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The Hybrid Extragradient Method for
the Split Feasibility and Fixed Point Problems
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Abstract—In this paper, we suggest a hybrid extragradient where~y € (0, %) with A\ being the spectral radius of the

method for finding a common element of the set of fixed point operatorA* A.

sets of an infinite family of nonexpansive mappings and the 1nhe variational in li robl I(C. A) i fin
solution set of the split feasibility problem (SFP) in real Hilbert we gsuihaif?ata equality probleni/(C; 4) is to find

spaces.

Index Terms—Fixed point problems, Split feasibility problem, (Au,v —u) >0, YveC. (4)
CQ method, Projection, Strong convergence, Hybrid extragra-

dient method Variational inequality theory has emerged as an important

tool in studying a wide class of obstacle, unilateral and
equilibrium problems, which arise in several branches of pure
and applied sciences in a unified and general framework.
HROUGHOUT this paper, letl be a real Hilbert space, Several numerical methods have been developed for solving
whose inner product and norm are denotedby and variational inequalities and related optimization problems,
[|-[|, respectively. Le’ and@ be a nonempty closed convexsee, e.g., [8-10]. Let us start with Korpelevich's extragradient
subset of infinite-dimensional real Hilbert spadésandH>, method which was introduce by Korpelevich [10] in 1976

respectively. The Sp”t feaS|b|I|ty problem (SFP) is to find and which generates a Sequer{@eb} via the recursion;
point z* with the property:

|. INTRODUCTION

yn = Po(z, — NAz,), 5)
z* e C and Az* € Q, (1) Tnt+1 = Po(zn, — MNy,), n >0,
where A € B(H,, H,) and B(H,, H,) denotes the family whereP¢ is the metric projection fronR" ontoC, A : C' —
of all bounded linear operators frofd; to Ho. H is a monotone operator andis a constant. Korpelevich

We usel to denote the solution set of the (SFP), i.e., [10] prove that the sequender, } converges strongly to a
solution of VI(C, A). Note that the setting of the problems

I'={z"ecC: A" € Q}. in the Euclidean spac@™.

In 1994, the SFP was introduced by Censor and Elfving We note that Nadezhkina and Takahashi [11] employed
[1], in finite dimensional Hilbert spaces, for modeling invers&1® monotonicity and Lipschitz-continuity of to define a
problems which arise from phase retrievals and in medic&@eximal monotone operatdr as follows:
image reconstruction and many researches; see, e.g., [2-5]. [ Av+ New if veC, 6

A special case of the SFP is the following convex con- =Y 0 if o ¢ C. (6)
strained linear inverse problem [6] of finding an element .

where Nev = {w € H : (v —u,w) > 0,Yu € C} is the

such that .
normal cone toC at v € C (see, [12]). However, if the
x € C such that Az = b. (2) mappingA is a pseudomonotone Lipschitz-continuous, then
gl“ is not necessarily a maximal monotone operator.

_Thls_ problem, due _to its appl_|cat|ons in many z_ipplle Yu, Yao and Liou [13] introduced a new iterative method
disciplines, has extensively been investigated in the literature

ever since Lanweber [7] introduced his iterative method i follows:
1951. x1 =x9 € C,
In 2002, Byrne [2] proposed his CQ algorithm to solve (1). Yn = Po(zn — AnAzy),
The sequencédz,} is generated by the following iteration 2n = antn + (1 — an )Wn Po(zn — AnAyn),  (7)
scheme: Crt1 ={2€ Cy ||z — 2| < |lzn — 2|I},

Po(I — A" (I - Pg)A) N, @3 to = ot 12
T = - - T n e . .
it © K @ " ’ under their condition, they proved that the sequences
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In 2013, Ceng, Wong and Yao [15] investigate the hybridherea € (0,1) and S : H — H is nonexpansive. More

extragradient-like iteration algorithm with regularization:

g =x € C,

precisely, when the last equality holds, we say that a-
averaged. Thus firmly nonexpansive mappings (in particular,

