
 

 
Abstract— In this paper, one-dimensional heat equation 
subject to both Neumann and Dirichlet initial boundary 
conditions is presented and a Homotopy Perturbation Method 
(HPM) is utilized for solving the problem. The obtained results 
as compared with previous works are highly accurate. Also 
HPM provides continuous solution in contrast to finite 
difference method, which only provides discrete 
approximations. It is found that this method is a powerful 
mathematical tool and can be applied to a large class of linear 
and nonlinear problem in different fields of science and 
technology 
 
Index Terms— Homotopy perturbation method (HPM), Partial 
differential equations, Heat conduction,  Dirichlet and 
Neumann boundary Conditions 
 

I. INTRODUCTION  

ecently, new analytical methods have gained the 
interest of researchers for finding approximate solutions  
to partial differential equations. This interest was driven 

by the needs from applications both in industry and  
sciences. Theory and numerical methods for solving initial 
boundary value problems were investigated by many 
researchers see for instance [4-13, 15-17,19-21,25-30] and 
the reference therein. In the last decade, there has been a 
growing interest in the new analytical techniques for linear 
and nonlinear initial boundary value problems. The widely 
applied techniques are perturbation methods.  He [23] has 
proposed a new perturbation technique coupled with the 
homotopy technique, which is called the homotopy 
perturbation method (HPM). In contrast to the traditional 
perturbation methods. a homotopy is constructed with an 
embedding parameter 2 [01], which is considered as a 
small parameter. HPM has gained reputation as being a 
powerful tool for solving linear or nonlinear partial 
differential equations. This method has been the subject of 
intense investigation during recent years and many 
researchers have used it in their works involving differential 
equations see in [14,18]. He [22], applied HPM to solve 
initial boundary value problems which is governed by the 
nonlinear ordinary (Partial) differential equations, the results 
show that this method is efficient and simple. Thus, the 
main goal of this work is to apply the homotopy 
perturbation method (HPM) for solving one-dimensional 
heat conduction problem with Dirichlet and Neumann 
boundary conditions. The obtained results are more accurate  
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than those obtained by Damrongsak et al [3]. The general 
form of equation is given as:  
 
௧ݑ ൌ ௫௫ݑߙ ൅ ݂ሺݔ, ,ሻݐ 0 ൏ ݔ ൏ ݈, ݐ ൐ 0         (1) 
 
Subject to the initial condition: 
 
,ݔሺݑ 0ሻ ൌ ,ሻݔ଴ሺݑ 0 ൏ ݔ ൏ ܽ                 (2) 
And the boundary conditions 
,ሺ0ݑ ሻݐ ൌ ݃଴ሺݐሻ, ,ሺ݈ݑ ሻݐ ൌ ଵ݃ሺݐሻ, ݐ ൐ 0                      (3)                          
,௫ሺ0ݑ ሻݐ ൌ ݃ଶሺݐሻ ,ݑ௫ሺ݈, ሻݐ ൌ ݃ଷሺݐሻ, ݐ ൐ 0                   (4)                           
Where the diffusion coefficient ߙ	is positive, ݑሺݔ,  ሻݐ
represents the temperature at point ሺݔ,  ሻ andݐ
݂ሺݔ, ,ሻݐ ݃଴ሺݐሻ, ݃ଵሺݐሻ, ݃ଶሺݐሻ, ݃ଷሺݐሻ are sufficiently smooth 
known functions. 

II. ANALYSIS OF HOMOTOPY PERTURBATION 

METHOD 

 
To illustrate the basic ideas, let ܺand ܻ	be two topological 
spaces. If ݂and ݃are continuous maps of the spaces ܺinto 
ܻ, it is said that ݂ is homotopic to ݃if there is continuous 
map ܨ: ܺ	 ൈ ሾ0,1ሿ ⟶ ܻ such that  ܨሺݔ, 0ሻ ൌ ݂ሺݔሻ   and 
,ݔሺܨ 1ሻ ൌ ݃ሺݔሻ  for each ݔ ∈ ܺ, then the map is called 
homotopy between ݂and ݃.  
We consider the following nonlinear partial differential 
equation: 
ܣሺݑሻ െ ݂ሺݎሻ ൌ 0, 					Ω		ݎ   (5) 
Subject to the boundary conditions 

