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Abstract—The work presented in this paper employs multi-

scale subspace grids for pattern recognition applications. The 

proposed approach addresses the curse of dimensionality 

problem often associated with this task. The paper uses a 

multi-scale approach where coarse scale, being stable and 

generic in nature, suits well for small sample sizes, and fine 

scales, being more specialized in nature, enhance classification 

accuracy. The paper first describes projection of 

multidimensional data to a number of lower dimensional 

subspaces. Principal component analysis (PCA) and multiple 

discriminant analysis (MDA) algorithms are used to define 

lower dimensional subspaces. The range of value associated 

with each vector of a subspace is divided into a number of 

equal parts to define coarse subspace grids. Coarse subspace 

grids are further divided equally into fine subspace grids. The 

approach is tested on two applications. In first application, a 

recursive procedure is employed to obtain rules from multi-

scale subspace grids to recognize patterns. In second 

application, a neural network algorithm is used to recognize 

patterns using multi-scale subspace grids. The results show 

that the use of subspaces grids produces good results to 

recognize patterns in multidimensional data.  

Keywords—subspace grids; machine learning; pattern 

recognition; principle component analysis; multiple discriminant 

analysis; multi-scale approach. 

I.  INTRODUCTION 

Recognition of patterns in applications involving 

multidimensional data is one of the important research areas. 

Curse of dimensionality is normally addressed by projecting 

multidimensional data to a lower dimensional space. Thus 

one of the major tasks in analyzing patterns in 

multidimensional data, associated with a given application, 

is to project the data to a lower dimensional space first and 

then analyzing the data in lower dimensional space. This 

paper employs multi-scale subspace grids in lower 

dimensional space to recognize pattern. The approach is 

tested on two data sets: Iris data and data set having features 

extracted from veneers of wood. 

 

Iris data set is only a four dimensional data set while as 

wood features data set is a seventeen dimensional data set. 

Iris data set is a four class problem while as wood features 

data set is a thirteen class problem. The thirteen classes in 

wood features data set include twelve defects which are (i) 

bark (ii) coloured streaks (iii) curly grain (iv) discoloration 

(v) holes (vi) pin knots (vii) rotten knots (viii) roughness 

(ix) sound knots (x) splits (xi) streaks (xii) worm holes. The 
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 last class is the clear veneer.  A literature review of the 

related work of analyzing multidimensional data is 

presented in the next section.  

II. LITERATURE REVIEW 

A lot of literature is available on classification of 

multidimensional data. Some of the work is summarized in 

this section.  

 

A comparative study of  pattern selection methods for 

classification of multidimensional data is presented by Chai 

and Domeniconi [1]. The authors compare several feature 

ranking techniques, including variants of correlation 

coefficients, and Support Vector Machine (SVM) method 

based on Recursive Feature Elimination (RFE). A study by 

Hori et al. [2] shows that an independent component 

analysis (ICA) based method can effectively and blindly 

classify a vast amount of multidimensional data. Based on 

the results, authors suggest that the ICA based method can 

be a powerful approach for classification tasks. The authors 

also examine classification by principal component analysis 

(PCA), and compare results of PCA and ICA methods.  

 

Pique-Regil et al.  [3] propose a sequential Diagonal 

Linear Discriminant Analysis (SeqDLDA) technique that 

combines gene selection and classification. At each 

iteration, one gene is sequentially added and the linear 

discriminate (LD) recomputed using the SeqDLDA model. 

Classical Diagonal Linear Discriminant Analysis (DLDA) 

will add the gene with highest t-test score without checking 

the resulting model. In contrast, SeqDLDA will find the one 

gene that better improves class separation after recomputing 

the model parameters using a robust t-test score.  A data-

dependent kernel for microarray data classification was 

presented by Xiong et al. [4]. This kernel function is 

engineered so that the class reparability of the training data 

is maximized. A bootstrapping-based resampling scheme is 

introduced to reduce the possible training bias.  

 

Wang et al. [5] use a hybrid huberized support vector 

machine (HHSVM). The HHSVM uses the huberized hinge 

loss function to measure misclassification and the elastic-net 

penalty to control the complexity of the model. They 

develop an efficient algorithm that computes the entire 

regularized solution path for HHSVM.  

