
 

 

Abstract—Two effective iterative methods are constructed 

to solve the linear matrix equation of the form .    

Some properties of a positive definite solution of the linear 

matrix equation are discussed. Necessary and sufficient 

conditions for existence of a positive definite solution are 

derived for 1   and 1 . Several numerical examples 

are given to show the efficiency of the presented iterative 

methods. 

 

Index Terms—Algorithm, Fixed-Point-Iteration, 

linear-Matrix-Equation, Numerical-Analysis, Positive-

Definite -Solutions, Two-Sided-Iteration. 

 

I. INTRODUCTION 

Considering the linear matrix equation 

   ,                                                            (1)  

 with unknown matrix X,  where nnC  ,   is the identity 

matrix of order n . The equation (1) could be viewed as a 

special case of the symmetric matrix equations 

.Qmm11                                              (2)  

Where Q is a positive definite matrix  [15]. There are 

many linear matrix equations which were studied by some 

authors [2],[3],[8]-[11],[13]-[15],[18]-[21],[24]. Two effe- 

ctive iterative methods for computing a positive definite 

solution of this equation are proposed. The first one is fixed 

point iteration method and the second one is two sided 

iteration method of the fixed point iteration method. These 

two iterative methods are used for computing a positive 

definite solution of nonlinear matrix equations, see [1],[4]-

[7],[12],[16],[17],[22],[23].  

 

This paper aims to find the positive definite solution of 

the matrix equation (1) for all values of  1 , for this  

purpose we investigated two iterative methods, the first one 

is based on fixed point iteration and the second is based on 

two sided iteration method, also to derive necessary and 

sufficient conditions for the existence of the solution of 

equation (1).  
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  Section II describes some properties of positive definite 

solutions of the equation (1). Section III, presents a first 

iterative method (Fixed point iteration method) for 

obtaining the solution of our problem. Also, it presents 

theorems for obtaining the necessary and sufficient 

conditions for the existence of a solution of matrix equation 

(1). Section IV represents the second iterative method (Two 

sided iteration method of the fixed point  iteration method) 

for  obtaining the solution of the problem and theorems for  

the sufficient conditions for the existence of a positive 

definite solution of (1). Numerical examples in Section V  

illustrate the effectiveness of these  methods. Conclusion 

drawn from the results obtained in this paper are in section 

VI. 

 

The notation 0Χ  means that   is a positive definite 

Hermitian matrix and ΒΑ  is used to indicate that 

0ΒΑ . *A   denotes the complex conjugate transpose of 

A . Finally, throughout the paper, .  will be the spectral 

norm for square matrices unless otherwise noted. 

II. SOME PROPERTTIES OF THE SOLUTIONS 

This section discusses some properties of positive 

definite solutions of the matrix equation (1) . 

 
1) Theorem  

 If  m  and  M  are the smallest and the largest eigen- 

values of a solution   of  (1) ,  respectively, and   is an 

eigenvalue of A ,  then 
m

m11 








. 

Proof  

 Let v  be an eigenvector corresponding to an eigen-value 

  of the matrix A  and
 

1v  . Since the solution   of. 

(1) is a positive definite matrix, then ,1m0    

  ,v,vv,vv,v,v,vv,vv,v      

1v,vv,v   and    .1v,vv,v
2

   

.
m

m11 








  ly,Consequent  

2) Theorem  
 If   (1) has a positive definite solution   ,then 

   
 1

                                                              

Proof 

Since   is a positive definite solution of  (1), then 

,,     i.e.   .
1                                        
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Thus we have     .
1

    

Consequently,   .
1

 
    

                              
III. THE FIRST ITERATION METHOD (FIXED POINT 

ITERATION METHOD) 

This section establishes the first iterative method which 

is suitable for obtaining a positive definite solution of (1) 

when 1.   

A. Algorithm  

Take  .αΙΧ 0  For ,,....2,1,0k  compute  

.ΑΧΑΙΧ k

*

1k 
                                                (3)  

Our theorems give necessary and sufficient conditions 

for the existence of a positive definite solution of (1). 

