, the query and the search
performance will be significantly improved.

II. A CENTROID-BASED CLOUD SEARCH ENGINE

In the previous design of Cloudle by Sim’s research
laboratory [4][5][6][7][8][9][10][11], the concepts of ontol-
ogy were used to reason the similarity of cloud services.
This work, instead, redesigns Cloudle from the perspective
of locating the cloud service entries’ centroids combined
with the use of k-means clustering algorithm. This method
simplifies the query process by only doing calculations of
each entry within the most similar cluster, rather than all
the cloud service entries. CB-Cloudle’s general workflow
consists of the following 5 steps:

1) Data preparation: There are several ways for CB-
Cloudle to gather data. One straight forward method is to
collect data manually, owing to the fact that cloud service
data are not very huge compared with the web information
in the internet. However, the information of cloud services
such as prices change frequently since they are type of
virtual resource products. Therefore, manually collected data
would not always be up to date. A more efficient way is to
crawl automatically and periodically from the cloud service
providers;

2) CB-Cloudle initialisation: After all the crawlers have
assembled the data, CB-Cloudle then normalise the data
by converting them to cloud service entries and filling the
missing data with default, most frequent or similar values.
For the sake of improving the computational efficiency, data
can be preloaded into the memory when they are not so large;

3) Data clustering and centroid generating: Data clustering
is the process of grouping similar data (in the sense of cloud
service features) into the same groups. CB-Cloudle defines
that each cluster (or group) has a centroid, which is generated
from entries in the cluster;

4) Query processing: When a user enters a query to look
for some suitable cloud services, similarity calculation occurs
between the query and each entry whose cluster centroid is
the most similar to the query;

5) Results ranking: Query requests are responded instantly
and effectively using the centroid-based Cloudle and the most
relevant cloud services with its details will be presented on
the top of the result list according to the ranking algorithm.

III. DATA PREPARATION AND CB-CLOUDLE
INITIALISATION

CB-Cloudle search engine includes cloud computing ser-
vice (e.g., amazon EC2) search module, cloud storage service
(e.g., amazon S3) search module and so on. An example
is given in this section to demonstrate the initialisation of
the cloud computing service search module. Fig. 1 shows
an overview of the workflow on how CB-Cloudle crawls
the cloud service providers and clusters the data. Amazon,
rackspace and gogrid are three big and popular cloud com-
puting service providers used in this example. After all the
cloud service entries from these three popular cloud service
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Fig. 1. A general workflow of initialisation

TABLE I
AN EXAMPLE OF CLOUD COMPUTING SERVICE

PROVIDER gogrid

OS TYPE windows

OS NAME windows server

OS VERSION 2008

SQL SUPPORT 0

VCPU 24

RAM 24

INSTANCE STORAGE 1200

SSD STORAGE 0

PRICE HOURLY 1.44

providers having been crawled, similar entries are grouped
into the same cluster for subsequent processing. More details
of steps are given as below:

Step 1: Data are needed when CB-Cloudle is deployed
on production for the first time. Multiple crawling agents
are used to crawl the cloud computing service entries in
parallel, with data gathered and normalised automatically and
periodically. In this example, 500 cloud computing service
entries are collected from the three cloud service providers
— amazon, rackspace and gogrid. Fig. 2 gives a partial view
of the entry set after the normalisation of the crawling data.

Step 2: The normalised data set obtained in step 1 is
inserted into a database and prepare for the clustering al-
gorithm. Often the case, cloud service providers updates
the price of cloud services regularly and even introduce
some new services. The crawling agents could crawl them
periodically to fetch the latest data. The database system used
to store the collected data makes the updates easy to achieve.
Then, the clustering algorithm runs again to regroup the data.

IV. CLUSTERING CLOUD SERVICE ENTRIES

Each entry e is a specification of service from cloud
service providers. Taking cloud computing service as an
example, Table I shows a windows 2008 virtual server entry
provided by gogrid with 24 vCPUs, 24G RAM and 1200G
instance storage which costs $1.44 for one hours usage.
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Fig. 2. Partial view of the cloud computing service entries

With many cloud service entries, CB-Cloudle uses the k-
means clustering algorithm proposed by Hartigan and Wong
[12] (see Algorithm 1) to automatically groups them into
K clusters in such a way that entries in the same cluster are
more similar to each other than to those in the other clusters.
The value of K depends on the total number of entries CB-
Cloudle has and the number of results presented per page. In
this example, with about 500 entries and 25 results presented
per page, K = 500

25 ×
1
2 = 10 is recommended. The reason K

is divided by 2 is to increase the possible number of entries
in each cluster to be more than 25. The level of similarity
between entries SIM(e, c) (see Algorithm 2) is divided
into two parts: numeric features’ similarity and non-numeric
features’ similarity. minjSIM(e, cj |j = 1, 2, . . . , n) is to
find the most similar centroid c to e, and then label e as in
the same cluster of c.

