


Abstract—Previous work demonstrated that by adopting a

semi-recursive contract net protocol (SR-CNP) equipped with

service capability tables (SCTs) for dynamically selecting

recorded cloud agents, their services and states, Cloud agents

can effectively integrate disparate Cloud resources into a

unified Cloud service. However, the choice of SCT may result

in large overheads with Cloud agents exchanging a

considerably large number of messages to achieve high success

rates in service composition. In this paper, a comprehensive set

of mathematical analyses of message exchanges by Cloud agents

(Broker agents, Consumer agents and Service provider agents)

in cloud service composition are presented. Experiments were

performed where cloud agents adopt Particle Swarm

Optimization for evolving the best service composition

outcomes with the aim of minimizing the average number of

messages propagated while successfully composing cloud

services using SR-CNP and SCTs. Empirical results obtained

from an agent-based testbed reveal that agents successfully

minimized the number of messages exchanged during cloud

service composition.

Index Terms—agent based cloud service composition,

multiagent systems, Cloud computing, contract net protocol,

Cloud service composition.

I. INTRODUCTION

LOUD computing pools a set of web-accessible

resources, provisioned under service level agreements

and established via negotiation. Furthermore, it should be

dynamically composed and virtualized according to

consumers’ need on an on-demand basis [1].

Over the past few years, Cloud service providers (e.g.

Microsoft [2], Amazon [3], Google [4], Go Grid [5], IBM

[6] etc.) have continued to evolve and the Cloud services

churned out by these providers have continued to increase

proportionately. On the other hand, the complexity of

Consumers (e.g. App developers) requirements have also

changed over time. In order to satisfy these complex

consumer requests as they emerge, there is need for a

dynamic and automated service composition that can support

everything as-a-service model [7]. Hence, cloud service

composition in single or multi-cloud environments must

support the coordination of independent and self-interested

parties, efficient re-configuration of existent and permanent

service compositions since consumer requirements can

Manuscript received January 12, 2014.

S. O. Aliyu on study fellowship from Abubakar Tafawa Balewa

University, Bauchi-Nigeria is currently a doctoral student in The School of

Computing, University of Kent, Chatham Maritime, UK (e-mail: soaliyu@

gmail.com).

K. M. Sim is with The School of Computing, University of Kent,

Chatham Maritime, Kent, UK (e-mail: prof_sim_2002@yahoo.com).

.

change, dynamic and automated composition of distributed

and parallel services, being able to deal with incomplete

information about cloud participants as in a distributed

system and service selection based on dynamic market-fees

of cloud services[1], [8], [9].

An agent is a computational entity that acts on behalf of

another entity (or entities) to perform a task or achieve a

given goal. Agent systems are self-contained software

programs embodying domain knowledge and having ability

to behave with a specific degree of independence to carry

out actions needed to achieve specified goals. Agent-based

cloud computing is concerned with the design and

development of software agents for bolstering Cloud service

discovery, service negotiation and service composition [7].

There is a body of works in intelligent Cloud computing

that strives to make Clouds more intelligent by adopting

intelligent agents to automate the interactions among Clouds

and between consumers and Cloud [10]. Agents within an

intelligent InterCloud can automatically establish Cloud

service contracts, integrate Cloud resources, coordinate

concurrent Cloud workflow, and schedule parallel execution

of tasks in multiple clouds. This work focuses on designing

and building agents that can effectively and efficiently

integrate computing resources from multiple Clouds.

In Agent-based cloud service composition, the real

challenge is to assemble a single unified service dynamically

from multiple cloud service providers [7]. Hence, it is

imperative that Cloud service providers cooperate and

harness each other’s service capabilities to meet the

demands of varying consumer requests.

Novel experiments in [7] for agent-based cloud service

composition adopted the focused selection contract net

protocol (FSCNP) as the agent interaction protocol and

Service capability tables (SCTs), to record the list of Cloud

agents, their services and current status. FSCNP is an

extension of the contract network protocol (CNP), a

distributed problem solving technique used for establishing

service contracts among consumers and contractors.