 

1) Theorem   

 Let the sequence  
k  be determined by the Algorithm 

A and  1
2

                                                                (4)  

If (1) has a positive definite solution, then  
k

 
converges to ,  which is a solution of  (1) for all numbers 

1 . Moreover,  if 0k   for every k ,  then (1) has a 

positive definite solution. 

Proof.  
Let (1) has a positive definite solution.  From Algorithm 

A, we have 

,10     

i.e.,,1120    

.120    To prove 1s     if 01s    for all s, we 

have  01ss





  .1    We 

will find the relation between 5432 ,,,  . Since 

21   , then 3212   

 
and 

   34  32    , since 13   , then 

   34   21    and 

.3245      

Also, since  34   , then 

.4345    Thus, we get 

..135420     

We will prove that ,s1s0     if we have 

s1s0    ,  thus  
 

.s1s0s1s0   







 
Also, we can prove that ,1ss0    if we have 

1ss0   ,  



  s1s0  

.1ss0    Therefore, we have  

 2r2r20  ,11s23s2  

   for 

every positive integers r,s. Consequently, the subsequences 

  
1s2r2 ,   are monotonic and bounded, and s2

s
lim


, 

1s2
s
lim 


   exist.  

To prove these sequences have a common limit, we have 

 

2 2 1 2 1 2

2
2 2 1 2 2 1 .

s s s s

s s s s

 
 


 

            

        

 

Let  1q
2

  , and we get   

 

2
2 2 1 2 2 1 2 2 2 1

2 2
0 1.... 2 1 .

s s s s s s

s s

q q

q q 

          

      
  

Since  1q    and   012  , 01s2s2    as 

s , that is,  
r2

 
and  

1s2   have the same limit   

and ,....2,1s,1s2s2     . Taking the limit of the 

sequence  
k  generated by Algorithm A leads to  

,A*AI   which is a solution of  (1). Assuming that 

0k   for every k . We proved that the sequences have a 

common limit  . Since 0k1k  

  , taking the 

limits of both sides as k  approaches to   , we get 

.0,A*AI    Hence (1) has a positive definite 

solution. 

 

2) Theorem  

  Let
 k  be  the iterates in Algorithm A. If  1q

2

  .  

Then )12(qk

k   , for all real number  1,      

where   is a positive definite solution of  (1) . 

Proof  
 From previous Theorem it follows that the sequence  (3) 

is convergent to a positive definite solution   of (1).  

From  (3) and ,   we have  

  1kk 

  . Thus,  

 
2

1 1 1

2
2

0

               ,    

           .

k k k k

k

k

q

q after k steps

q


  



                 

    

   

From Theorem 1, we  have  

 12qq k

0

k

k   . 

 

3) Corollary 

 Suppose that  (1) has a solution. If  1q
2

   , then 

}{ k converges to   with at least the linear convergence 

rate.   
Proof 

We  have    1k

2

1k . Choose a real 

number  satisfying .1  Since ,k    there exists 

a N such that for any .Nk   .   Hence 

.k

2

1k  
 

 

4) Theorem  

If (1) has a positive definite solution and after k  iterative 

steps of Algorithm A, we have ,1k

1

k   

  then    

,
2

kk     where k is the iterates in 

Algorithm A.   

Proof 
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1k k k k k k
  

               

                          1 .k k


                                (5)  

Take the norms of both sides of  (5)  

.
2

1k

1

kk

2

kk   

   For 
 

1k

1

k 

  , Xk   as  k . 

Consequently, 01k

1

k  

   as  k , that is, 

,1k

1

k   

  for 0 and  from theorem 1,   k  

for every ,k  thus  .
2

kk     

IV. THE SECOND ITERATION METHOD (TWO 

SIDED ITERATION METHOD OF THE FIXED POINT 

ITERATION METHOD) 

This section establishes the second iterative method 

which is suitable for obtaining a positive definite solution 

of (1) . 
 

B. Algorithm  

Take  ., 00    For ,,....2,1,0k  compute  

 k1k



   and .k1k  

                           (6)   

                                   
Next theorems provide necessary and sufficient conditi- 

ons for the existence of  a solution of (1)  when 1Α  . 

