
 

  
Abstract— Among many functional structures, the low shear 
stiffness type shape memory alloy (SMA) honeycomb structure 
is considered as an ideal candidate for actuator, sensor, and 
shape control devices. This work extends conventional SMA 
computational models with essential functions such as 
consideration of twinned martensite and enhancement for 
hysteresis behavior model. Using these improved models, we 
conducted numerical studies related to low shear stiffness type 
SMA honeycomb structures. Fundamental studies related to 
tensile and compressive loading behavior were conducted first, 
followed by simulation of the honeycomb core actuator 
considering simultaneous changes in temperature and stress 
level. In the field of simulation, this is the first comprehensive 
study related to SMA honeycomb structures. Both model 
validation and new discoveries could be expected from this 
work. 
 

Index Terms— computational mechanics, shape memory 
alloy, constitutive equation, honeycomb structure, honeycomb 
core actuator 
 

I. INTRODUCTION 
Owing to complicated behaviors of shape memory alloy 

(SMA), applications of SMA actuators so far have been 
limited in relatively simple components, such as SMA bars, 
wires and beams. As the understanding of SMA's material 
properties are getting deeper and deeper in SMA research 
community, SMA applications with further complex 
structures have been reported from different sources. Among 
those reports, applications of SMA in honeycomb structures 
have been attracting attentions recently. Those reports 
include Hassan et al.[1], Michailidis et al. [2], and Okabe et al. 
[3]. The research on SMA honeycomb as an actuator is a 
major topic in this paper. To fully support simulations in 
SMA honeycomb actuators, we have proposed two 
improvements on conventional SMA computational models, 
focusing on SMA behaviors in low temperature environment 
and hysteresis environment. Implementations of this 
improved model include a simulation on SMA honeycomb 
tensile or compressive behavior, and a simulation on SMA 
honeycomb core actuators.   
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II. COMPUTATIONAL MODEL 
An improved model in this paper is based on the SMA 

computational model proposed by Brinson [4] and Toi et al. 
[5]. Incremental form of stress-strain relation and phase 
transformation mechanism in this paper, as well as units and 
symbols are identical to Toi et al. [5] model. 

Thermo-mechanical characteristics of SMA can be found 
in the temperature-stress-phase graph of Fig. 1. Three major 
phases exist: austenite, twinned martensite, and detwinned 
martensite. Other than material parameters and strain, stress 
ߪ  in SMAs is mainly determined by temperature T and 
martensite phase fraction ߦ . Incremental form of the 
stress-strain relationship has been developed as follows. 

( )seseD εεσ Δ+Δ=Δ                                                        (1) 
where ∆ߪ and ∆ߝ are stress and strain increments. Functions 
of stiffness ܦ௦௘ and ∆ߝ௦௘  are as follows: 
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where E corresponds to the elastic tensor, ߗ  is the phase 
transformation tensor, and ߠ  is associated with the 
thermoelastic tensor. Martensite phase fraction ߦ is divided 
into two parts: temperature-induced martensite fraction ்ߦ 
and stress-induced martensite fraction ௌߦ  . Detailed 
descriptions of this model can be found in Brinson [4] and Toi 
et al. [5].  

The temperature-stress-phase diagram of SMA is plotted 
in Fig. 1. This diagram shows major phase transformations in 
all temperature range. However, in most conventional models, 
only phase transformations between detwinned martensite 
phase and austenite phase are considered. To fill the blank in 
this diagram, we proposed phase transformation mechanism 
for phase transformation (crystallographic reorientation 
process) between detwinned martensite and twinned 
martensite. This process occurs in the environment when 
temperature is lower than martensite phase transformation 
finishing temperature, which is a possible working 
environment for SMA actuators. 

A typical phase transformation route is marked as a 
vertical arrow in Fig. 1. The proposed irreversible phase 
transformation mechanism from twinned martensite to 
detwinned martensite phase is as follows: 
(i) When ܶ ൏ ௖௥௜௧.௦௧௔௥௧ߪ ௙ andܯ ൏ ఙವು
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Fig. 8 Shape of OX type honeycomb structure and detwinned 
martensite phase fraction distribution after unloading 

 

B. Simulation on SMA honeycomb structure behavior under 
compressive loading 

A major difference between OX type and auxetic type 
honeycombs is the cell internal angle. This difference imparts 
several special features to auxetic-type honeycombs. A 
negative Poisson ratio is one example. Localized deformation 
in OX type honeycombs is not obvious either. These 
behaviors are reproduced in the following simulations.  

In compressive behavior simulation, the influences of 
structural imperfection on structure stiffness and stability 
have been considered. Based on random dislocation of cell 
joints, the following three variants of the auxetic type 
structure have been generated: perfect, 1% imperfect, and 
10% imperfect. The initial shapes and boundary conditions of 
the auxetic type honeycomb structures are shown in Fig. 9 [2]. 
The bottom layer of the structure is fixed in all directions. 
Compression forces are applied on the top layer. The whole 
process involves a full loading and unloading cycle.  

According to the average stress-strain simulation results 
shown in Fig. 10, no obvious instability was observed in 
imperfect honeycombs. However, stiffness weakening was 
observed for the 1% imperfect and the 10% imperfect 
honeycombs. 
 

 
 

Fig. 9  Initial shape of auxetic type honeycomb structure: perfect 
(left), 1 

Fig. 11 contains the shape and martensite phase fraction 
graph under maximum loading. 

Fig. 12 shows the shape and martensite phase fraction 
graph after unloading. Owing to superelasticity, the 
martensite phase recovered back to the austenite phase after 
unloading, with minor residual martensite phase. 

 

Fig. 10  Auxetic type honeycomb structure compressive behavior: 
average stress-strain curve 

 

 
 
Fig. 11  Auxetic type honeycomb structure’s martensite phase 
distribution (unit: 1) under maximum loading: perfect honeycomb 
structure (left), 
 

 
 
Fig. 12  Auxetic type honeycomb structure’s martensite phase 
distribution (unit: 1) after unloading: perfect honeycomb structure 
(left), 
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In Fig. 16, comparison between simulation and 
experimental result has been provided. By using special 
treatment in phase transformation condition, we successfully 
avoided instability during SMA actuator simulation. This 
simulation proved the validity of this new model. 

IV. CONCLUSION  
Two improvements to conventional SMA computational 

models have been introduced in this paper. One is twinned 
martensite phase support for SMA simulation in low 
temperature. Another is special treatment in phase 
transformation condition for SMA simulation in hysteresis 
environment. Both improvements are essential for SMA 
actuator simulations. Three successful numerical examples 
including SMA honeycomb structure tensile/compressive 
behavior and SMA honeycomb core actuator proved the 
validity of those improvements with additional physical 
findings. Further implementations of the new model are 
expected. 
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