Although Service capability tables (SCTs) are quite akin

to the idea of acquaintance networks (ANs), SCTs record

not only the service capabilities, but also, the state of cloud

agents; and since an agent’s state can change, SCTs are

updated more often than ANs. In ANs, the capability tables

may be updated only when new agents are joining the

environment or existing agents depart the environment.

Results from experiments in [7] show agents can self-

organize by using their own knowledge of agents listed in

Service capability tables to successfully compose cloud

services. However, the results also show that the success

rates of the Cloud service composition depends on the level

of knowledge that an agent about other agents’ service

Suleiman Onimisi Aliyu and Kwang Mong Sim, IEEE Senior Member

Minimizing Message Exchanges

in Agent Based Cloud Service Composition

C

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

capabilities. The tradeoff is that by having a higher level of

knowledge of other agents’ capabilities, more messages are

exchanged causing more overheads.

The focus of this paper is on remodeling cloud agents to

minimize message exchanges among Cloud agents. Herein, a

Particle Swarm Optimization technique (PSO) has been

applied to the problem formulation in order to minimize the

average number of messages propagated whilst successfully

composing cloud services using SR-CNP and SCTs.

 For the purpose of concept verification, an agent based

testbed has been utilized to generate empirical results. The

results so obtained, showed that the agents successfully

minimized the number of messages exchanged during cloud

service composition.

The rest of the paper is organized as follows. Section II

highlights contract net protocol for cloud service

composition whilst Section III is entirely devoted to problem

formulation and underlying mathematical analyses. For the

sake of completeness, Section IV presents mathematical

characterization of message utility for cloud composition

agents. Brief description of the testbed is set forth in Section

V, followed by simulation results in Section VI. Conclusion

and future work can be found in Section VII.

II. CONTRACT NET PROTOCOL FOR CLOUD

SERVICE COMPOSITION

An agent interaction protocol is a communication pattern

among agents with potentially different roles to attain a

specific design objective [11]. Basically, Agent interaction

protocols govern the exchange of a series of messages

among agents [12]. In the contract net protocol (CNP), an

agent assumes one of two roles, a consumer (manager or

Client) or a contractor (Server). Hence, using CNP, an agent

requiring cloud services or resources of other agents would

play the role of a manager and send call-for-proposal

messages to all other agents. Agents providing cloud

services or resources play the role of a contractor. Contract

agents listen to call-for-proposals, evaluate a list of call-for-

proposals as well as submit bids for contracts. Manager

agents evaluate bids from contractor agents then select and

award the contract to the most appropriate contractor agent

based on its service capabilities [13].

The work reported in [7] devised FSCNP which differs

from the classical CNP in that agents can assume multiple

roles (Contractors and managers), agents can integrate

results from multiple concurrent subcontracting interactions

as well as being capable of recording the states of other

agents. Theoretically, FSCNP is more efficient than CNP in

terms of messages exchanged and from the empirical results

in [7], agents following FSCNP that used strongly connected

SCTs exchanged the most messages during service

composition. This was because cloud agents following

FSCNP select only relevant (and feasible) service providers

(contractors) from service capability tables in an attempt to

successfully compose cloud services. Hence, knowing more

feasible agents would translate into sending more messages

(on the average) using this protocol.

Gutierrez-Garcia and Sim in [1] proposed the Semi-

recursive contract net protocol (SR-CNP) incorporating the

feature of service capability tables (SCTs) to focus on

selecting only feasible agents capable of accomplishing a

task. Again, experimental results using SR-CNP show agents

exhibiting a good sense of self- organization and cooperation

in composing cloud services.

The Agent-based testbed for the experiments conducted in

[1], [7] comprised web services (WSs), resource agents

(RAs), service provider agents (SPAs), consumer agents

(CAs), Broker Agents (BAs). By definition, a web service is

a remotely accessible (preferably over the internet) software

application or cloud resource. A web service can be viewed

as the building block (atomic requirement) of a cloud

service. A resource agent (RA) manages and controls access

to a web service, i.e. a resource agent acts as a wrapper to a

cloud service. Resource agents accept requests from its

supervisory SPA or other sibling RAs to satisfy a service

requirement and transmits service outputs to the requesting

agent. RAs maintain a SCT of sibling RAs under the

supervision of an SPA. The RA’s SCT maintains the

capabilities of sibling RAs, their location as well as their

states. Service provider agents manage a cloud service

provider’s resources by managing and coordinating RAs

under their administration.