1) Theorem  

  If  (1) has a positive definite solution, the sequences  
kΧ  

and  
kΥ  

are determined by  Algorithm B   and 

1Α
2

 ,                                                                         (7)  

then  the two sequences  
k ,  

k  converge to the positive 

definite solution   for all real numbers   ,
  

such that 

0.     On the other hand, if 0, kk   for every k , 

1
2

  and 0 , then (1) has a positive definite 

solution. 

Proof  

 First, considering sequence (6) ,   for 
21 ,  we have  

   1210 ΑαΑΙΧΙαΙΧ

,1   i.e., .120    To prove 1s    if 

01s    for all s, hence 

 



  01ss 1   . We will 

find the relation between 5432 ,,,  . Since 
21   , 

then 3212    and 

,3234    since 13   , then 

2134     and 

.3245     Also,  since 34   , 

then 4345    . Thus, we get 

.135420   We will 

prove that s1s0    , if we have s1s0     , thus 

.s1s0s1s0   





  

Also, we can prove that 1ss0    , if we have 

1ss0    , thus  

 



  s1s0 .1ss0    

Therefore, we have 

,11s23s22r2r20  

   for 

every positive integers r,s . Consequently, the  

subsequences   
1s2r2 ,   are monotonic and bounded, 

and s2
s
lim


and  

1s2
s
lim 


 exist. 

For the sequence  
k , similarly, we can prove that  

,11s23s22r2r20  

   for every 

positive integers r,s. 

Consequently, the subsequences   
1s2r2 ,   are monotonic 

and bounded, and s2
s
lim 


 
and 

1s2
s
lim 


 exist. 

Finally, from (6)  we have 00    and
  

,1001      i.e. , .1100    

Also, .2112      

Similarly, 4433 ,   . Since 1010 ,  
 
, then 

2101     and 

   01 .21    Also, since  
12    ,then 

.2123    From (6)  we have 

210 YII    .Therefore,

3201     and 

4312    . Consequently, 

3201     and 

4312    . Consequently, 

.1133442200     

We will prove that s1s0    , if we have
 

,s1s0       

thus .01ss1ss   





  

Also,  we can prove that ,ΥΧΥ 1ss0   if  we have 

1ss0 ΧΥΥ  , thus  

.ΥβΙΙΧΑΧΑΙΑΥΑΙΥ 0s1ss1s  



   

Therefore, we have 

1s21s23s23s22r22r2r2r200   

11   , for every positive integers r,s. 

Finally, to prove that the subsequences   
1s2r2 ,    have 

the same limit, we have 

 

2 2 1 2 1 2

2
2 2 1 2 2 1 ,

s s s s

s s s s

 
 


 

             

       

   

from (7) , it follows that 1q
2

  , and we get 

 .12qq..........q s2

10

s2

s21s21s2s2   

Therefore, we have for the limit   of the subsequences 

  ,, 1s2r2   ,....2,1s,1s2s2   .  

Therefore, also we have for the limit   of the 

subsequences   
1s2r2 ,    

,....2,1s,1s21s2s2s2    . 

Taking limit in the Algorithm B  leads to   . 

If  0, kk   for every k . We proved that the sequences 

have the same limit .  Since 0k1k  

    and 

0k1k  

  , hence   and (1) has a 

positive definite solution. 
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2) Theorem. 

  For the Algorithm  B , if there exist a positive  real 

numbers
 
 and   such that   and 1q

2

  , then 

),12(qk

k     12qk

k     and 

 12qk

kk   ,  where   is a positive 

definite  solution of  (1) and ,...2,1,0k,, kk   are defined 

in (6) . 
Proof.  

From previous Theorem it follows that the sequence (6)  is 

convergent to a positive definite solution  of (1). We  

will compute the norm of the matrices  k  and  

,k  

 1 1

2
1 1 0... .

k k k

k
k kq q

  
 

 

                

           

 

 

From  previous Theorem, we have  

 12qq k

0

k

k   . 

Similarly,  12qq k

0

k

k   .  Also, we have 

.kk    Therefore, 

 12qk

kk   . 