Yn = PC(l'n - Anvfocnzn)a

Zn = (1 - ﬂn - 7n)xn + ﬂnyn
jL'-)/nSP)C(:En - )\nvfanyn)v
Cn={2€C:|zn—2|? < |lon — 2|2
+2an nk(k + |y},
Qn={z€C:{x, —
Tn+1 = Po,n@, %o,

(9)

z,xo — Ty > 0},

(ii)

They prove the sequencds:,},{y,} and {z,} converge
strongly t0g = Pri,(s)nro. (iif)
Motivated and inspired by the works of Nadezhkina and
Takahashi [11], Yu, Yao and Liou [13] and Ceng, Ansari
and Yao [14], and Ceng, Wong and Yao [15], in this
paper we suggest a hybrid shrinking method for finding a
common element of the set of solution of the split feasibility

projection) are%-averaged maps.

Proposition 3. [16] Let T': H — H be a given mapping.
Then consider the following.

(i) T is nonexpansive if and only if the complemént T'

is £-ism.
T is averaged if and only if the complemeht- T is
v-ism for somev > 1. Indeed, fora € (0,1),T is

«-averaged if and only if — 7' is i-ism.

The composite of finite many averaged mappings is
averaged. That is, if each of the mappingg }?™, is
averaged, then so is the compositeo Tho...0Ty. In
particular, if T is «y-averaged and; is as-averaged,
where a1, a2 € (0,1), then the compositd; o T is
«a-averaged, wherev = a1 + as — g as.

problem and common fixed points of an infinite family of Recall that a Banach space is said to satisfies the Opial

nonexpansive mappings.

Il. PRELIMINARIES

We write z,, — « (respectively,x,, — ), the strong
(respectively, weak) convergence of the sequengg to z.

condition [17] ; i.e., for any sequencér,} in X the
condition that{z,} converges weakly ta: € X implies
that the inequality

lim inf ||z, — || < liminf ||z, -y,
n—oo n—oo

Recall that a mapping defined onC' of H is nonexpansive holds for everyy € X with y # z. It is well-known that

if there holds that| Sz — Sy|| < ||l — y||, Vz,y € C and the
set of fixed points ofS by Fiz(S).
The metric (or nearest point) projection frofh onto C

every Hilbert spaces satisfies the Opial condition.
Let {S;}$2, be an infinite family of nonexpansive map-
pings of C into itself and let {{}5°, be real number

is the mappingPc : H — C which assigns to each pointsequences such that< ¢ < 1 for everyi € N. For any

x € H the unique pointPcx € H satisfying the property

le — Poal| = inf [l - y|| =: d(z, C). (10)
yeC

Proposition 1. For givenxz € H andz € C':
() z2=Pex e (x—2z,y—2) <0,Vy € C.
(i) z2=Pox & |lz—z[> <[z —y|*— |y —zl*Vy € C.
(i) (Pox — Poy,z—vy) > |[Pox — Peyl|?, Yy € H, which
implies thatP¢ is honexpansive and monotone.

n € N, define a mappingV,, of C into itself as follows:

Un,nJrl = I,
Un,n = &nSnUn,n-ﬁ-l + (1 - gn)la
Un,n—l = gn—lsn—lUn,n + (1 - gn—l)la

Un,o =&S2U, 3+ (1 — &)1,

Wy =Up1=65Un2+(1-8&)I (11)

Definition 2. Let T be a nonlinear operator whose domain

is D(T') C H and whose range i®(T") C H.
(i) T is monotone if
(x —y,Tx—Ty) >0, Va,y € D(T).

(i) Given a numbers > 0,7 is said to beg-strongly
monotone if

(@ —y,Te —Ty) > Bllz —y||*, Va,y € D(T).

(i) Given a number > 0,7 is said to bes-inverse strongly
monotone(v-ism) if

(x —y, Tz —Ty) > v|Tx — Ty||*>, Yo,y € D(T).

It can be easily seen that§f is nonexpansive, theh—T'
is monotone. It is also easy to see that a projecfignis
1-ism.

A mappingT : H — H is said to be baveragedmapping
if it can be written as the average of the identityand a
nonexpansive mapping, that is,

T=(1-a)l+as,
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SuchW,, us called thelV-mapping generated byS;}°,
and{¢&;}2;,.