 

Kim and Cho [6] proposed two different correlation 

methods for the generation of feature sets to learn ensemble 

classifiers. Each ensemble classifier combines several other 

classifiers that learn from different features. They adopted 

several feature selection methods, which includes the 

Pearson’s and Spearman’s correlation coefficients, the 
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Euclidean distance, the cosine coefficient, information gain, 

mutual information and signal-to-noise ratio. Experimental 

results show that two ensemble classifiers whose 

components are learnt from different feature sets that are 

negatively or complementarily correlated with each other 

produce good recognition accuracy rates on the chosen 

datasets. 

 

A tensor based method to solve the supervised 

dimensionality reduction problem is presented in [7]. The 

work first utilizes a multilinear principal component analysis 

(MPCA) to reduce the tensor object dimension and it then 

applies a multilinear discriminant analysis (MDA) to find 

the best subspaces. The number of possible subspace 

dimensions for any kind of tensor objects is extremely high, 

so testing all of them for finding the best one is not feasible. 

The authors address this issue by presenting a method 

similar to sequential mode truncation (SMT) and full 

projection is used to initialize the iterative solution to find 

the best dimension for MDA.  

 

An incremental approach for microarray classification 

problem was proposed in [8]. The approach is based on a 

hybrid principal component analysis (PCA) and multiple 

discriminant analysis (MDA). The work uses several 

subspaces, where data is incrementally projected. The 

resulting incremental hybrid PCA and MDA approach 

helped in enhancing the classification accuracy of the 

microarrays. 

 

A subspace grid based approach for recognizing patterns 

in microarray data was proposed in [9, 11]. The paper first 

defines a subspace with the aid of principal component 

analysis (PCA) and multiple discriminant analysis (MDA) 

algorithms. Each axes of the subspace is divided into equal 

number of parts to obtain subspace grids. A recursive 

procedure is then used to obtain rules where subspace grids 

form premises of rules. The extracted set of rules is 

evaluated on both training and testing data sets where good 

results are reported.  

 

This work presents a new approach that incorporates 

coarse and fine subspace grids for recognizing patterns in 

multidimensional data. Section III describes the approach 

used for recognizing patterns using subspace grids. Results 

and discussion is presented in section IV. Conclusion is 

finally summarized in section V. 

III. MULTI-SCALE SUBSPACE GRID APPROACH 

We propose a multi-scale subspace grid based approach 

to recognize patterns in applications involving 

multidimensional data. The proposed approach addresses the 

following two issues: i) curse of dimensionality, and ii) 

cases with small sample sizes, often associated with such 

applications. It involves projecting multidimensional data to 

lower dimensional subspaces and then creating grids to 

facilitate pattern recognition task in an efficient manner.  

 

The strategy used here involves creating both coarse and 

fine grids. Coarse grids result in coarse scale features which 

are stable and hence generic in nature in terms of 

recognizing coarse features present in the patterns. Fine 

grids result in fine scale features which are less stable but 

still play important role in recognizing specific properties of 

patterns. Thus coarse scale grids result in generic 

classification of patterns, and it does not take care of 

specialized cases, while as fine scale grids result in 

classifying specialized cases, which is good for enhancing 

classification accuracy.  

 
To obtain grids, a multidimensional data set is projected 

to a lower dimensional space first. The given data is 
projected to a two dimensional subspace in such a way so 
that it forms clusters which are spread out in the two 
dimensional subspace. This subspace is divided into coarse 
grids where one or more grids may cover a cluster. A coarse 
grid may have data belonging to a single class, in which case 
the grid forms a coarse grid for that class. In situations where 
a grid has data belonging to more than one class, such grids 
are further divided into fine grids. Fine grids are used to 
identify specialized cases present in the multidimensional 
data. The use of fine grids suits in those situations where 
separation of data belonging to different classes is difficult at 
coarse level.  

     Thus the recognition of patterns in multidimensional data 
is carried out in four steps: i) Projecting a multidimensional 
data set to lower dimensional spaces, and ii) Creating multi-
scale grids at lower dimensional spaces iii) Recognizing 
coarse patterns using stable features iv) Further recognizing 
specialized patterns by using fine scale features. 