Algorithm 1 k-means Clustering Algorithm
Input: E = {e1, e2, . . . , en} and K . E is the set of

entries to be clustered and K is the number of clusters
Output: C = {c1, c2, . . . , cn} and L = {l(ei)|i =

1, 2, . . . , n} . C is the set of cluster centroids and L
is set of cluster labels of E

1: function K-MEANS-CLUSTER(E, K)
2: for all ci ∈ C do
3: InitializeCentroidRandomly(ci)
4: end for
5: repeat
6: change = false
7: for i = 1 to n do
8: k̂= minjSIM(ei, cj |j = 1, 2, . . . , n)
9: if l(ei) 6= k̂ then

10: l(ei) = k̂
11: change = true
12: end if
13: end for
14: for all ci ∈ C do
15: UpdateCentroid(ci)
16: end for
17: until change = false
18: return L,C
19: end function

Fig. 3 shows the corresponding diagram of the k-
means clustering algorithm presented in Algorithm 1. At
the beginning of the clustering process, entries A, B,
C, D and E are scattered around. Then the method of
InitializeCentroidRandomly generates two random en-
tries as the initial centroids. After computing based on the
similarity matrix, entries A and B are found to belong to

Algorithm 2 Similarity Algorithm
Input: An entry e with features Fe = {Fnon

e , Fnum
e }

and a centroid c with features Fc =
{Fnon

c , Fnum
c } . non-numeric features

of entry Fnon
e = {fnone 1, f

non
e 2, . . . , f

non
e i}(0 ≤

i ≤ n), numeric features of entry Fnum
e =

{fnume 1, f
num
e 2, . . . , f

num
e j}(0 ≤ j ≤ n),

non-numeric features of centroid Fnon
c =

{fnonc 1, f
non
c 2, . . . , f

non
c i}(0 ≤ i ≤ n),

numeric features of centroid Fnum
c =

{fnumc 1, f
num
c 2, . . . , f

num
c j}(0 ≤ j ≤ n)

Output: the similarity score between the entry e and cen-
troid c

1: function SIM(e, c)
2: i = numberOfNonNumericFeatures
3: j = numberOfNumericFeatures
4: for p = 1 to i do
5: snon = Simnon(fnone p, f

non
c p)

6: end for
7: for q = 1 to j do
8: snum = Simnum(fnume q, f

num
c q)

9: end for
10: return 0.5 ∗ j/(i+ j) ∗ snum + (i/i+ j) ∗ snon
11: end function
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Fig. 3. k-means clustering algorithm diagram
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one group and entries C, D and E belong to another. At
this point, the method of UpdateCentroid obtains two new
cluster centroids of these two groups (see Section V) and then
the similarity computing is carried out again (see Section VI).
In this case, entry C is found to be more similar with the
former group and thus is regrouped with entries A and B.
The process is repeated until both of the cluster centroids do
not change(in some sense).

V. GENERATING CENTROIDS

With data set E = {e1, e2, . . . , en} crawled and preset
from cloud service providers, CB-Cloudle randomly places
K cluster centroids C = {c1, c2, . . . , cn}. An intuitive
way to define the centroid of a finite set of points X =
{x1, x2, . . . , xn} is the arithmetic mean position of all the
points in the set as follows:

C =
x1 + x2 + . . .+ xn

n
.

An entry e of the cloud service is not the same as a point
x, but a collection of information. An entry may contain both
numeric features and non-numeric features. As shown in Ta-
ble I , PROVIDER, OS TYPE, OS NAME, OS VERSION
are non-numeric features, and the rest — SQL SUPPORT,
VCPU, RAM, INSTANCE STORAGE, SSD STORAGE
and PRICE HOURLY — are numeric features. The centroids
of numeric features are the mean of each corresponding
value. Non-numeric features belong to the type of nominal.
In this case, we use the most frequent nominal value as the
centroid.