Lemma 4. Let C be a nonempty closed convex subset of a
real Hilbert spaceH. Let Sy, .S, ... be nonexpansive map-
pings ofC into itself such that>2 ; Fiiz(S,,) is nonempty,
and let&, &, ... be real numbers such that< & <b< 1

for anyi € N. Then, for everyr € C and k € N, the limit
limy,—y o0 Uy i €XiSts.

Lemma 5. Let C' be a nonempty closed convex subset of a
real Hilbert spaceH. Let 51,5, ... be nonexpansive map-
pings ofC into itself such thath®2 ; Fiiz(S,,) is nonempty,
and let&, &, . .. be real numbers such that< & <b< 1

for anyi € N. Then,Fia(W) = NS (Sy).

Lemma 6. [18] Using Lemmas 4 and 5, one can define a
mappingW of C into itself as: Wax = lim, o Wpx =
limy, 00 Uy 12, for everyz € C. If {z,} is a bounded
sequence irC, then we have

lim |Wz, — Wyz,| = 0.
n—oo

IMECS 2014



Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

We also need the following well-known lemmas for prov- [1l. M AIN RESULTS
ing our main results. Theorem 12. Let C' be a nonempty closed convex subset
Lemma 7. ([19], Demiclosedness Principle). Lef be a ©Of @ real Hilbert spaceH. Let {S,};2, be an infinite
nonempty closed and convex subset of a real Hilbert spa@ily of nonexpansive mappings @f into itself such that
H and letS : C — C be a nonexpansive mapping with 'ne1 iz (Sn) NI # 0. Letzy = 29 € C. Fora; € C,C1 =
Fiz(S) # 0. If the sequencdz,} C C converges weakly C: let {z.}, {yn} and {z,} be the sequences generated as

to z and the sequgnc@([lf S)x,}} converges strongly tg, Yn = Po(2n — MV fa, Tn),
then(/ — S)x = y; in particular, if y = 0, thenz € Fixz(S). 2n = Bntn + (1 = Bu)WaPo(2n — MV fa Un),
Lemma 8. [20] Let C be a closed convex subset®t Let Cpr1={2€Cp: l2n—2[* < |l — 2| (15)
{x,} be a sequence it and u € H. Letq = Pcu. If 2o Ank(k + [yl },

{2,,} is such thatw,(z,) C C and satisfies the condition { Zn+1 = Fc,, 20, 72> 1,

zn —ull < |lu—gqll, VneN. Thenz, —q. where {W,, : n > 1} are W-mappings of (11),
Lemma 9. [21] Let H be a real Hilbert space. Then theSWpenz, Fix(s,)nr IPIl < K for somek > 0, and the
following equations hold: fo.llowmg conditions:

M) o —yl® = o> = Iyl - 20w —y.3), VoyeH; 0 limnoon =0; L,

(@) o +yl < > +2(y,2 +v), Va,yeH, (1) {An} C[a,b] for somea, b € (0, rap);
(i) |tz + (1 —t)yl]> = tlz]2+ 1 =t)||y|2—t(1 —t)[|x— (i) {Ba} C [c,d] for somec,d € (0,1);

y||?, Vtel0,1] andx,y € H. then the sequences:,, }, {y,} and {z,} generated by (15)

. . nver rongl h m Rt~ g, .
Throughout this paper, we assume that the SFP is COﬂSCIg- erge strongly to the same poiftt:: , ria(s,)nro

tent, that is, the solution sét of the SFP is nonempty. Let Proof: By Lemma 10 (ii), we getPc(I — AV f,)
f : H, — R be a continuous differentiable function. Thés (-averaged for each\, ¢ (O,m), where ¢ =

minimization problem: 2+A(aIIIAII2) € (0,1). It is known thatPc(I — AV f,)
. 1 7 2 nonexpansive. Furthermore, fén\,,} € [a,b] with a,b
géuclf(x) o 2”A‘T PoAz| (12) O, fap): PeI = MVfa,) is ¢q-averaged withg,