Finally, complete content and organizational editing 
before formatting. Please take note of the following items 
when proofreading spelling and grammar: 

A. Multidimensional Data Projections 

Multidimensional data is processed row by row and each 

row is projected along four projection vectors. Two of the 

four projection vectors are defined by principal component 

analysis and the rest two projection vectors are defined by 

multiple discriminant analysis. Three lower dimensional (i.e. 

2D) subspaces are created with the help of these four 

projection vectors. The three two dimensional subspaces 

should be defined in such a way that it facilitates 

construction of coarse and fine grids. The first two 

dimensional subspace will have both vectors from principal 

component analysis. As principal component analysis 

attempts to spread the projected data, the resulting two 

dimensional subspace will suit for creating fine grids. More 

details on principal component analysis are given below.  

The second two dimensional subspace will have both 

vectors from multiple discriminant analysis. Here also, as 

multiple discriminant analysis attempts to spread the 

projected data using class information, the resulting two 

dimensional subspace will suit for creating fine grids. More 

details on multiple discriminant analysis are given below. 

The third two dimensional subspace will have one vector 

from principal component analysis and the second vector 

from multiple discriminant analysis. As the principal 

component analysis attempts to spread the projected data 

without using class information while as multiple 

discriminant analysis uses class information, the resulting 

two dimensional subspace will have data spread in clusters 

where each cluster will tend to have data mostly belonging 

to one class only. This projection will suit for creating 

coarse grids. This transforms multidimensional data to three 

two dimensional subspaces which are divided into coarse 

and fine grids for pattern recognition.  
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i) Projection With Principal Component Analysis 

Principal component analysis (PCA) is a widely-used 

statistical technique and it best represents the data in a least-

squares sense. It works by replacing the original (numerical) 

variables with new numerical variables called “Principal 

Components”. PCA captures the most descriptive features 

with respect to packing most “energy”. This involves 

minimizing the criterion function jd’ for a d’-dimensional 

projection: 

 

 

 

where x1,….xn are n data points to be projected to a low 

dimensional space, m is the data mean, ak are coefficients 

that minimize the criterion function, vectors e1,…..ed’ are 

the d’ eigenvectors of the scatter matrix having the largest 

eigen values.  

 

ii) Projection With Multiple Discriminant Analysis 

Fisher linear discriminant analysis (FDA) is a simple 

algorithm that best separates the data in a least-squares 

sense. It is used for both dimension reduction and 

classification. In either case, FDA attempts to minimize the 

Bayes error by selecting the most discriminant feature 

vectors. To increase the effective dimension of the projected 

space the use of Multiple Discriminant Analysis (MDA) 

instead of FDA is used. 

 

Multiple discriminant analysis adopts a perspective 

similar to Principal Components Analysis, but PCA and 

MDA are mathematically different in what they are 

maximizing. MDA maximizes the difference between values 

of the dependent, whereas PCA maximizes the variance in 

all the variables accounted for by the factor. A technique 

that extracts invariant but descriptive features involves 

maximization of the criterion function given below: 
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where { )( j

ix , i=1,…,Nj}, j=1,…C are feature vectors of 

training samples, C is the number of classes, Nj is the 

number of the samples of the jth class, )( j

ix  is the ith sample 

from the jth class, mj is mean vector of the jth class, and m 

is grand mean of all examples. 

 

PCA and MDA, each has its own pros and cons. MDA 

deals directly with discrimination between classes, whereas 

PCA does not pay particular attention to the underlying class 

structure. When the data of each class can be represented by 

a single Gaussian distribution and share a common 

covariance matrix, MDA will outperform PCA. By contrast, 

when the number of samples per class is small or when the 

training data non-uniformly sample the underlying 

distribution, PCA might outperform MDA. 

 

PCA and MDA algorithms were used to project the data 

to a feature vector space. Each algorithm used two 

eigenvectors that corresponded to the two largest distinct 

eigen values for defining the axes of feature vector  space. 

 

B. Recognizing Patterns Using Coarse and Fine Grids 

Different algorithms can be employed to recognize 

patterns by using coarse and fine grids. In this work we use 

employ two different algorithms, one is based on extracting 

rules and the second is based on using neural network 

models.  

