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Abstract—Previous work demonstrated that by adopting a 

semi-recursive contract net protocol (SR-CNP) equipped with 

service capability tables (SCTs) for dynamically selecting 

recorded cloud agents, their services and states, Cloud agents 

can effectively integrate disparate Cloud resources into a 

unified Cloud service. However, the choice of SCT may result 

in large overheads with Cloud agents exchanging a 

considerably large number of messages to achieve high success 

rates in service composition. In this paper, a comprehensive set 

of mathematical analyses of message exchanges by Cloud agents 

(Broker agents, Consumer agents and Service provider agents) 

in cloud service composition are presented. Experiments were 

performed where cloud agents adopt Particle Swarm 

Optimization for evolving the best service composition 

outcomes with the aim of minimizing the average number of 

messages propagated while successfully composing cloud 

services using SR-CNP and SCTs. Empirical results obtained 

from an agent-based testbed reveal that agents successfully 

minimized the number of messages exchanged during cloud 

service composition. 

 

Index Terms—agent based cloud service composition, 

multiagent systems, Cloud computing, contract net protocol, 

Cloud service composition. 

I. INTRODUCTION 

LOUD computing pools a set of web-accessible 

resources, provisioned under service level agreements 

and established via negotiation. Furthermore, it should be 

dynamically composed and virtualized according to 

consumers’ need on an on-demand basis [1].  

Over the past few years, Cloud service providers (e.g. 

Microsoft [2], Amazon [3], Google [4], Go Grid [5], IBM 

[6] etc.) have continued to evolve and the Cloud services 

churned out by these providers have continued to increase 

proportionately. On the other hand, the complexity of 

Consumers (e.g. App developers) requirements have also 

changed over time. In order to satisfy these complex 

consumer requests as they emerge, there is need for a 

dynamic and automated service composition that can support 

everything as-a-service model [7]. Hence, cloud service 

composition in single or multi-cloud environments must 

support the coordination of independent and self-interested 

parties, efficient re-configuration of existent and permanent 

service compositions since consumer requirements can 
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change, dynamic and automated composition of distributed 

and parallel services, being able to deal with incomplete 

information about cloud participants as in a distributed 

system and service selection based on dynamic market-fees 

of cloud services[1], [8], [9].  

An agent is a computational entity that acts on behalf of 

another entity (or entities) to perform a task or achieve a 

given goal. Agent systems are self-contained software 

programs embodying domain knowledge and having ability 

to behave with a specific degree of independence to carry 

out actions needed to achieve specified goals. Agent-based 

cloud computing is concerned with the design and 

development of software agents for bolstering Cloud service 

discovery, service negotiation and service composition [7]. 

There is a body of works in intelligent Cloud computing 

that strives to make Clouds more intelligent by adopting 

intelligent agents to automate the interactions among Clouds 

and between consumers and Cloud [10]. Agents within an 

intelligent InterCloud can automatically establish Cloud 

service contracts, integrate Cloud resources, coordinate 

concurrent Cloud workflow, and schedule parallel execution 

of tasks in multiple clouds. This work focuses on designing 

and building agents that can effectively and efficiently 

integrate computing resources from multiple Clouds. 

In Agent-based cloud service composition, the real 

challenge is to assemble a single unified service dynamically 

from multiple cloud service providers [7]. Hence, it is 

imperative that Cloud service providers cooperate and 

harness each other’s service capabilities to meet the 

demands of varying consumer requests. 

Novel experiments in [7] for agent-based cloud service 

composition adopted the focused selection contract net 

protocol (FSCNP) as the agent interaction protocol and 

Service capability tables (SCTs), to record the list of Cloud 

agents, their services and current status. FSCNP is an 

extension of the contract network protocol (CNP), a 

distributed problem solving technique used for establishing 

service contracts among consumers and contractors. 

Although Service capability tables (SCTs) are quite akin 

to the idea of acquaintance networks (ANs), SCTs record 

not only the service capabilities, but also, the state of cloud 

agents; and since an agent’s state can change, SCTs are 

updated more often than ANs. In ANs, the capability tables 

may be updated only when new agents are joining the 

environment or existing agents depart the environment. 

Results from experiments in [7] show agents can self-

organize by using their own knowledge of agents listed in 

Service capability tables to successfully compose cloud 

services. However, the results also show that the success 

rates of the Cloud service composition depends on the level 

of knowledge that an agent about other agents’ service 
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capabilities. The tradeoff is that by having a higher level of 

knowledge of other agents’ capabilities, more messages are 

exchanged causing more overheads. 