is ill-posed. Therefore, (see [5]) consider the followin +/\n(aZ+||A||2) € (0,1). It is known thatPe (I — A,V fa,)
Tikhonov regularize problem: is nonexpansive for alk > 0.
. 1 5 1 5 Step 1.We will show
vel falw) := §||A$ — PoAs|”+ §O‘Hx” ’ (13) (1) Every C,, is closed and convexy > 1;
wherea > 0 is the regularization parameter. The regularizgg) Maz1Fiz(Sn) NT C Oy, Vn 2 15

minimization (13) has a unigque solution which is denoted _{CE"H} is well-defined. _
. First, we note that"; = C is closed and convex. Assume
o

It is know thatz* is a solution of the SFP if and only if that C; is closed and convex. From (3) and sinCg;, =
* - ; .. Ck : |12k — zkl|? + 2(zk — 2k, w6 — 2) < 22 (|Jyell +
x* solves the fixed point equation: {2.€Ct [lzg —an ’ Y
k)}. Thus, Cr41 is closed and convex. By induction, we
Po(I-AVf)x* = Poc(I-\A*(I - Pg)A)z™ = z*. (14) deduce that, is closed and convex for all > 1.
Next, we show than> , Fiz(S,) NT' C Cyy1,¥n > 1.
. Setgn = PC(xn - )\nvfanyn) and PC(I - )‘nvfan) is
Lemma 10. [5] The following hold: nonexpansive for eaah > 0. Pick upp € NS, Fixz(S,)NT.
() T = F(Pc(I = AV/)) = VI(C,Vf) for any X > 0, Then, we getPc(I — AV f)p = p for A € (0, ). From
where F(Pc(I — AV f)) and VI(C,Vf) denoted the (15)
set of fixed point oP(I — AV f) and the solution set

I m &

It is proved in [5, Proposition 3.2].

of VIP; Hynfp” < ||PC(17>\nvfan)$n *PC(IfAnvfan)p”
(i) Po(I — AVfs) is ¢-averaged for each\ ¢ +|Pe(I = AnV fa,)p — Pe(I = AV f)p||
(0. Grfayey), Whereg = GHEAERIALD, < o =pll + 10T = AVia, 0= (= 2V
Proposition 11. [14] There hold the following statement: < llen =l +anallpl-
(i) the gradient Then, by Proposition 1 (ii), we have
Via=Vf+al =A"1-Py)A+al llgn — plI?
is (a + ||A||?)-Lipschitz continuous anch-strongly < l|lZn — AV fa,un — plI> = |20 — AV fa, yn — gnll?
monotone; = ||$n - PH2 - Hxn - gn||2 + 2)‘n<vfoznynap - gn>
i) the mappingP-(I — AV f,) is a contraction with
(i) the mappingPo(l = AV fa) < Jwn = bl = lon = gal®
coefficient
1 +2>‘n(<vfanp7p - yn> + <Vfanyna Yn — gn>)
VI AR NAP+ o) VI—ad < 1-20)), = fan —pl = 20 — gal
where( < )\ < W; F2An[((nd + V)P, p = Yn) +(V fo, Yns Yn — gn)]
(iii) if the SFP is consistent, then the strotigh,_,oc Za < ln = pl* = llzn — gnll? + 22X [an(p,p — yn)
exists and is the minimum norm solution of the SFP. AV fr Yns Yn — Gn)]
ISBN: 978-988-19252-5-1 IMECS 2014
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= |lzn = pI® = 20 = ynll* = 2(@n = Yn, Yn — gn)
—[yn — QnH2 + 2\ [ (P, P — Yn)
HV fanYns Yn — gn)]

= |lzn = l* = 20 = yull® = llyn — gnl?
+2(zn — AV fanYn = Yn, Gn — Yn)
F2Xnn (P D — Yn)-

Further, by Proposition 1 (i), we have

(Tn = AV fanYn = Yn, In — Yn)

(Tn — AV fan,Tn = Yns Gn — Yn)

F AV fa,®n = AV fa, Yns Gn — Yn)
MV fan,Tn = AV fo, Yn, Gn — Yn)
MllV fan@n =V fa, ynllllgn — ynll
An(an + 1A 20 = yallllgn — yall