ܤ ቀݑ,
డ௨

డఎ
ቁ ൌ 0, 	ݎ ∈ 	Γ	                                                         (6) 

Where is a general differential operator. ݂is a known 

analytic function, Γ  is the boundary of the domain Ω and  
డ

డఎ
 

denotes directionalderivative in outward normal direction to 
Ω. The operator , generallydivided into two parts, ܮand 
, where ܮis linear, while is nonlinear.Using =ܮ+, 
eq. (5) can be rewritten as follows:
ሻݒሺܮ ൅ ܰሺݒሻ െ ݂ሺݎሻ ൌ 0         (7)                                
By the homotopy technique, we construct a homotopy 
defined as 
,ݒሺܪ :ሻ݌ Ω ൈ ሾ0,1ሿ ⟶ ܴ            (8)
Which satisfies: 
,ݒሺܪ ሻ݌ ൌ ሺ1 െ ሻݒሺܮሻ൫݌ െ ଴ሻ൯ݑሺܮ ൅ ሻݒሺܣ൫݌ െ ݂ሺݎሻ൯, ݌ ∈
ሾ0,1ሿ, 	ݎ ∈ Ω	                                                                       (9) 
Or 
,ݒሺܪ ሻ݌ ൌ ሻݒሺܮ െ ଴ሻݑሺܮ ൅ ଴ሻݑሺܮ݌ ൅ ሻݒ൫ܰሺ݌ െ ݂ሺݎሻ൯ ൌ
0, ݌ ∈ ሾ0,1ሿ, 	ݎ ∈ Ω	                                                          (10) 
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Where݌ ∈ ሾ0,1ሿ is an embedding parameter, ݒ଴ is an initial 
approximation of equation (5), which satisfies the boundary 
conditions. It follows from equation (10) that: 
,ݒሺܪ 0ሻ ൌ ሻݒሺܮ െ ଴ሻݑሺܮ ൌ 0    (11)
,ݒሺܪ 1ሻ ൌ ሻݒሺܣ െ ݂ሺݎሻ ൌ 0      (12) 
The changing process of ݌from 0 to 1 monotonically is a 
trivial problem. ܪሺݒ, 0ሻ ൌ ሻݒሺܮ െ ଴ሻݑሺܮ ൌ 0is 
continuously transformed to the original problem 
ܪሺݒ, 1ሻ ൌ ሻݒሺܣ െ ݂ሺݎሻ ൌ 0.               (13) 
In topology, this process is known as continuous 
deformation. ܮሺݒሻ െ ሻݒሺܣ  ଴ሻ andݑሺܮ െ ݂ሺݎሻ are called 
homotopic. We use the embedding parameter ݌as a small 
parameter, and assume that the solution of equation (10) can 
be written as power series of ݌: 
ݒ ൌ ଴ݒ଴݌ ൅ ଵݒ݌ ൅ ଶݒଶ݌ ൅ ଷݒଷ݌ ൅⋯൅ ேݒ௡݌ ൅⋯(14)
Setting ݌ ൌ 1 we obtain the approximate solution of 
equation (5) as: 
ݑ ൌ lim௣→ଵ ݒ ൌ ଴ݒ ൅ ଵݒ ൅ ଶݒ ൅ ⋯൅ ௡ݒ ൅⋯ (15) 
The series of equation (15) is convergent for most of the 
cases, but the rate of the convergence depends on the 
nonlinear operator ܰሺݒሻ. He (1999) has suggested that: 
- The second derivative of ܰሺݒሻ with respect to ݒshould be 
small because the parameter may be relatively large i.e   

݌ ൌ 1 and the norm of  ିܮଵሺ
డே

డ௨
ሻ must be smaller than one in 

order for  the series to converge. 