 
3) Corollary 

 Suppose that (1) has a solution. If  1q
2

  , then 

}{ k and }Y{ k converge to   with at least the linear 

convergence rate. 

 

4) Theorem 

  If the  (1) has a solution and after k - iterative steps of the 

Algorithm B,  we have   



1k

1

k  and 

.1k

1

k   

  Then 
2

kk      and 

.
2

kk      

Also, ,
2

kkkk      

where  ,...2,1,0k,, kk   are defined in (6)  and .0   

Proof    

 Since,  1kkkkkk 

    

  .1kk  

   Take the norms of both sides 

2
1

2 21
1                             .

k k k k

k k k 







          

        

 

Similarly, .
2

kk    From Theorem 1, we 

have k1kk1k     and since 

  

 kkkkk1k  and  

  

 kkkkk1k  , then  

.
2

kkkk     

C. Algorithm 

Take .βΙαΙ,ΥΧ 00   For ,,....2,1,0k  compute 

 ΒΧΙΒΧ k1k  


 and   .ΒΥΙΒΥ k1k  


                       (8)     

where 
11 ,
   . 

 

  Next theorems provide  necessary and sufficient 

conditions for the existence of  a solution of (1) when  

1 . 

 

1)   Theorem 

If  (1) has a positive definite solution, the sequences  
k  

and 
 
 

k
 

are determined by the Algorithm C and the 

inequalities 

(i)  BB  and   ,  0 , 

(ii) 1q
2

  ,                                                               (9)  

are satisfied, then  
k ,  

k  converge to a positive  

definite solution  . Moreover,   if 0k    and 0k 
 
for 

every  k ,   ,   and 0,  , then (1) has a 

positive definite solution. 

Proof   

 First, from Algorithm C, we have 

   10   and 

.1120     i.e., 

.120    To prove 1s    if 01s    for all s, 

from Algorithm C. 

101ss   



 . We 

will find the relation between 5432 ,,,  . Since 

21   , then 3212      and 

3234    , since 13   , 

then 2134     and 

3245    . Also  since 

34   , then .ΧΒΧΒΒΒΒΧΒΒΒΧ 4345    Thus, 

we get 
 

.135420      

 We will prove that s1s0     if we have 

s1s0     , thus 

.s1s0  



   i.e. ,
 

.s1s0     Also, we will prove that 1ss0   if 

we have 1ss0    , thus  

.s1s0  



   i.e., 

.1ss0    Therefore, we have 

  ,1

11s23s22r2r20














                                                                            
 

for every positive integers r,s . Consequently,  the 

subsequences    
1s2r2 ,   are monotonic and bounded, 

and s2
s
lim 


, 1s2

s
lim 


  exist. 

 For the sequence  
k , similarly, 

  ,111s23s22r2r20  

   for every 

positive integers r,s . Consequently, the subsequences 

  
1s2r2 ,   are monotonic and bounded, and s2

s
lim 


, 

1s2
s
lim 


   exist. 
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Finally, from (8)  we have 00    and 

.1001     

i.e. .1100     Also, 

.2112     Similarly, 

4433 ,   . Since ,, 1010  
 
 then  

2101      and 

.2101      

Also, since  
12    ,then 

.2123     From (8)  we have  

.210     Therefore, 

3201      and 

.4312     Consequently,  

.1133442200    

We will prove that ,s1s0     if we have
   

s1s0     , 

.01ss1ss   







  

Also, we can prove that 1ss0    .if we have 

1ss0    , 

.0s1ss1s   






 

Therefore, we have 

,111s21s23s23s22r22r2r2r200   

 for every positive integers r,s . 

Finally, to prove that the subsequences   
1s2r2 ,   have the 

same limit, we have 

  .1s2s2

2

1s2s2s21s21s2s2 







  

From  (9) , let 
 

1q
2

  , and we get 

 .12qq...q s2

10

s2

1s2s21s2s2     

Therefore, we have for the limit   of the subsequences 

  
1s2r2 ,  , 

,....2,1s,1s2s2   . 

Therefore, also we have for the limit   of the 

subsequences   
1s2r2 ,    

,....2,1s,1s21s2s2s2    . 