 

ii) Pattern Recognition Using Rules 

Multidimensional data is first projected to two 

dimensional subspaces. The projections to two dimensional 

subspaces are divided into a number of cells or subspace 

grids. A subspace grid can form a premise of a rule. Rules 

are extracted by considering subspace grids as its possible 

premises. The rule extraction process is described in [13]. 

 

ii) Pattern Recognition Using Neural Network Models 

    Wani and Pham [12] has shown that combining a number 

of neural network models can yield better results than 

achievable by each model on its own. Combined neural 

networks are called “synergistic” networks, and the term 

synergistic is derived from Greek words meaning “joint 

efforts” [12]. The essence of the synergistic approach is to 

employ m unit structure models, each slightly different from 

the others so that they can yield slightly different outputs to 

a given set of inputs. The outputs from the various units are 

then combined together to yield the final result. 

 

To achieve synergy, it is important that the individual unit 

structure models are different from one another. Various 

ways exist to ensure this, however, using unit structure 

models with different neuron characteristics (different 

activation functions) appears to be a better choice as 

different activation functions may suit different  non-

linearities which may be present in the training data. 

 

A combining module is then used to combine the outputs of 

the individual models. The final output Of of the synergistic 

network is obtained as: 

 

           Of = Max (Yij)                  

                                    1 <= i  <= n1 

                                    1 <= j  <= n2   

 

where n1 = number of outputs and n2 = number of 

activation functions used. 

 
The structure of the synergistic model used here for 

recognition of wood defects is shown in Figure 1. 
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                 Figure 1  Proposed synergistic model 

 

IV. RESULTS AND DISCUSSION 

In this results and discussion section we present results of 

using multi-sclae subspace grid based approach in two 

applicatuions: Iris data and defect recognition in veneers of 

wood application. We use rule based algorithm for Iris data 

set and neural network algorithm for recognizing defects in 

veneers of wood. 

 

i) Iris data  

   The results of the proposed approach are demonstrated 

on IRIS data set. The IRIS data set [10] is a collection of 

continuous-valued data commonly used in bench marking 

pattern classification algorithms. Each example in the set is 

described in terms of four numerical attributes: 

Sepal_length, Sepal_width, Petal_length, Petal_width and 

can be classified into one of three categories, Iris_Setosa, 

Iris_Versicolor or Iris_Virginica. The total number of 

examples is 150. In this application, 100 examples were 

randomly picked for extracting rules and all the 150 

examples were used for testing the extracted rules.  

 

The IRIS data set was projected to three two dimensional 

subspaces. The first subspace used one vector from PCA 

and second vector from MDA corresponding to their highest 

Eigen values. The subspace is shown in Figure2a. The 

subspace was divided into 5 by 5 coarse grids as shown in 

Figure2b. The rules extracted from this coarse grid are 

shown below: 

 
Rule 1:  IF x-axis lies between 2.286 and 3.69  
         AND y-axis lies between 0.986 1.939  

         THEN class is 1                     with probability of 1 

Rule 2:  IF x-axis lies between 3.690 5.094 
         AND y-axis lies between -0.921 0.032   

         THEN class is 2                     with probability of 1 

Rule 3:  IF x-axis lies between 5.094 6.498 
         AND y-axis lies between -0.921 0.032     

         THEN    class is 2                  with probability of 1 
Rule 4:  IF x-axis lies between 6.498 7.902 

         AND y-axis lies between -2.828 -1.875      

         THEN class is 3                     with probability of 1 
Rule 5:  IF x-axis lies between 7.902 9.306 

         AND y-axis lies between -2.828 -1.875      

         THEN class is 3                     with probability of 1 
Rule 6:  IF x-axis lies between 7.902 9.306 

         AND y-axis lies between -1.875 -0.921      

         THEN class is 3                     with probability of 1 

Rule 7:  IF x-axis lies between 5.094 6.498 

         AND y-axis lies between -1.875 -0.921    
         THEN    class is 2                  with probability of 0.947 

Rule 8:  IF x-axis lies between 6.498 7.902 

         AND y-axis lies between -1.875 -0.921      
         THEN class is 3                     with probability of 0.629 

 

The above coarse rules classify 132 examples out of 150 

examples correctly giving a classification accuracy of 88%. 