III. EXAMPLES 

A. Example 1  

We consider the problem 
 
ப௨

ப௧
ൌ

பమ௨

ப௫మ
, 0 ൑ ݔ ൑ 1, ݐ ൐ 0	      (16) 

With the initial condition: 
,ݔሺݑ 0ሻ ൌ sin	ሺݔߨሻ, 
And the boundary  conditions: 
,ሺ0ݑ ሻݐ ൌ 0, ,ሺ1ݑ ሻݐ ൌ 0         (17) 
For solving this problem, we construct the HPM as follows: 

,ݒሺܪ ሻ݌ ൌ ሺ1 െ ሻ݌ ቀ
ப௩

ப௧
െ

ப௨బ
ப௧
ቁ ൅ ሺ݌

డ௨

డ௧
	െ

பమ௩

ப௫మ
ሻ ൌ 0          (20) 

The component vi of  (15) are obtained as follows: 
డ௩బ
డ௧
െ

డ௨బ
డ௧

ൌ 0, ଴ݒ ൌ ,ݔሺݑ 0ሻ ൌ sin	ሺݔߨሻ                           (21)     

       
డ௩భ
డ௧
െ

பమ௩బ
ப௫మ

ൌ 0, vଵሺx, 0ሻ ൌ 0	                                             (22)                              

 

	
∂ଶݒ଴
ଶݔ∂

ൌ െߨଶsin	ሺݔߨሻ 

ଵݒ߲
ݐ߲

ൌ െߨଶsin	ሺݔߨሻ 

Hence 
ଵݒ ൌ െߨଶsin	ሺݔߨሻ(23)                              ݐ 
              
 
డ௩మ
డ௧
െ

பమ௩భ
ப௫మ

ൌ 0, ,ݔଶሺݒ 0ሻ ൌ 0                         (24) 

 
∂ଶݒଵ	
ଶݐ∂

ൌ ଶݐ12 ൅ ,ݐ24
ଵݒ∂
ݔ∂

ൌ 	
∂ଶݒ଴
ଶݔ∂

ൌ 0 

ଶݒ߲
ݐ߲

ൌ  ݐሻݔߨሺ	ସsinߨ

 
Then, we have 

ଶݒ ൌ െߨସsin	ሺݔߨሻ
௧మ

ଶ!
                (25) 

                  
For the next component: 
ଷݒ߲
ݐ߲

െ
∂ଶݒଶ
ଶݔ∂

ൌ 0, ,ݔଷሺݒ 0ሻ ൌ 0 

 

ଷݒ ൌ െߨ଺	sin	ሺݔߨሻ
௧య

ଷ!
                        (26) 

And so on, we obtain the approximate solution as follows: 
ݑ ൌ lim

௣→ଵ
ݒ ൌ ଴ݒ ൅ ଵݒ ൅ ଶݒ ൅ ⋯൅ ௡ݒ ൅⋯ 

 And this leads to the following solution                           
,ݔሺݑ ሻݐ ൌ sin	ሺݔߨሻ݁ିగ

మ௧                     (27) 
We can, immediately observe that this solution is exact. 
 

B. Example 2 

Consider the following nonlinear reaction-diffusion 
equation: 
ப௨

ப௧
െ

డమ௨

డ௫మ
ൌ 	0 ൑ ݔ ൑ 1, ݐ ൐ 0                                (28) 

 
Subject to the initial condition 
,ݔሺݑ 0ሻ ൌ cos	ሺݔߨሻ,                          (29) 
And the boundary conditions: 
డ௨ሺ଴,௧ሻ

డ௫
 =0,

డ௨ሺଵ,௧ሻ

డ௫
 =0                                                      (30) 

Solving the equation (28) with the initial condition (29), 
yields: 
డ௩బ
డ௧
െ

డ௨బ
డ௧

ൌ 0, ଴ݒ ൌ ଴ݑ ൌ cos	ሺݔߨሻ	  
          
ଵݒ߲
ݐ߲

െ
∂ଶݒ଴
ଶݔ∂

ൌ 0, ଵݒ ൌ 	െπଶ cosሺπxሻ t, ,ଵሺxݒ 0ሻ ൌ 0	 

 
ଶݒ߲
ݐ߲

െ
∂ଶݒଵ
ଶݔ∂

ൌ 0, ଶݒ ൌ ሻݔߨሺ	ସcosߨ
ଶݐ

2!
,	 

And we can deduce the remaining components as: 
 

ଷݒ ൌ െߨ଺ cosሺݔߨሻ
௧య

ଷ!
, . . , ௡ݒ ൌ ሺെ1ሻ௡ߨଶ௡cos	ሺݔߨሻ

௧೙

௡!
		,(32)  

 
Using equations in the above, we get: 
 

,ݔሺݑ ሻݐ ൌ cos	ሺݔߨሻ	ሺ1 െ
ݐଶߨ
1!