To carry out its functions, an SPA is equipped with two

SCTs- one for RAs under its administration and the other for

SPAs. The latter is used only when RAs under its

supervision cannot handle the requirements and may need

the assistance of other RAs under the administration of

another SPA. Broker agents’ acts as mediators between CAs

and SPAs, BAs provide a single virtualized service for CAs

by composing a set of atomic requirements of the service

from multiple SPAs. BAs maintain two SCTs, one for SPAs

and the second for other BAs (To delegate requirement).

Finally, Consumer agents submit consumer requests for a

cloud service composition to BAs recorded in their SCT

which in turn contact SPAs to compose the set of

requirements contained in the service composition request.

III. MATHEMATICAL ANALYSES OF MESSAGE

EXCHANGES IN AGENT BASED CLOUD SERVICE

COMPOSITION

In this section, we present the mathematical analyses of

message exchanges in agent-based cloud service

composition for broker agent, consumer agent and service

provider agent. We also made effort to establish the order by

which messages exchanged by BAs, CAs and SPAs in

service composition can be minimized (worst case analysis).

The mathematical analyses of the aforementioned cloud

agents are presented in the following subsections.

A. Broker agent (BA)

The number of messages exchanged is a critical

performance measure in the complexity of cloud agents’

behavior. The number of messages sent by the Broker Agent

is tightly coupled to the level of connectivity of the agent’s

service capability table which, in turn should be determined

by the perception of the agent in the environment. When a

consumer agent submits a p-requirement request to a Broker

agent, the broker agent in turn creates p– instances of the

SR-CNPInitiatorBA behavior. For each instance, the BA

with q feasible Service provider agents (SPA’s) will act

commensurately and send only s (s is the lower integer

bound of , where) call-for-proposals

messages based on the perception of its environment. The

BA then sends s messages (1 accept-proposal message and s-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

1 reject proposal messages). If the contracted SPAs fail, the

failure propagates to the BA. Then the BA then sends s-1

call-for-proposals messages to the remaining feasible SPAs

and s-1 responses and so on. Therefore, in the worst case the

BA sends:

 (1)

Comparing this with a case where the BA with q feasible

SPA’s sends q call-for-proposals messages as so on, we

propose the ratio measuring the degree of reduction in the

messages exchanged,

 (2)

Since, then we can rewrite (2) as,

 (3)

Reducing (3) and rearranging terms, we have,

 (4)

Taking the limit of (4) as q tends to and αBA tends to 0, it

implies therefore,

Hence, the messages exchanged by BAs in [1], [7] in the

worst case can be reduced by .

Similarly, the limit of (4) as q tends to and αBA tends to 1

is,

Consequently, the number of messages exchanged in the

worst case for BAs in [1], [7] and the remodeled BAs are the

same as αBA tends to 1.

For example, if , a BA would

send

in the worst case by contracting only 9 feasible SPAs to

satisfy a cloud service requirement as opposed to contracting

all 100 feasible SPAs (), where the BA sends
 in

the worst case in quests to secure a cloud service

requirement as seen in Fig. 1.

In the event of failure from contracting SPAs, the BA,

using its SR-CNPInitiatorBA behavior, can also subcontract

fellow BAs in a manner similar to how they contract SPAs.

We omitted the mathematical analysis of messages

exchanged in the worst case because they are identical.

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

alpha

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s
 E

x
c
h
a
n
g
e
d
,
M

Fig. 1. Worst case analysis of messages exchanged by a BA

contracting 100 SPAs in its SCT.

B. Consumer Agent (CA)

The Consumer agent (CA) in [1],[7] make requests for

service composition by sending messages to Broker Agents

recorded in their Service Capability Tables (SCTs).

Therefore, if BAs are recorded in their SCTs then the CA

sends messages in quest for service composition. The re-

modelled CA will optimize the number of messages sent for

service composition by sending a lower integer bound of αCA

r (αCA is a value in [0, 1]) messages based on its perception

of the service composition environment. Comparing the

worst case scenarios of both implementations we have an

expression that measures the degree of reduction in

messages exchanged:

 (5)

Which simply becomes,

 (6)

Taking the limit of (6) as αCA tends to 0,

Therefore, the messages exchanged by CAs in [1], [7] can be

reduced by .