VI. NUMERIC AND NON-NUMERIC SIMILARITY SCORES

Based on these cluster centroids, the similarity matrix is
designed to increase the chance of locating relevant cloud
services to the cluster with centroid. The similarity score
of each pair of the entry and the centroid is divided into
two parts: the numeric similarity score and the non-numeric
score.

A. Numeric score

There are many ways to determine the degree of similarity
between two numeric set of X = {xi|i = 1, 2, . . . , n}
and Y = {yi|i = 1, 2, . . . , n}. One common practice is
to measure the Euclidean distance between the two sets
according to the equation as follows:

d =

√√√√ n∑
i=1

(xi − yi)2.

However, the Euclidean distance gives poor results when
the data are not well normalised. For example, let X = {
SQL SUPPORT = 0, INSTANCE STORAGE=1 } and Y =
{ SQL SUPPORT = 1, INSTANCE STORAGE=1000 }, the
euclidean distance deuclidean between X and Y will be as
follows:

deuclidean =
√

(1000− 1)2 + (1− 0)2 ≈
√

(1000− 1)2.

The SQL SUPPORT feature in X contributes a
very small part to deuclidean compared with the IN-
STANCE STORAGE feature. However in reality, whether

to support SQL or not may have equal importance as the
size of instance storage for a user.

A more suitable and sophisticate way to determine the
similarity is to use a Pearson correlation coefficient r. The
correlation coefficient is a measure of how well two sets of
data fit on a straight line. Let X = {xi|i = 1, 2, . . . , n} and
Y = {yi|i = 1, 2, . . . , n}. X̄ and Ȳ are the mean of X and
Y respectively. So the formula rX,Y is as follows:

rX,Y =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2 ×
∑n

i=1(Yi − Ȳ )2
.

The value of rX,Y is in the range of [-1, 1]. To use it
as the similarity score between two numeric sets, it can be
calculated as follows:

Simnum
X,Y = 1− rX,Y .

The value of Simnum
X,Y is thus in the range of [0, 2] and

the smaller of Simnum
X,Y , the more similarity X and Y

have. For example, let X = {0, 24, 24, 1200, 0, 1.44} and
Y = {1, 24, 64, 0, 100, 2.02}, Simnum

X,Y will be around 1.374,
which indicates that this two entries are highly different.

B. Non-numeric score

It is more difficult to quantify the similarity of the non-
numeric features than that of the numeric features, be-
cause features are sometimes hierarchical and sometimes
not. Most of the recent research has been focusing on
the semantic similarity among a set of documents or list
of items, where the idea of distance between non-numeric
terms is based on the likeliness of their meaning or se-
mantic content. Therefore, it can be achieved by defining
an ontology — a metric for terms arranged as nodes in a
directed acyclic graph. However, given the situation where
entries of cloud computing service are not as complicated as
document data, the simple intersection of sets can be used
to reflect the similarity of two entries. For instance, given
two non-numeric sets X = {amazon, linux, centos, 5.7}
and Y = {amazon, linux, ubuntu, 10.04}, features both
in X and Y is X ∩ Y = {amazon, linux} and
count(X ∩ Y ) = 2. All the feature values in X and Y is
X ∪ Y = {amazon, linux, centos, ubuntu, 5.7, 10.04} and
count(X ∪ Y ) = 6. Then the similarity score Simnon

X,Y is as
follows:

Simnon
X,Y = 1− count(X ∩ Y )

count(X ∪ Y )
= 1− 2

6
=

2

3
.

The value of Simnon
X,Y is in the range of [0,1]. The smaller

Simnon
X,Y is, the more similar X and Y are.

C. Aggregating numeric and non-numeric scores

To take both measures Simnum
X,Y and Simnon

X,Y into con-
sideration, a generalised similarity matrix can be defined by
taking the weighted average of both measure methods as
follows:

SimX,Y =
1

2
λSimnum

X,Y + (1− λ)Simnon
X,Y ,
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Fig. 4. CB-Cloudle’s homepage

where λ ∈ [0, 1]. As shown in Table I, the number of
numeric features equals 6 and the number of non-numeric
features is equal to 4. Consequently, λ = 3

5 is highly
recommended. The rationale for dividing Simnum

X,Y by two
is because the range of it is from 0 to 2 and equal weight
should be put on each feature of an entry.