The Rule 7 above corresponds to a grid that has examples 

belonging to two classes: class3 and class2. The proportion 

of examples belonging to class2 (i.e 18/19=0.947) and 

class3 (i.e. 1/19) is the probability with which this rule can 

classify a given example as belonging to class2 or class3 

respectively. Similarly, the Rule 8 above corresponds to a 

grid that has examples belonging to two classes: class3 and 

class2. The proportion of examples belonging to class3 (i.e 

17/27=0.629) and class2 (i.e. 10/27) is the probability with 

which this rule will classify a given example as belonging to 

class3 or class2 respectively. 

 

Thus the grids corresponding to Rule 7 and Rule 8 have 

data belonging to more than one class and its use will result 

in classification error. To address this issue, the grids 

corresponding to Rule 7 and Rule 8 are divided into fine 

grids (each grid is divided into four grids). Rule 7 and Rule 

8 are redefined by using fine grids. Note that it is not 

necessary that all new fine grids will have data in it, but 

those that do will give rise to redefined rules. The 8 new fine 

grids give rise to the following 4 rules: 
 
 

Rule 7:  IF x-axis lies between 5.796 6.498 

         AND y-axis lies between -1.398 -0.921      
         THEN class is 2                     with probability of 1 

Rule 8:  IF x-axis lies between  6.498 7.20 

         AND y-axis lies between -1.398 -0.921    
         THEN    class is 2                  with probability of 1 

Rule 9:  IF x-axis lies between 6.498 7.20 

         AND y-axis lies between -1.875 -1.398      
         THEN class is 3                     with probability of 0.714 

Rule 10:  IF x-axis lies between 5.796 6.498 

         AND y-axis lies between -1.875 -1.398    
         THEN    class is 2                  with probability of 0.5 

 
The above set of  rules classify 145 examples out of 150 

examples correctly giving a classification accuracy of 96.7%. 
The Rule 9 above corresponds to a grid that has examples 
belonging to two classes: class3 and class2. The proportion 
of examples belonging to class3 (i.e 10/14=0.714) and class2 
(i.e. 4/14) is the probability with which this rule will classify 
a given example as belonging to class3 or class2 
respectively. Similarly, the Rule 10 above corresponds to a 
grid that has examples belonging to two classes: class3 and 
class2. The proportion of examples belonging to class3 (i.e 
1/2 = 0.5) and class2 (i.e.1/2 = 0.5) is the probability with 
which this rule will classify a given example as belonging to 
class3 or class2 respectively. 

 

 
              (a)                                                        (b) 
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                 (c)                                                        (d) 

    
                 (e)                                                        (f)      

Figure 2.(a,b) Subspace and grids using PCA and MDA algorithm (c, d) 
Subspace and grids using PCA algorithm, (e,f) Subspace and grids using 

MDA algorithm.  

 

Thus the grids corresponding to Rule 9 and Rule 10 have 

data belonging to more than one class and its use will result 

in classification error. To improve the results further, Rule 9 

and Rule 10 are refined by adding new premises. The new 

premises are obtained by using fine grids (10 by 10 grids) of 

other two projected subspaces: subspace 2 (using vectors 

from PCA algorithm) (Figure2c,d) and subspace 3 (using 

vectors from MDA algorithm) (Figure2e,f).  Rule 9 gets 

modified as below: 

 
Rule 9a:  IF x-axis lies between 6.498 7.20 
          AND y-axis lies between -1.875 -1.398      

          THEN class is 3                     with probability of 0.714 

Rule 9b:  (IF x-axis lies between 6.498 7.20 
          AND y-axis lies between -1.875 -1.398)   

                                                                from subspace 3  

          AND 

          (IF x-axis lies between -1.875 -1.398 

          AND y-axis lies between 1.394 1.540)     

                                                               from subspace 2      
          THEN class is 2                     with probability of 1 

Rule 9c:  (IF x-axis lies between 6.498 7.20 

          AND y-axis lies between -1.875 -1.398)     
                                                         from subspace 3  

          AND 

          (IF x-axis lies between 6.498 7.20 
          AND y-axis lies between 5.368 5.632)     