 Evaluating the limit of (6) as αCA tends to

1,

The messages exchanged would be the same as CAs in [1],

[7].

A Consumer Agent with would

engage 20 Broker Agents and in the worst case send 40

messages delegating a Broker Agent to satisfy a consumer

requirement. Whereas, A Consumer Agent at

position , would send at worst 200 messages

involving all 100 feasible BAs to fulfill a cloud service

request (see Fig. 2.).

C. Service Provider Agent (SPA)

A Service Provider Agent (SPA) sends a request message to

a feasible Resource Agent (RA) to resolve a service

requirement. If the RA fails, it then sub delegates another

feasible RA to resolve the Cloud service requirement, if it

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

exists. Otherwise, it requests its supervisory SPA to delegate

the request to feasible SPAs in its Service capability table

(SCT) who can resolve such requirements using the SR-

CNPInitiatorSPA behavior.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

alpha

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s
 E

x
c
h
a
n
g
e
d
,
M

Fig. 2. Worst case analysis of messages exchanged by a CA

for 100 BAs in its SCT.

The complexity of the behavior of the SPA in [1], [7] in

the worst case scenario is . Where stands

for the number of requirements handled by the SPA, is the

number of feasible RAs and is the number of feasible

SPAs recorded in its SCT. The modified SPA would instead

of sending messages to feasible SPA send a lower integer

bound of (αSPA is a value between 0 and 1) messages

based on its perception of the capabilities of other SPAs in

the environment using the SR-CNPInitiatorSPA behavior.

Comparing the worst case scenario of both

implementations, we introduce a relation measuring the

extent of reducing the number of messages exchanged:

 (7)

Simplifying (7) we obtain,

 (8)

Taking the limit of (8) as tends to 0, that

is, we get,

 (9)

From (9) as tends to 0, and also tend to , we

obtain the limit,

 Hence, the number of messages propagated by SPAs in [1],

[7] in the worst case can be minimized by .

Taking the limit of (8) as tends to 1, and also tend

to , it implies therefore,

Thus, the number of messages exchanged are the same as

SPAs subcontracting SPAs in [1], [7].

Figure. 3 illustrates graphically the worst case analysis of

an SPA with 3,000 feasible RAs and 100 feasible SPAs in its

SCT. An SPA at , after all contracted RAs fail,

would subcontract only 9 feasible SPAs to resolve a service

requirement and send

.

Conversely, an SPA subcontracting all 100 feasible SPAs to

satisfy a cloud service requirement will

send .

0 0.2 0.4 0.6 0.8 1
2000

4000

6000

8000

10000

12000

14000

alpha

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s
 E

x
c
h
a
n
g
e
d
,
M

Fig. 3. Worst case analysis of messages exchanged by an

SPA with 3,000 RAs and 100 SPAs in their SCT.

IV. MESSAGE UTILITY FOR CLOUD COMPOSITION

AGENTS

We introduce the Message utility for cloud composition

agents as a measure of how efficient (i.e. message-wise)

agents are while successfully composing a cloud service or

requirements of a cloud service. The message utility of cloud

composition agents using service capability tables consists

of a base utility () and a message position utility ().

The base utility is the minimum reward a cloud composition

agent gets for successfully composing a cloud service or a

requirement of a cloud service at a particular time. The

message policy of an agent is the behavior which determines

how many agents to send call-for-proposal messages out of

all the feasible contractors recorded in its SCT. A successful

message policy for an agent is its message policy that

achieves 100% success in composing a cloud service or a

service requirement for a particular state of the cloud

composition environment. While, the best message policy is

the successful message policy of an agent that ranks first

amongst its peers in the same environment at a particular

time. The message position utility is the major utility

attributed to the agent based on its messaging position ().

Note that beta () is the ratio of the position or rank of the

successful message policy () of the Cloud agent relative to

the best message policy, to the total number of successful

message policies () at a specific time.