VII. PROOF-OF-CONCEPT EXAMPLE

This section gives an example to present how the users or
customers use CB-Cloudle as a cloud service search engine.
It only take several simple steps to use a search engine like
Google, so does it with CB-Cloudle: the user enters the query
first and then the search engine gives the final results based
on the ranking algorithms in the way that the most relevant
results present on the top. More details of steps are given as
below:

Step 1: CB-Cloudle realises the search for cloud comput-
ing service, cloud storage service, cloud network service, etc.
and the home page of CB-Cloudle is shown in Fig. 4. An
example of searching for cloud computing service (a virtual
machine) is used to demonstrate how to use CB-Cloudle;

Step 2: CB-Cloudle provides two approaches to search a
cloud computing service. The first and easier way is to use
CB-Cloudle-providing search templates. Optional choices are
given for users to select. Fig. 5 shows a part of the template
for searching cloud computing service. For instance, service
providers can be filtered and by checking the checkbox of
‘amazon’, virtual machines provided by amazon may be
listed in priority.

Alternatively, the user requirements can be transformed
into the CB-Cloudle-defined formula and input as the query.
Formula 1 follows the following rule with key-value pairs
connected by the symbol of &&.

key1 = value1[ && key2 = value2 && . . .] (1)

As shown in Table I , keys can be PROVIDER with corre-
sponding value of amazon, gogrid, or rackspace; OS TYPE
can be linux or windows; OS NAME can be RHEL (red
hat enterprise linux) , windows, centos, debian or ubuntu
server version; VCPU, RAM, INSTANCE STORAGE,
SSD STORAGE can be any positive integer with the default
unit of Gigabytes; PRICE HOURLY shows how much it
costs in dollars per hour.

TABLE II
KEY-VALUE PAIRS OF CLOUD-DEFINED FORMULA

key value

PROVIDER [amazon, gogrid, rackspace]

OS TYPE [linux, windows]

OS NAME [RHEL, windows server,
centos, debian, ubuntu]

SQL SUPPORT [True, False]

VCPU Integer

RAM Integer

INSTANCE STORAGE Integer

SSD STORAGE Integer

PRICE HOURLY Float

A B

C

D
E

A B

C

D
E

A B

C

D
E

(a) (b) (c)

Fig. 6. Ranking process of query results (red point are the requirement
entry; blue points are the centroids; A, B, C, D, E are the cloud service
entries.)

The formula “PROVIDER=amazon && RAM = 2 &&
SQL SUPPORT=True && Price HOURLY=1”, for exam-
ple, can be used when a user wants to search virtual machines
provided by amazon with sql support but costs no more than
1 dollar per hour.

Step 3: After receiving the user’s query in either approach,
the query string of user requirements is converted into the
format of an entry. The requirement entry is then compared
one by one with the cluster centroids obtained in the data
normalisation step based on the similarity matrix as shown
in Fig. 6 , and a cluster with entries that are most similar
with the requirement entry is decided. In order to rank all the
entries in this cluster, each entry is then compared with the
requirement entry using the similarity matrix. CB-Cloudle
presents a final list with the most related results present on
the top as shown in Fig. 7 .

VIII. CONCLUSION AND FUTURE WORK

This work presents CB-Cloudle: a new search engine
specifically designed for searching cloud services. It consists
of a newly designed web interface and uses a new measure to
define the similarity matrix. In CB-Cloudle, centroids and the
k-means clustering algorithm are adopted to classify the data
to different group. This leads to more effective and efficient
cloud service search which can potentially contribute to: 1)
greater improvement in the effectiveness of search results and
2) significant increase in the efficiency of query performance.
By introducing centroid-based approaches and the k-means
clustering algorithm, CB-Cloudle significantly reduces the
amount of work and the processing time, which is of great
importance especially when the data set is dramatically huge.

The work present here is only the first step to demonstrate
that the centroid-based method and clustering algorithm can
potentially to be used to improve the performance of cloud
search engines. In the future, the idea of a distributed cloud
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Fig. 5. CB-Cloudle-providing cloud computing service search template

Fig. 7. Cloud computing service search results overview

service search engine architecture will be explored. This
may include automated data crawlers, a distributed query
processor that helps to split the query formula and merge
the query results efficiently, and an automated testbed to
improve the effectiveness of the search results. All these aim
to achieve a higher searching capability of searching more
kinds of cloud services and crawling more service providers.
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