൅
ሺߨଶݐሻଶ

2!
െ
ሺߨଶݐሻଷ

3!
൅ ⋯ሻ	 

 
And finally the approximate solution is obtained as : 
,ݔሺݑ ሻݐ ൌ ݁ିగ

మ௧cos	ሺݔߨሻ                                             (33)                   
                                            

C. Example 3 

As a last example, consider the following problem: 
௧ݑ ൌ ௫௫ݑ ൅ ሺߨଶ െ 1ሻeି୲ cosሺπxሻ ൅ 4x െ 2,				                 (37) 
 0 ൑ ݔ ൑ 1, ݐ ൐ 0      
With the initial condition 
,ݔሺݑ 0ሻ ൌ cosሺݔߨሻ ൅  ଶ                  (38)ݔ
And the boundary conditions: 
,ሺ0ݑ ሻݐ ൌ ݁ି௧ ,u(1,t)=-݁ି௧ ൅ ݐ4 ൅ 1    
According to the HPM, we have: 

,ݒሺܪ ሻ݌ ൌ ሺ1 െ ሻ݌ ቀ
ப௩బ
ப୲
െ

ப௨బ
ப୲
ቁ ൅ ݌ ቀ

ப௩	

ப୲
െ

பమ୴

ப୶మ
െ fቁ ൌ 0		 (39) 

Where ݂ ൌ ሺߨଶ െ 1ሻ݁ି௧ ൅ ݔ4 െ 2 
By equating the terms with the identical powers of , yields 

଴݌ :		
డ௩బ
ப୲
െ

డ௨బ
ப୲

ൌ 0,
ப௩బ
ப୲
ൌ 0, ଴ݒ ൌ cosሺݔߨሻ ൅         ଶ        (40)ݔ
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ଵ݌ :			
ଵݒ߲
∂t

െ
߲ଶݒ଴
ଶݔ߲

ൌ 0, ,ݔଵሺݒ 0ሻ 	ൌ 0,		 

ଵݒ߲
∂t

ൌ 4x ൅ cosሺπxሻ ሺെπଶ ൅ ሺπଶ െ 1ሻeି୲ሻ 

 
ଵݒ ൌ ݐݔ4 ൅ cosሺݔߨሻ ሺെߨଶݐ ൅ ሺߨଶ െ 1ሻሺ1 െ ݁ି௧ሻሻ 
 

ଶ݌ :			
ଶݒ߲
∂t

െ
ଵଶݒ߲

ଶݔ߲
ൌ 0, ,ݔଶሺݒ 0ሻ 	ൌ 0,		 

 
డ௩మ
ப୲
ൌ cosሺπxሻ ሺπସt െ πଶሺπଶ-1)(1-݁ି௧ሻሻ 

Continuing  like-wise we get: 

ଶݒ ൌ cosሺݔߨሻ ሺሺߨସ െ ଶሻሺ1ߨ െ
௧

ଵ!
െ ݁ି௧ሻ ൅

ሺగమ௧ሻమ

ଶ!
) 

ଷݒ ൌ cosሺݔߨሻ ሺሺߨ଺ െ ସሻቆ1ߨ െ
ݐ
1!
൅
ଶݐ

2!
െ ݁ି௧ቇ െ

ሺߨଶݐሻଷ

3!
ሻ 

ସݒ ൌ cosሺݔߨሻ ሺ(଼ߨ െ ଺ሻሺ1ߨ െ
௧

ଵ!
൅

௧మ

ଶ!
െ

௧య

ଷ!
-݁ି௧ሻ ൅

ሺగమ௧ሻర

ସ!
ሻ 

 And so on we then have:  