Hence, the message utility of a Cloud agent, U can be

computed as follows:

 (10)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Figure 4 shows the relationship between the message

utility (U) and for 100 successful message policies ().

For example, to calculate the total message utility of a

successful cloud agent at . We first compute the

agents’ base utility as .The message position

utility is . Therefore, the total message

utility is the sum of both utility components and is equal

to . It can be deduced graphically from Fig.4 that agents

need to minimize in order to improve their message utility.

This means agents should search for the best positioned

successful message policy (i.e.,) for the current cloud

composition environment.

As a result, cloud agents may gradually contract fewer or

more contractors as the case may be in their SCTs for cloud

service composition and could possibly reduce the number

of messages exchanged while maintaining the percentage

success of service composition.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message position, beta

M
e
s
s
a
g
e
 U

ti
li
ty

,
U

Fig. 4. Message utility of successful Cloud Agents for 100

successful message policies (=100).

V. AGENT BASED TESTBED

An Agent based testbed for minimizing messages

propagated by cloud agents in agent-based cloud service

composition was implemented using NetLogo (An Agent-

based Simulation environment). The testbed comprised Web

Services, RAs and swarms of CAs, BAs and SPAs with

uniformly distributed message utilities (a value in [0, 1]). A

Cloud agent with the best message policy has the best

message utility in its environment (global and personal). In

addition, the agent-based testbed was configured to adopt

the semi-recursive contract net protocol with cloud

composition agents searching for a satisfactory or most

desirable successful message policy from the service

capability tables at their disposal.

A set of experiments were carried out, using Particle

swarm optimization (PSO) algorithm for evolving the

optimal personal best messaging utility and global best

messaging utility of Cloud agents. Each experiment was

conducted under the assumption that for each swarm of

agents there was only one true global optimal behavior.

Fig. 5. Functional Architecture of the Agent-based

testbed for Cloud service composition.

VI. EMPIRICAL RESULTS

In order to evaluate the ability of Cloud agents to

minimize messages exchanged during cloud service

composition, a set of experiments were performed using the

agent-based testbed functional architecture depicted in Fig.5

such that all agents adopted SR-CNP equipped with SCTs.

This testbed enabled investigation of the effect of having

Cloud agents adopt an evolutionary search technique (PSO)

for evolving their optimal personal best messaging utility

and global best messaging utility. In the experiments, the

cloud agents programmed with strongly connected SCTs and

the RAs probability of failure was kept constant. Two

performance measures were used to evaluate cloud agents.

1) The average message utility and 2) The average number

of messages exchanged. Whereas, recording the average

message utility for a constant RA probability failure

provides a means to measure the effectiveness of using

Cloud agents in agent-based cloud service composition,

documenting the average number of messages exchanged

provides a window to measure the efficiency of Cloud agents

in minimizing the message overhead. The empirical results

obtained from the experimental testbed of the preceding

section are shown in Figs. 6 and 7. The parameters of the

PSO algorithm used in this testbed are presented in Table 1.

Table. I. PSO parameters

PSO Parameter Value

Population size/swarm [50,100]

Particle-Inertia 0.98

Attraction to personal best Message Utility 2.0

Attraction to global best Message Utility 2.0

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

v
e
ra

g
e
 M

e
s
s
a
g
e
 U

ti
li
ty

,
U

Generations
Fig. 6. Average Message utility of Cloud Composition

agents.

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Generations

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s
 E

x
c
h
a
n
g
e
d
,
M

Fig. 7. Average Number of Messages Exchanged by Cloud

Composition Agents.

A. Observation

Figures 6 and 7 show the average message utility and the

average number of messages exchanged by Cloud agents. It

is observed from these figures that for cloud agents in the

agent-based testbed, the average message utility and average

number of messages exchanged were maximized and

minimized, respectively. More specifically, the results in

Figs. 6 and 7 show that the average message utility achieved

by Cloud agents is 0.91 and the average number of messages

exchanged is 1095 messages.

B. Analysis

Cloud agents were able to maximize their message utility

and minimize the number of messages exchanged because by

using their knowledge (personal best message utility) and the

knowledge of their immediate environment (global best

message utility), they were able to improve their message

utility by approaching the best message policy known to

them. Accordingly, Cloud agents also minimized (by

approximately 50%) the aggregate message exchanged.