The focus of this paper is on remodeling cloud agents to 

minimize message exchanges among Cloud agents. Herein, a 

Particle Swarm Optimization technique (PSO) has been 

applied to the problem formulation in order to minimize the 

average number of messages propagated whilst successfully 

composing cloud services using SR-CNP and SCTs. 

   For the purpose of concept verification, an agent based 

testbed has been utilized to generate empirical results.  The 

results so obtained, showed that the agents successfully 

minimized the number of messages exchanged during cloud 

service composition.  

The rest of the paper is organized as follows. Section II 

highlights contract net protocol for cloud service 

composition whilst Section III is entirely devoted to problem 

formulation and underlying mathematical analyses. For the 

sake of completeness, Section IV presents mathematical 

characterization of message utility for cloud composition 

agents. Brief description of the testbed is set forth in Section 

V, followed by simulation results in Section VI.  Conclusion 

and future work can be found in Section VII.  

II. CONTRACT NET PROTOCOL FOR CLOUD 

SERVICE COMPOSITION 

An agent interaction protocol is a communication pattern 

among agents with potentially different roles to attain a 

specific design objective [11]. Basically, Agent interaction 

protocols govern the exchange of a series of messages 

among agents [12]. In the contract net protocol (CNP), an 

agent assumes one of two roles, a consumer (manager or 

Client) or a contractor (Server). Hence, using CNP, an agent 

requiring cloud services or resources of other agents would 

play the role of a manager and send call-for-proposal 

messages to all other agents. Agents providing cloud 

services or resources play the role of a contractor. Contract 

agents listen to call-for-proposals, evaluate a list of call-for-

proposals as well as submit bids for contracts. Manager 

agents evaluate bids from contractor agents then select and 

award the contract to the most appropriate contractor agent 

based on its service capabilities [13]. 

The work reported in [7] devised FSCNP which differs 

from the classical CNP in that agents can assume multiple 

roles (Contractors and managers), agents can integrate 

results from multiple concurrent subcontracting interactions 

as well as being capable of recording the states of other 

agents. Theoretically, FSCNP is more efficient than CNP in 

terms of messages exchanged and from the empirical results 

in [7], agents following FSCNP that used strongly connected 

SCTs exchanged the most messages during service 

composition. This was because cloud agents following 

FSCNP select only relevant (and feasible) service providers 

(contractors) from service capability tables in an attempt to 

successfully compose cloud services.  Hence, knowing more 

feasible agents would translate into sending more messages 

(on the average) using this protocol. 

Gutierrez-Garcia and Sim in [1] proposed the Semi-

recursive contract net protocol (SR-CNP) incorporating the 

feature of service capability tables (SCTs) to focus on 

selecting only feasible agents capable of accomplishing a 

task. Again, experimental results using SR-CNP show agents 

exhibiting a good sense of self- organization and cooperation 

in composing cloud services. 

The Agent-based testbed for the experiments conducted in 

[1], [7] comprised web services (WSs), resource agents 

(RAs), service provider agents (SPAs), consumer agents 

(CAs), Broker Agents (BAs). By definition, a web service is 

a remotely accessible (preferably over the internet) software 

application or cloud resource. A web service can be viewed 

as the building block (atomic requirement) of a cloud 

service. A resource agent (RA) manages and controls access 

to a web service, i.e. a resource agent acts as a wrapper to a 

cloud service. Resource agents accept requests from its 

supervisory SPA or other sibling RAs to satisfy a service 

requirement and transmits service outputs to the requesting 

agent. RAs maintain a SCT of sibling RAs under the 

supervision of an SPA. The RA’s SCT maintains the 

capabilities of sibling RAs, their location as well as their 

states. Service provider agents manage a cloud service 

provider’s resources by managing and coordinating RAs 

under their administration.  

To carry out its functions, an SPA is equipped with two 

SCTs- one for RAs under its administration and the other for 

SPAs. The latter is used only when RAs under its 

supervision cannot handle the requirements and may need 

the assistance of other RAs under the administration of 

another SPA. Broker agents’ acts as mediators between CAs 

and SPAs, BAs provide a single virtualized service for CAs 

by composing a set of atomic requirements of the service 

from multiple SPAs. BAs maintain two SCTs, one for SPAs 

and the second for other BAs (To delegate requirement). 