ହ௛௣௠ݑ ൌ ଶݔ ൅ ݐݔ4 ൅ cosሺݔߨሻ ሾ଼ߨሺ1 െ
௧

ଵ!
൅

௧మ

ଶ!
െ

௧య

ଷ!
-

݁ି௧ሻ ൅ ݁ି௧ሿ                                                                    (41) 
From  this result we deduce that the series solution 
converges to the exact one : 
,ݔሺݑ ሻݐ ൌ ଶݔ ൅ ݐݔ4 ൅ cos	ሺݔߨሻ݁ି௧        
 
Example 4 
Once again, consider the non-homogeneous heat equation 
with non-homogeneous Neumann boundary conditions: 

௧ݑ ൌ ௫௫ݑ ൅ ሺ
గమ

ଶ
 )݁

షഏమ

మ
௧ cosሺݔߨሻ ൅ ݔ െ 2           

 0 ൑ ݔ ൑ 1, ݐ ൐ 0                                            (42) 
,ݔሺݑ 0ሻ ൌ cosሺݔߨሻ ൅ ,௫ሺ0ݑ ,ଶݔ ሻݐ ൌ  ݐ
,௫ሺ1ݑ ሻݐ ൌ 2 ൅     ݐ
The theoretical solution is: 

,ݔሺݑ  ሻݐ ൌ ଶݔ ൅ ݐݔ ൅ ݁
షഏమ

మ
௧cos	ሺݔߨሻ. 

 According to HPM, we get the components of (15): 
଴௧ݒ  െ ଴௧ݑ ൌ 0, ଴ݒ ൌ cosሺݔߨሻ ൅  ଶ                          (43)ݔ

ଵ௧ݒ ൌ ଴௫௫ݒ ൅
గమ

ଶ
݁
షഏమ

మ
௧cosሺݔߨሻ ൅ ݔ െ 2, ,ݔଵሺݒ 0ሻ ൌ 0 

ଵ௧ݒ  ൌ ݔ ൅ cosሺݔߨሻ ሺെߨଶ ൅
గమ

ଶ
݁
షഏమ

మ
௧ሻ 

ଵݒ ൌ ݐݔ ൅ cosሺݔߨሻ ሺ1 െ ݐଶߨ െ ݁
షഏమ

మ
௧ሻ                        (44) 

ଶ௧ݒ ൌ ଵ௫௫ݒ ൌ cosሺݔߨሻ ሺെߨଶ ൅ ݐସߨ ൅ ଶ݁ߨ
షഏమ

మ
௧ሻ  

ଶݒ ൌ cosሺݔߨሻ ሺ2 െ ݐଶߨ ൅
ሺగమ௧ሻమ

ଶ!
െ 2݁

ഏమ

మ
௧) 

ଷ௧ݒ ൌ ଶ௫௫ݒ ൌ cosሺݔߨሻ ሺെ2ߨଶ ൅ ݐସߨ െ
ଶݐ଺ߨ

2!
൅ ଶ݁ߨ2

ିగమ
ଶ ௧ሻ 

ଷݒ ൌ cosሺݔߨሻ ሺ4 െ ݐଶߨ2 ൅
൫గమ௧൯

మ

ଶ!
െ

ሺగమ௧ሻయ

ଷ!
െ 4݁

షഏమ

మ
௧ሻ    (45) 

ସ௧ݒ ൌ ଷ௫௫ݒ ൌ cosሺݔߨሻ ሺെ4ߨଶ ൅ ݐସߨ2 െ ଶߨ
ሺߨଶݐሻଶ

2!