                                                          from subspace 1      

          THEN class is 2                     with probability of 0.83 
 

Similarly, Rule 10 gets modified as below: 
Rule 10a:  IF x-axis lies between 5.796 6.498 
           AND y-axis lies between -1.875 -1.398    

           THEN    class is 2                  with probability of 0.5 

Rule 10b:  (IF x-axis lies between 5.796 6.498 
           AND y-axis lies between -1.875 -1.398)   

                                                         from subspace 3    

           AND 
           (IF x-axis lies between -1.875 -1.398 

           AND y-axis lies between  1.540  1.687)   

                                                         from subspace 2    
           THEN    class is 3                  with probability of 0.75 

 

The above set of rules classify 148 examples out of 150 

examples correctly giving a classification accuracy of 

98.67%. The classification accuracy results are summarized 

in Table 1 below: 

 

TABLE I   CLASSIFICATION ACCURACY WITH MULTI-SCALE SUBSPACE 

GRIDS AND RULES ALGORITHM 

Rules Used Classification 
accuracy 

Rules from only Coarse Grids of subspace 3 88% 

Rules from Coarse and Fine Grids of subspace 3 96.7% 

Rules from Coarse and Fine Grids of subspace 3 

with premises supplemented from subspaces 1 
and 2. 

98.67% 

 

ii) Defect Recognition in Veneers of Wood 

Seventeen different features are extracted from veneers of 

wood to represent tweleve different defects and clear veneer. 

Ten of these features are statistical features which give 

measure of central tendency, location, dispersion, symmetry 

and peaknedness of frequency distribution of grey level 

values under a window have been chosen for this task. Rest 

of the seven features are shape measures of the frequency 

distribution curve as explained below. 

(i)  Percentage of pixels in a window with grey level value 

of less than 80. This will differentiate the darker defects 

from the rest of the defects. 

(ii)  Percentage of pixels in a window with grey level value 

of more than 220. This will differentiate the brighter defects 

(under backlighting conditions) from the rest of the defects. 

(iii)  Grey level value ‘a’ for which there are 2% pixels 

below it. This gives the dark end location of the frequency 

distribution curve. 

(iv)  Grey level value ‘d’ for which there are 2% pixels 

above it. This gives the bright end location of the frequency 

distribution curve. 

(v)  Histogram tail length on the dark side (b-a) where ‘a’ is 

defined in (iii)  and ‘b’ is the grey level at which there are 

20% pixels below it. This depicts the shape of the frequency 

distribution curve on its darker side. 

(vi)  Histogram tail length on the bright side (d-c) where ‘d’ 

is defined in (iv) and ‘c’ is the grey level at which there are 

20% pixels above it. This depicts the shape of the frequency 

distribution curve on its brighter side. 

(vii) Histogram length between the grey  levels ‘b’ and ‘c’. 

This depicts the shape of the frequency distribution curve in 

the neighbourhood of its central point. 

 
The seventeen dimensional feature vector was projected 

to a two dimensional space which was used as input to the 
neural network model for training. Table 2 gives summary 
the results of the wood defect recognition problem using the 
neural network models. A possible disadvantage with the 
synergistic neural network approach is that it needs training 
more than one neural network. However, if the structure of 
various neural networks of the proposed model is kept simple 
and identical then the task of training the neural networks 
becomes easier. 

TABLE 2 CLASSIFICATION ACCURACY WITH MULTI-SCALE SUBSPACE 

GRIDS AND NN ALGORITHM 

 % Classification accuracy 

Type of NN model  

Simple 83.7 

Synergistic 88.1 

V.     CONCLUSION 

This paper employed multi-scale coarse and fine 

subspace grids to recognize patterns in multidimensional 
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data. Multidimensional data was projected to lower 

dimensional subspaces. The PCA and MDA algorithms 

were used to define lower dimensional subspaces. Coarse 

and fine grids were obtained from the lower dimensional 

subspaces by dividing the range of values associated with 

each vector of a subspace into equal number of parts. A rule 

based algorithm and a neural network based algorithm was 

used to recognize patterns using multi-scale subspace grids. 

The approach was tested on two applications. The paper 

showed that the use of multi-scale subspace grids to 

recognize patterns in multidimensional data  produced good 

results. 
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