Finally, Consumer agents submit consumer requests for a 

cloud service composition to BAs recorded in their SCT 

which in turn contact SPAs to compose the set of 

requirements contained in the service composition request.    

III. MATHEMATICAL ANALYSES OF MESSAGE 

EXCHANGES IN AGENT BASED CLOUD SERVICE 

COMPOSITION 

In this section, we present the mathematical analyses of 

message exchanges in agent-based cloud service 

composition for broker agent, consumer agent and service 

provider agent. We also made effort to establish the order by 

which messages exchanged by BAs, CAs and SPAs in 

service composition can be minimized (worst case analysis). 

The mathematical analyses of the aforementioned cloud 

agents are presented in the following subsections. 

A. Broker agent (BA) 

The number of messages exchanged is a critical 

performance measure in the complexity of cloud agents’ 

behavior. The number of messages sent by the Broker Agent 

is tightly coupled to the level of connectivity of the agent’s 

service capability table which, in turn should be determined 

by the perception of the agent in the environment. When a 

consumer agent submits a p-requirement request to a Broker 

agent, the broker agent in turn creates p– instances of the 

SR-CNPInitiatorBA behavior. For each instance, the BA 

with q feasible Service provider agents (SPA’s) will act 

commensurately and send only s (s is the lower integer 

bound of , where ) call-for-proposals 

messages based on the perception of its environment.  The 

BA then sends s messages (1 accept-proposal message and s-
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1 reject proposal messages). If the contracted SPAs fail, the 

failure propagates to the BA. Then the BA then sends s-1 

call-for-proposals messages to the remaining feasible SPAs 

and s-1 responses and so on. Therefore, in the worst case the 

BA sends: 

 

 

                (1)  

                                                                             

Comparing this with a case where the BA with q feasible 

SPA’s sends q call-for-proposals messages as so on, we 

propose the ratio  measuring the degree of reduction in the 

messages exchanged, 

 

            (2) 

Since,   then we can rewrite (2) as, 

 

        (3) 

 

Reducing (3) and rearranging terms, we have, 

 

         (4) 

 

Taking the limit of (4) as q tends to  and αBA tends to 0, it 

implies therefore,  

 
 

 
 

Hence, the messages exchanged by BAs in [1], [7] in the 

worst case can be reduced by . 

 

Similarly, the limit of (4) as q tends to  and αBA tends to 1 

is,  

 

 
 

Consequently, the number of messages exchanged in the 

worst case for BAs in [1], [7] and the remodeled BAs are the 

same as αBA tends to 1. 

For example, if   , a BA would 

send   

in the worst case by contracting only 9 feasible SPAs to 

satisfy a cloud service requirement as opposed to contracting 

all 100 feasible SPAs ( ), where the BA sends  
 in 

the worst case in quests to secure a cloud service 

requirement as seen in Fig. 1.  

In the event of failure from contracting SPAs, the BA, 

using its SR-CNPInitiatorBA behavior, can also subcontract 

fellow BAs in a manner similar to how they contract SPAs. 

We omitted the mathematical analysis of messages 

exchanged in the worst case because they are identical. 
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Fig. 1.  Worst case analysis of messages exchanged by a BA 

contracting 100 SPAs in its SCT. 

B. Consumer Agent (CA) 

The Consumer agent (CA) in [1],[7] make requests for 

service composition by sending messages to Broker Agents 

recorded in their Service Capability Tables (SCTs). 

Therefore, if   BAs are recorded in their SCTs then the CA 

sends  messages in quest for service composition. The re-

modelled CA will optimize the number of messages sent for 

service composition by sending a lower integer bound of αCA 

r (αCA is a value in [0, 1]) messages based on its perception 

of the service composition environment. Comparing the 

worst case scenarios of both implementations we have an 

expression  that measures the degree of reduction in 

messages exchanged: 

 

                   (5) 

Which simply becomes, 

 

                                                                            (6) 

 

Taking the limit of (6) as αCA tends to 0,  

Therefore, the messages exchanged by CAs in [1], [7] can be 

reduced by . 

 Evaluating the limit of (6) as αCA tends to 

1,   

The messages exchanged would be the same as CAs in [1], 

[7]. 

A Consumer Agent with  would 

engage 20 Broker Agents and in the worst case send 40 

messages delegating a Broker Agent to satisfy a consumer 

requirement. Whereas, A Consumer Agent at 

position , would send at worst 200 messages 

involving all 100 feasible BAs to fulfill a cloud service 

request (see Fig. 2.). 