൅ ଶߨ
ሺߨଶݐሻଷ

3!
൅ ଶ݁ߨ4

ିగమ
ଶ ௧ሻ 

ସݒ ൌ cosሺݔߨሻ ሺ8 െ 4ሺߨଶݐሻ ൅ ሺߨଶݐሻଶ െ
ሺగమ௧ሻయ

ଷ!
൅

ሺగమ௧ሻర

ସ!
െ

8݁
షഏమ

మ
௧ሻ                                                                      (45) 

And so on, we obtain the approximate solution as follows: 
ݑ ൌ lim௣→ଵ ݒ ൌ ଴ݒ ൅ ଵݒ ൅ ଶݒ ൅ ଷݒ ൅ ସݒ ൅⋯  
Or 

,ݔሺݑ ሻݐ ൌ ଶݔ ൅ ݐݔ ൅ cosሺݔߨሻ ݁
ିగమ
ଶ ௧

൅ 15൞ሺ1 െ
൬
ଶߨ
2 ൰ݐ

1!
൅
ሺ
ଶߨ
2 ሻଶݐ

2!
െ
ሺ
ଶߨ
2 ሻଷݐ

3!

൅
ሺ
ଶߨ
2 ሻସݐ

4!
െ.൅⋯ . ሻ െ ݁

ିగమ
ଶ ௧ൡ 

And this leads to the following solution 

,ݔሺݑ ሻݐ ൌ ଶݔ ൅ ݐݔ ൅ cos	ሺݔߨሻ݁
షഏమ

మ
௧  

This solution coincides with the exact one. 
 
Table 1   Example 1                   
݄௫ ൌ 0.1	, ݄௧ ൌ 0.004	,   3-Iterates 
௘௫ݑ௛௣௠     หݑ               ௘௫ݑ                 ௜ݔ െ                 ௛௣௠หݑ
 0.0        0. 0                0.0                 0.0 
 0.1        0.2971          0.2971            0.0   
 0.2        0.05650        0.5650            0.0                                   
 0.3        0.7777          0.7777            0.0 
 0.4        0.9142          0.9142            0.0                   
0.5         0.9613          0.9613            0.0 
0.6         0.9142          0.9142            0.0 
0.7         0.7777          0.7777            0.0 
0.8         0.5650          0.5650            0.0 
0.9         0.2971          0.2971            0.0 
1.0         0. 0                0.0                  0.0 
 

 
Fig.1.Variation of the approximate solution for different values of x and t 

 
 
Table 2   Example 2 

݄௫ ൌ 0.1	, ݄௧ ൌ 0.004,  3-Iterates 
௜ݔ ௘௫ݑ௛௣௠      หݑ                ௘௫ݑ        െ  ௛௣௠หݑ
0.0    0.9613        0.9613               0.0 
0.1     0.9142       0.9142               0.0 
0.2     0.7777       0.7777               0.0 
0.3     0.5650       0.5650               0.0 
0.4     0.2971       0.2971               0.0      

0.5   0.0          0.0               0.0 
0.6   -0.2971      -0.2971               0.0 
0.7   -0.5650      -0.5650               0.0 
0.8   -0.7777      -0.7777               0.0 
0.9   -0.9142      -0.9142               0.0 
1.0   -0.9613      -0.9613               0.0 
 

 
                                                                                                        

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xt

u

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

 
Fig.2. Variation of  the approximate  solution for different values of x and t 
 
 
Table 3 Example 3 

݄௫ ൌ 0.1, ݄௧ ൌ 0.004,				2 െ  ݏ݁ݐܽݎ݁ݐܫ
௘௫ݑଶ௛௣௠           หݑ            ௘௫ݑ     ௜ݔ െ   ଶ௛௣௠หݑ
0.0  0.9960         0.9960                 0.0 
0.1   0.9589        0.9589                 0.0 
0.2   0.8490        0.8490                 0.0 
0.3   0.6802        0.6802                 0.0 
0.4   0.4742        0.4742                 0.0 
0.5   0.2580        0.2580                 0.0 
0.6   0.0618        0.0618                 0.0 
0.7   -0.0842     -0.0842                 0.0 
0.8   -0.1530     -0.1530                 0.0 
0.9   -0.1229     -0.1229                 0.0 
1.0    0.0200       0.0200                 0.0 
	