Taking the limit of  (8)   as s  , we have 

    . 

If  0k   and 0k   for every k . We proved that the 

sequences have the same limit  . Since 

  0k1k  

   and
 

  0k1k  

    and 

hence     ,  equation (1) has a positive definite 

solution. 
2) Theorem 

  For the Algorithm C, if there exist positive numbers
 
  

and   such that  0 and the following  two 

conditions are hold 

(i)     and  ,                                           

(ii) ,1q
2

   

then )12(qk

k    ,  12qk

k    and 

 ,12qk

kk   .  where  is a positive 

definite solution of (1) and  ,...2,1,0,k.ΥΧ kk   is defined in 

Algorithm C. 

Proof.  From Theorem 1,    it follows that the sequence  (8)  

is convergent to a positive definite solution  X of  (1). We 

compute the norms of the matrix  k  and ΧΥk  . We 

obtain

 

  1k1kk 





 

 .12qq...q k

0

k

1k1k

2

    

Similarly,  12qq k

0

k

k   . Also, we have  

  kk . Therefore, 

 12qk

kk   . 

 

3) Corollary 

  Suppose that(1) has a solution. If  ,1Bq
2

  then 

}{ k and }Y{ k converge  to   with at least the linear 

convergence rate. 
  
4) Theorem 

 If  (1) has a  positive definite  Solution  and  after k  

iterative steps of  the Algorithm C, we have 

  



1k

1

k  and   



1k

1

k , then 

( i) 
2

kk     and           

.
2

kk      

 ( ii)  k k k k
                 

         
2

                                  . 
 
 

Where ,...2,1,0k,, kk   are the iterates generated by 

Algorithm C and .0  

Proof   

 ( i) Since,      

 

* * * *

-1

*

-1                              .

k k k k k k

k k

            

    
 

Take the  norms of  both sides, 
2

1

2 21
1                                  .

k k k k

k k k 

 





        

        

 

Similarly,   .
2

kk     

(ii) From Theorem 1, we have       .k1kk1k     

Since  

 

  kkkkk1k   

,kkkkk1k  

    

thus .
2

kkkk     

V.  NUMERICAL EXPERIMENTS 

In this section the numerical experiments are used to 

display the flexibility of the methods. The solutions are 

computed for some different matrices  with different 

sizes n . For the following examples, practical stopping 
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criterion 
9

k 10   and obtains the maximal solution 

500  . 

A. Numerical experiments for the first method (Algorithm  

A) 

In the following tables we denote  

    ,,,q kk2k1

2

  

 where 

  the solution which is obtained by the iterative method 

(Algorithm  A) 

I. Example  
 Let  10  and  





























11287.08855.01430.01880.11120.0

1287.019990.03180.21440.12218.0

8855.09990.011570.12320.39700.9

1430.03180.21570.111270.16684.0

1880.11440.12320.31270.115542.0

1120.02218.09700.96684.05542.01

100

1
Α  

 
0.121701,A     1<0.0148111q , see Table I. 

B. Numerical experiments for the second method 

(Algorithm B): 

The following tables denotes  

      ,ΥΧΧ,εΥΥΧ,εΧΧΧ,εΑq kk3k2k1

2



  ,ΙΑΧΑΧΧε kk4     ,ΙΑΥΑΥΧε kk5   Χ and 

Υ are the solutions which are obtained by the iterative 

method  (Algorithm  B). 

II.  Example 
    Let  2 , 3  and  



































384.25755.09663.0737.58774.0

274.1118.41482.05755.0384.2

221.3737.59663.0286.68774.0

286.6737.59663.0221.35755.0

1482.0118.4384.25755.0274.1

1000

1
A  

0.0112205A , 1< 90.00012589q , see Table II. 

C. Numerical experiments for the second method 

(Algorithm C) 

The following  tables denotes 

      ,,,,q kk3k2k1

2

 

  ,kk4      ΒΒΒΥΒΥΧε kk5

  , Χ a

nd Υ are the solutions obtained by the iterative method  

(Algorithm C). 