So, we obtain

ININCIA

llgn — plI? (16)
< Nan = ol = llzn = ynll> = lyn — gnll®
+20 (an + |AIP) 20 = ynllllgn — yall
+2Xnanpllllp — ynll
<l =l = ll2n — ynll® = lyn — gnll®

A7 (an + AP 120 = ynll® + g0 — yull?
+2Xnan P[P — ynll
= |lon — pH2 + 2 anpllllp — ynll

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
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Fromz, 1 = Pci1xo and Proposition 1 (i), we have
(X0 — Tpg1, Tng1 — Y) = 0,Vy € Cpga.
SincenS, Fiz(S,) NT C Cpy1, We have
(o — Tpt1,Tnt1 —Pp) > 0,¥p € NS Fiz(S,) NT.
So, forp € N2, Fix(S,) NT, we have

> <350 — Tn+1,Tn+1 — p>
< —(x0 — Tnt1,%0 — Tnt1) + (To — Tny1,To — P)
<

—llzo = @nsal* + llzo — @nsalllzo — pll,

lzo = Tng1l < |lzo —pl|, VP € Ny Fiz(S,)NT. (18)

Therefore{x,,} is bounded and sz, } and{g,}. From

Ty = Po, 20 andx, 1 = Po,, 29 € Cpq1 C Cp, We have

(X0 — Tpy Ty, — Tppg1) > 0. (19)
Hence
0 < (20— Tn,Tn — Tny1)
S *<I0*In,$ofﬂfn>+<I071‘n,$0739n+1>
< —llzwo = zall® + llzo — zall|z0 — Znsall,

and thereford|zo — || < ||zo — zn+1]|- Thus the sequence
{||zn, — zo||} is @ bounded and nonincreasing sequence, so

lim |z — 20| exists, that idim |xn — 20l = m.
+>\2 o+ A2271 n*n2 n— oo n I n—00 n
(e ) 141 MIzn = v Step 3. We will show thatlim, , [|[Tnt1 — Zn|| =
< lzn =PI + 22nanllplllp = yall- 1m0 |20 — Ynll = linos oo |20 — 2n|| = limp_eo |25 —
Them, from Lemma 9 (iii), (15) and the last inequalitydnll = 0 and limpoollan — Whan| = limpoo [[n —
we conclude that Wxn_” =0. o .
) It is well know that in Hilbert spaceg/, the following
l[2n — pll identity holds:
- ﬂonn7p||2+(1iﬂn)||wngnfp”2 2 2 2
lz—yll” = llz® = lyll” — 2{z —y,y), Vo,y € H.
—Bn(1 = Bp)l|lzn — Wn9n|‘2
< Ballen =l + (1= Ba)llgn —plI? Therefore,
2
~hnll = Bu)llan = Wagal™ l2ns1 = 2all® = [ (@ns1 = 20) = (2n — 20)|I?
< Ballzn —pll” + (1 = Bo)lllzn — pll = ||zpnt1 — ;c0||2 = ||zn — x0||2 — 2(Tpg1 — Ty T, — T0)-
+2)\nan||p||||p - yn”
It follow from (19), we have
FO2 (0 + AP = Dllen — yal] 19
—Bn(1 = Bn)[[2n — Wagnll® [ o e e | E ]
_ T _ . .
= llzn = plI” + 2Ananllplllp — vl Sincelim,, oo ||z, — x| €Xists, so we gefx,, 1 — x> —
=2BnAnan P[P — yall |, — x0||2 — 0. Therefore,
+1*n>\2 n+ A22*1 n*nQ
(1= )X+ A1) = Dl =30l i [ones — o] — 0. 0)
<z =2l + 22 nanpllllp = vl Sincex,+1 € Cyp, we have
—(1=B,)(1 = X2 (an + 1A |20 — ynll®
G 0 = nsall? < 2 — 2 | + 200 ok (E + [y]):
< B+ 2nan o ince {y,} is bounded)\, C [a,b] andlim, .. a, = 0,
s e p”2 anllplllp =yl we deduce from (20) that
< lan = pll” + 22 nank(([ynll + k),

which implies thap € C,, ;. Thereforen2® ; Fixz(S,)NT' C

Cpnt1,Yn > 1. This implies that{z, 11} is well-defined.