 
Fig.3. Variation of approximate solution for different values of x and t 
 
Table 4 Example 4 
 ݄௫ ൌ 0.1, ݄௧ ൌ 0.004							3 െ  ݏ݁ݐܽݎ݁ݐܫ
௘௫ݑ௛௣௠                 หݑ               ௘௫ݑ   ௜ݔ  െ  ௛௣௠หݑ
0.0 0;9805     0.9805                         0.0                 
0.1 0.9429     0.9429                         0.0 
0.2 0.8340     0.8340                         0.0 
0.3 0.6675     0.6675                         0.0 
0.4 0.4646     0.4646                         0.0 
0.5 0.2520     0.2520                         0.0 
0.6 0.0594     0.0594                         0.0 
0.7 -0.0835   -0.0835                        0.0                  
0.8 -0.1500   -0.1500                        0.0 
0.9 -0.1189   -0.1189                        0.0 

 
Fig;4;Variation of the approximate solution for different values of  x and t 
 
 

IV. CONCLUSION 
 

The aim of this paper  has been to construct an approximate 
solution  to the heat conduction problem with Dirichlet and  
Neumann boundary conditions using homotopy perturbation 
method (HPM).  The problems solved using the (HPM) gave 
satisfactory results in comparison to those recently obtained 
by other searchers using finite difference schemes. The case 
studies gave sufficiently good agreements with the exact 
solutions.  These results are  obtained  without using 
linearization, discretization, transformation or restrictive 
assumptions. The results demonstrate the stability and 
convergence of the method.The obtained solutions are 
shown graphically. Moreover, the method is easier to 
implement than the traditional techniques. It is worth 
mentioning that the technique and ideas presented in this 
paper can be extended for finding the analytic solution of 
the obstacle, unilateral and contact problems encountered in 
mathematical and engineering sciences. 
 

References 

 
[1] A. Cheniguel and M. Reghioua, On the Numerical 

Solution of Three-Dimensional Diffusion Equation 
with an Integral Condition, Proceedings of the World 
Congress on Engineering and Computer Science 2013 
Vol II WCECS 2013, 23-25, October, 2013, San 
Francisco, USA, pp1017-1027 

[2] A. Cheniguel and M. Reghioua, Homotopy Perturbation 
Method for Solving Some Initial Boundary Value 
Problems with Non Local Conditions, Proceedings of 
the World Congress on Engineering and Computer 
Science 2013 Vol I WCECS 2013, 23-25 October, 
2013, San Francisco, USA, pp572-577 

[3] D. Yambangwai and N.  Moshkin, Deferred Correction 
Technique to Construct High-Order Schemes for the 
Heat Equation with Dirichlet and Neumann Boundary 
Conditions, Engineering Letters, 21:2, pp61-67, 21 
May 2013 

[4] A. Cheniguel, Numerical method for solving Wave 
Equation with non local boundary conditions, 
Proceedings of the International MultiConference of 
Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13-15, 2013, Hong Kong, 
pp1190-1193 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-1

-0.5

0

0.5

1

xt

u

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-10

-5

0

5

10

15

xt

u

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-0.5

0

0.5

1

1.5

2

xt

u

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

[5] A. Cheniguel, Numerical Simulation of Two-
DimensionalDiffusion Equation with Non Local 
Boundary Conditions. International Mathematical 
Forum, Vol. 7. 2012, no. 50, 2457-2463 

[6] A. Cheniguel, Numerical Method for Solving Heat 
Equation with Derivative Boundary Conditions, 
Proceedings of the World Congress on Engineering 
and Computer Science 2011 Vol II WCECS 2011. 
October 19-21, 2011. San Francisco. USA, pp983-985 

[7] A. Cheniguel and A. Ayadi, Solving Non-
Homogeneous Heat Equation by the Adomian 
Decomposition Method. International Journal of 
Numerical Methods and Applications Volume 4, 
Number . 2010. pp. 89-97 

[8] A. Cheniguel, Numerical Method for Non Local 
Problem. International Mathematical Forum. Vol. 6. 
2011. No.14. 659-666. 

[9] M. Siddique. Numerical Computation of Two-
Dimensional  Diffusion Equation with Non Local 
Boundary Conditions. IAENG International Journal of 
Applied Mathematics. 40:1. pp26-31, 2010. 