 

C. Service Provider Agent (SPA) 

A Service Provider Agent (SPA) sends a request message to 

a feasible Resource Agent (RA) to resolve a service 

requirement.  If the RA fails, it then sub delegates another 

feasible RA to resolve the Cloud service requirement, if it 
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exists. Otherwise, it requests its supervisory SPA to delegate 

the request to feasible SPAs in its Service capability table 

(SCT) who can resolve such requirements using the SR-

CNPInitiatorSPA behavior. 
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Fig. 2.  Worst case analysis of messages exchanged by a CA 

for 100 BAs in its SCT. 

 

The complexity of the behavior of the SPA in [1], [7] in 

the worst case scenario is . Where  stands 

for the number of requirements handled by the SPA,  is the 

number of feasible RAs and  is the number of feasible 

SPAs recorded in its SCT. The modified SPA would instead 

of sending messages to  feasible SPA send a lower integer 

bound of  (αSPA is a value between 0 and 1) messages 

based on its perception of the capabilities of other SPAs in 

the environment using the SR-CNPInitiatorSPA behavior. 

Comparing the worst case scenario of both 

implementations, we introduce a relation  measuring the 

extent of reducing the number of messages exchanged: 

 

 (7) 

 

Simplifying (7) we obtain, 

 

 (8) 

 

Taking the limit of (8) as  tends to 0, that 

is,  we get, 

 

 (9) 

 

From (9) as   tends to 0, and  also tend to , we 

obtain the limit,  

 Hence, the number of messages propagated by SPAs in [1], 

[7] in the worst case can be minimized by .  

Taking the limit of (8) as  tends to 1, and  also tend 

to , it implies therefore, 

 

Thus, the number of messages exchanged are the same as 

SPAs subcontracting SPAs in [1], [7].  

Figure. 3 illustrates graphically the worst case analysis of 

an SPA with 3,000 feasible RAs and 100 feasible SPAs in its 

SCT. An SPA at , after all contracted RAs fail, 

would subcontract only 9 feasible SPAs to resolve a service 

requirement and send 

. 

Conversely, an SPA subcontracting all 100 feasible SPAs to 

satisfy a cloud service requirement will 

send . 
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Fig. 3.  Worst case analysis of messages exchanged by an 

SPA with 3,000 RAs and 100 SPAs in their SCT.  

IV. MESSAGE UTILITY FOR CLOUD COMPOSITION 

AGENTS 

We introduce the Message utility for cloud composition 

agents as a measure of how efficient (i.e. message-wise) 

agents are while successfully composing a cloud service or 

requirements of a cloud service. The message utility of cloud 

composition agents using service capability tables consists 

of a base utility ( ) and a message position utility (  ). 

The base utility is the minimum reward a cloud composition 

agent gets for successfully composing a cloud service or a 

requirement of a cloud service at a particular time. The 

message policy of an agent is the behavior which determines 

how many agents to send call-for-proposal messages out of 

all the feasible contractors recorded in its SCT. A successful 

message policy for an agent is its message policy that 

achieves 100% success in composing a cloud service or a 

service requirement for a particular state of the cloud 

composition environment. While, the best message policy is 

the successful message policy of an agent that ranks first 

amongst its peers in the same environment at a particular 

time.  The message position utility is the major utility 

attributed to the agent based on its messaging position ( ). 

Note that beta ( ) is the ratio of the position or rank of the 

successful message policy ( ) of the Cloud agent relative to 

the best message policy, to the total number of successful 

message policies ( ) at a specific time.  

Hence, the message utility of a Cloud agent, U can be 

computed as follows: 

 

 (10) 
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Figure 4 shows the relationship between the message 

utility (U) and  for 100 successful message policies ( ). 

For example, to calculate the total message utility of a 

successful cloud agent at . We first compute the 

agents’ base utility as .The message position 

utility is . Therefore, the total message 

utility is the sum of both utility components and is equal 

to . It can be deduced graphically from Fig.4 that agents 

need to minimize  in order to improve their message utility. 

This means agents should search for the best positioned 

successful message policy (i.e., ) for the current cloud 

composition environment.  

As a result, cloud agents may gradually contract fewer or 

more contractors as the case may be in their SCTs for cloud 

service composition and could possibly reduce the number 

of messages exchanged while maintaining the percentage 

success of service composition.  

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message position, beta

M
e
s
s
a
g
e
 U

ti
li
ty

, 
U

 
 

Fig. 4.  Message utility of successful Cloud Agents for 100 

successful message policies ( =100). 