III. Example  

 Let 5   , 7  and 

 













21.32755.5

755.574.12
A ,

 

 
32.9351A ,   0.0726747 and   1< 0 .0 0 5 2 8 1 6 1q  , 

see Table III. 

VI. CONCLUSIONS 

In this paper, the positive definite solution of the linear 

matrix equation    , which is a special case of 

the symmetric matrix equations (2) for 1  was 

obtained. Two effective iterative methods for computing a 

positive definite solution of this equation were proposed. 

The first one is fixed point iteration method when 1  

and the second one is two sided iteration method of the 

fixed point iteration method when  1  and 
 

1 . By 

Algorithm A, for initial matrix
 

 0
 and Algorithms B 

and  C, for initial matrices   00 ,  satisfying the 

hypothesis   of theorems (A.1) in chapter III , (B.1)    and 

(C.1) in chapter IV, a positive definite solution     can be 

obtained in finite iteration, with at least the linear 

convergence rate. The given numerical examples show that 

the proposed iterative algorithms are efficient. 
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TABLE I 

EXAMPLE I 

2   12qk   
kq  1  k  

9.11397 19. 1. 9.01459 0 

1.04486E-01 2.81411E-01 1.48111E-02 1.33516E-01 1 

1.35647E-03 4.16801E-03 2.19369E-04 1.97752E-03 2 

1.90955E-05 6.17329E-05 3.2491E-06 2.92893E-05 3 

2.77617E-07 9.14333E-07 4.81228E-08 4.33808E-07 4 

4.08379E-09 1.35423E-08 7.12752E-10 6.42517E-09 5 

6.03296E-11 2.00577E-10 1.05567E-11 9.5164E-11 6 

 

 

 

 

 

 

1) Date of modification: 14/03/2014 
2) Brief description of the changes 
Page Column Line Change: From Change: To 

1 1 22 [16] [15] 

1 1 24 [2],[3],[8]-

[11],[13]-

[16],[18]-

[21],[24]. 

[2],[3],[8]-

[11],[13]-

[15],[18]-

[21],[24]. 

1 1 31 [7],[12],[17],[

22],[23]. 

[7],[12],[16],[

17],[22],[23]. 

2 1 10 B. Algorithm A. Algorithm 

3 1 7 theorem B theorem 1 

3 1 20 1) Theorem  

 

1) Theorem 

(Shiftting)  
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TABLE II 

EXAMPLE II 

4   12qk   
kq  1  k  

1.00025 3.0 1.0 1.00013 0 

1.25922E-04 3.77698E-04 1.25899E-04 1.25911E-04 1 

1.39278E-08 4.7552E-08 1.58507E-08 1.39267E-08 2 

1.07704E-12 5.98677E-12 1.99559E-12 1.07697E-12 3 

5   12qk   3  2  k  

2.00038 5.0 1.0 2.00013 0 

2.51832E-04 6.29497E-04 1.25899E-04 2.5181E-04 1 

2.78545E-08 7.92533E-08 1.39257E-08 2.78524E-08 2 

2.15399E-12 9.97795E-12 1.07685E-12 2.15383E-12 3 

 
 

TABLE III 

EXAMPLE III 

4   12qk   
kq  1  k  

5.02206 9.0 1.0 4.99918 0 

2.6672E-02  4.75344E-02 5.28161E-03 2.63485E-02 1 

6.65329E-04 2.51058E-04 2.78954E-05 1.38995E-04 2 

7.33359E-04 1.32599E-06 1.47332E-07 7.33231E-07 3 

7.32986E-04 7.00336E-09 7.78151E-10 3.86797E-09 4 

7.32988E-04 3.6989E-11 4.10989E-12 2.04045E-11 5 

5   12qk   3  2  k  

7.03309 13.0 2.0 6.99918 0 

3.72743E-02  6.86609E-02 1.05505E-02 3.6899E-02 1 

6.40508E-04 3.6264E-04 5.56563E-05 1.94651E-04 2 

7.33508E-04 1.91532E-06 2.93601E-07 1.02683E-06 3 

7.32985E-04 1.0116E-08 1.54881E-09 5.41679E-09 4 

7.32988E-04 5.34285E-11 8.17037E-12 2.85749E-11 5 
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