[10] M. A. Rahman. Fourth-Order Mmethod for Non-
Homogeneous Heat Equation with Non Local 
Boundary Conditions, Applied Mathematical Sciences, 
Vol. 3,2009, no.37, 1811-1821; 

[11] Xiuying Li,Numerical Solution of an Initial Bounday 
Value Problem with Non Local Condition for the 
Wave Equation, Mathematical Sci., Vol. 2. No. 3 
(2008) 281-292. 

[12] M. Ramezan et al. Combined Finite Difference and 
Spectral Methods for Numerical Solution of 
Hyperbolic Equation with an Integral 
Condition.(WWW.Interscience. Wiley.com). DOI 10. 
1002/num.20230 Vol 24 (2008) 

[13] Jichao Zhao and Robert M. Corless, Compact Finite 
Difference Method for Integro-Differentiatl Equations, 
Applied Mathematics and Computation, Vol 177, 
Issue1, June 2006. 

[14] He. J. H. 2006a. Homotopy Perturbation Method for 
Solving Boundary Value Problems. Phys. Lett. A 
350:87-88. 

[15] M. A. Akram and M.A. Pasha,Numerical Method for 
the Heat Equation with Non Local Boundary 
Condition, Int. Jr. Information and Systems Sciences, 
Vol 1, Number 2 (2005) 162-171 

[16] H. Sun and J. Zhang, A highly Accurate Derivative 
Recovery Formula to Integro-Differential Equations , 
Numerical Mathematics Journal of chineese 
Universities, 2004 Vol 26 (1). pp. 81-90 

[17] M. Dehghan.. On the Numerical Solution of the 
Diffusion Equation with a Non Local  Boundary 
Condition. Mathematical Problems In Engineering 
200:2(2003), 81-92 

[18] He. J. H. 2003. A simple Perturbation Approach to 
Blasius Equation. Appl. Math. Comput. 140:217-222. 

[19] W. T. Ang. A method for Solution of the One-
Dimensional Heat Equation subject to Non Local 
Conditions; SEA Bull. Math. 26 (2) (2002) 185-191. 

[20] A. V.Goolin, N.I. Ionkin and V; A. Morozova, 
Difference Schemes with Non Local Boundary 
Condition, Comp. Methods Appl. Math, 11 (2001), 
No. 1, pp.62-71 

[21] Zhi-Zhung Sun, a High-Order Diffrence Scheme for 
Non Local Boundary Value-Problem for the Heat 

Equation, Computaional Methods in Applied 
Mathematics, Vol.1(2001), No. 4, pp. 398-414. 

[22] He. J. H. 2000, A coupling Method of Homotopy 
Technique for Non Linear Problems. Int. J. Non Linear 
Mech, 35:37-43. 

[23] He. J. H. 1999.  Homotopy Perturbation Technique. 
Comput. Methods Appl. Mech. Eng. 178(3/4):257-
262. 

[24] A. B. Gumel, On the Numerical Solution of  the 
Diffusion Equation subject to the Specification of 
Mass, J. Auster. Math. Soc. Ser. B, 40 (1999) 475-483. 

[25] A. B. Gumel. W. T. Ang. And F. H. Twizell.”Efficient 
Parallel Algorithm for the Two-Dimensional Diffusion 
Equation subject to Specification of Mass” Inter. J. 
Computer.  Math. Vol 64, pp. 153-163 (1997). 

[26] G. Ekolin, Finite Difference Methods for a Non Local 
Boundary-Value Problem for the Heat Equation, Bit. 
31 (1991)  pp. 245-261. 

[27] Y. Lin and S. Wang,”A numerical Method for for the 
Diffusion Equation with Non Local Boundary 
Conditions”, Int.J. Eng.Sci. 28 (1990), 543-546; 

[28] Cannon. J. R. and Van der Hoek. J. Diffusion 
Equation subject to the Specification of Mass, J. Math. 
Anal. Appl, 115. pp. 517-529. 

[29] Cannon. J. R. The Solution of Heat Equation subject 
to the Specification of Energy. Quart. Appl. Numer. 
Math. 21 (1983) 155-160. 

[30] A. Friedman. Monotonic Decay of Solutions of 
Parabolic Equations with Non Local Boundary 
Conditions. Quart. Appl. Math, 44 (1983), pp. 401-407 

 
 
 
 
 
 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014