VII. CONCLUSION AND FUTURE WORK

This paper has introduced a message efficient agent-based

testbed for composing cloud services. Using SR-CNP and

SCTs, cloud composition agents were able to adjust their

message utilities in order to achieve optimal (best message

utility) outcomes. The results in Figs.6 and 7 show that

cloud agents can collectively improve their message utility

and reduce the number of messages exchanged, respectively

while successfully composing cloud services.

The contributions of this work include: 1) Mathematical

analyses of message exchanges in agent-based cloud service

composition; 2) Development of an Agent-based testbed

comprising learning agents in agent-based cloud service

composition; and 3) conducting experiments and obtaining

empirical results to show that cloud agents can successfully

minimize the number of messages exchanged while

composing cloud services.

Finally, this work has reported observations and results

from preliminary experiments. A more comprehensive set of

experimental results and extensive discussions of

observations will be presented in a future paper.

REFERENCES

[1] J.O. Gutierrez-Garcia and K.M. Sim, “Agents-based cloud service

composition”. The international Journal of Artificial Intelligence,

Neural Networks and Complex Problem-solving Technologies 2012,

22(2).

[2] Windows Azure: Microsoft’s Cloud platform, 2013.

Available: http://www.windowsazure.com/

[3] What’s new with Amazon Web Services, 2013.

 Available: http://www.aws.amazon.com/

[4] Over 3 million apps deployed to Google Cloud Platform, 2013.

Available: https://cloud.google.com/

[5] Elastic Infrastructure at Your Fingertips from GoGrid, 2013.

Available: http://www.gogrid.com/

[6] IBM Integrated Service Management for Cloud Service Provider,

2013. Available: http://ibm.com/http/www-

01.ibm.com/software/tivoli/cloudcomputing/service-provider-

platform/

[7] K. M. Sim, “Agent-based cloud computing”. IEEE Transactions on

Services Computing. October-December 2012, 5(4):pp564-577.

[8] J.O. Gutierrez-Garcia and K.M. Sim. Self-Organizing for Service

Composition in Cloud Computing, Proc. 2nd IEEE int. conf. on Cloud

Computing Technology and Science, Indianapolis, IN, USA, 2010,

pp. 59-66.

[9] J.O. Gutierrez-Garcia and K.M. Sim, Agent-based Service

Composition in Cloud Computing. Proc. 2010 Conf. on Grid and

Distributed Computing, Dec. 13-15, 2010, Jeju Island, Korea.

[10] K. M. Sim, “Cloud Intelligence: Agents within an InterCloud”.

Awareness Magazine. The official magazine for Future and Emerging

Technologies Proactive Initiative, funded by the European

Commission under FP7.Available: http://www.awareness-

mag.eu/pdf/005153/005153.pdf

[11] B. Bauer, J.P. Muller and J. Odell,”Agent uml: a formalism for

specifying multiagent software systems”, Int J softw Eng. Knowl Eng

11(3), 2001: pp 207-230.

[12] M. N. Huns and L.M. Stephens, Multiagent Systems and Societies of

Agents (II), Lecture notes (2002), CSCE976.

[13] FIPA Contract Net Interaction Protocol Specification. Foundation for

Intelligent Physical Agents, 2002.

Available: http://www.fipa.org/specs/fipa00029/SC00029H.html.

[14] J. Kennedy and R.C. Eberhart, Swarm Intelligence. Morgan

Kaufmann. ISBN 1-55860-5959.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

http://www.windowsazure.com/
http://www.aws.amazon.com/
https://cloud.google.com/
http://www.gogrid.com/
http://ibm.com/http/www-01.ibm.com/software/tivoli/cloudcomputing/service-provider-platform/
http://ibm.com/http/www-01.ibm.com/software/tivoli/cloudcomputing/service-provider-platform/
http://ibm.com/http/www-01.ibm.com/software/tivoli/cloudcomputing/service-provider-platform/
http://www.awareness-mag.eu/pdf/005153/005153.pdf
http://www.awareness-mag.eu/pdf/005153/005153.pdf
http://www.fipa.org/specs/fipa00029/SC00029H.html