V. AGENT BASED TESTBED 

An Agent based testbed for minimizing messages 

propagated by cloud agents in agent-based cloud service 

composition was implemented using NetLogo (An Agent-

based Simulation environment). The testbed comprised Web 

Services, RAs and swarms of CAs, BAs and SPAs with 

uniformly distributed message utilities (a value in [0, 1]). A 

Cloud agent with the best message policy has the best 

message utility in its environment (global and personal). In 

addition, the agent-based testbed was configured to adopt 

the semi-recursive contract net protocol with cloud 

composition agents searching for a satisfactory or most 

desirable successful message policy from the service 

capability tables at their disposal.  

A set of experiments were carried out,  using  Particle 

swarm optimization (PSO) algorithm for evolving the 

optimal personal  best messaging utility and global best 

messaging utility of Cloud agents. Each experiment was 

conducted under the assumption that for each swarm of 

agents there was only one true global optimal behavior. 

 

 
Fig. 5.  Functional Architecture of the Agent-based 

testbed for Cloud service composition. 

VI. EMPIRICAL RESULTS 

In order to evaluate the ability of Cloud agents to 

minimize messages exchanged during cloud service 

composition, a set of experiments were performed using the 

agent-based testbed functional architecture depicted in Fig.5 

such that all agents adopted SR-CNP equipped with SCTs. 

This testbed enabled investigation of the effect of having 

Cloud agents adopt an evolutionary search technique (PSO) 

for evolving their optimal personal best messaging utility 

and global best messaging utility. In the experiments, the 

cloud agents programmed with strongly connected SCTs and 

the RAs probability of failure was kept constant. Two 

performance measures were used to evaluate cloud agents. 

1) The average message utility and 2) The average number 

of messages exchanged. Whereas, recording the average 

message utility for a constant RA probability failure 

provides a means to measure the effectiveness of using 

Cloud agents in agent-based cloud service composition, 

documenting the average number of messages exchanged 

provides a window to measure the efficiency of Cloud agents 

in minimizing the message overhead.   The empirical results 

obtained from the experimental testbed of the preceding 

section are shown in Figs. 6 and 7. The parameters of the 

PSO algorithm used in this testbed are presented in Table 1. 

 

Table. I.  PSO parameters 

PSO Parameter Value 

Population size/swarm    [50,100] 

Particle-Inertia 0.98 

Attraction to personal best Message Utility 2.0 

Attraction to global best Message Utility 2.0 
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Fig. 6. Average Message utility of Cloud Composition 

agents. 
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Fig. 7.  Average Number of Messages Exchanged by Cloud 

Composition Agents. 

A. Observation 

Figures 6 and 7 show the average message utility and the 

average number of messages exchanged by Cloud agents. It 

is observed from these figures that for cloud agents in the 

agent-based testbed, the average message utility and average 

number of messages exchanged were maximized and 

minimized, respectively. More specifically, the results in 

Figs. 6 and 7 show that the average message utility achieved 

by Cloud agents is 0.91 and the average number of messages 

exchanged is 1095 messages. 

B. Analysis 

Cloud agents were able to maximize their message utility 

and minimize the number of messages exchanged because by 

using their knowledge (personal best message utility) and the 

knowledge of their immediate environment (global best 

message utility), they were able to improve their message 

utility by approaching the best message policy known to 

them. Accordingly, Cloud agents also minimized (by 

approximately 50%) the aggregate message exchanged. 

VII. CONCLUSION AND FUTURE WORK 

This paper has introduced a message efficient agent-based 

testbed for composing cloud services. Using SR-CNP and 

SCTs, cloud composition agents were able to adjust their 

message utilities in order to achieve optimal (best message 

utility) outcomes.  The results in Figs.6 and 7 show that 

cloud agents can collectively improve their message utility 

and reduce the number of messages exchanged, respectively 

while successfully composing cloud services. 

The contributions of this work include: 1) Mathematical 

analyses of message exchanges in agent-based cloud service 

composition; 2) Development of an Agent-based testbed 

comprising learning agents in agent-based cloud service 

composition; and 3) conducting experiments and obtaining 

empirical results to show that cloud agents can successfully 

minimize the number of messages exchanged while 

composing cloud services.  

Finally, this work has reported observations and results 

from preliminary experiments. A more comprehensive set of 

experimental results and extensive discussions of 

observations will be presented in a future paper. 
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