Step 2. We will show that the sequencds:,}, {z,} and
{gn} are all bounded antm,,, ||z, — zo|| exists.
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lim ||z, — Zn41]] = 0. (21)
n—oo
Again from (20) and (21) it follows that
zn = 2nll < llzn — Zpga | + l2n41 — 20l = 0. (22)
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For eachp € N>, Fix(S,) NT, from (17), we get

(1= B = X (an + [|A]*)?) lzn — ynl®

< lan = pl? = Ml = 2l* + 2Xnanlplllp — yull-

So, we obtain

(1 —d)(1 =% (an + | AIH)?)lzn — yall?
+c(1 —d)||2n — annHQ

(1= Ba) (X = N (an + [|AI*)?)l2n — ynl®
+Bn(1 = Bu) | — VVngn”2

[z = plI* = llzn = pII* + 2Xncn [pllllp — ynll
(lzn = pll + llzn = pI)llZn — 2all

2 nan|pllllp = ynll-

0 <

IN

IN

Since [z, — zu | — 0, an = 0, [a,0] € (0, 47z), we have

1-02||A||* >0, {B.} C[c,d], we haved < 1—-d < 1-f,
and0 < ¢(1 —d) < Bn(1 — Br), it follows that

lim ||z, — yn|l = lim ||z, — Wphgn| = 0. (23)
n—oo n— o0
Consider
lyn — gnll

| Pe(zn — AV fan,@n) — Po(@n — AnV fa, yn)||
[(@n = AV fa,2n) = (0 — AV fa, yn) |l

MllV fan@n =V fo, Yl

Ao + AP lzn = ynl-

IN

This together with (23) implies that
(24)

lim |lyn — gn]| = 0.
n— o0

From Hxn - gnH < ||1'n - yn” + ||yn - gnHa we also have
from (23) and (24)

lim ||z, — gn|| = 0. (25)
n—0
Sincez, = fpxn + (1 — B)Wyhgn, We have
(1 - Bn)(ann - gn) = Bn(gn - xn) + (Zn - gn)-
Then
(1 - d)”ann - gn”
S (1_Bn)HWn9n_gnH
< Ballgn — 2l + 120 — gl
< Ballgn = znll + 120 — 2l + 20 — gnll
= (14 Bu)llgn — znll + 20 — znll,
and from (22) and (25), hence
lim [|[Wygn — gnl| = 0. (26)
n— o0

Observe that

|20 — Wazn ||

|20 — gnll + [lgn — Wagn|l + [[Wngn — Waz, ||
[2n — gnll + |gn — Wagnll + [|gn — zu]|

2l|zn = gnll + llgn — Wagnll,

VANVANVA
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from (25) and (26), we havéz, — W,z,| — 0. On the
other hand, sincéz, } is bounded, from Lemma 6, we have
limy, o0 ||Whzn, — Wa,|| = 0. Therefore, we have

lim |, — Wa,|| = 0. (27)
n—00

Step 4. We claim thatw,,(z,,) C NS, Fiz(S,)NI', where
wy (2, ) denotes the-limit set of {z,, }, i.e.,w, (z,) == {u €
H; :x,; —u for some subsequenc¢zx, } of {z,}}.

Step. 4.1 We will show thatu € Fiz(W).

Indeed, sincdz,, } is bounded, it has a subsequence which
converges weakly to some pointdhand hencev,, (z,,) # 0.
Letu € w,(x,) be arbitrary. Then there exists a subsequence
{zn,} C {x,} which converges weakly ta. Since we also
havelim;_, ||zn;, — Wx,,| = 0. Note that, from Lemma
7, it follows that/ — W is demiclosed at zero. Thus €

Step. 4.2 We will show thatu € T'.

Since||z, — gn|| — 0 and||y, — gnl| — 0, it is know that
Gn; — u andy,;, — u.

Let

7o

where Nev = {w € Hy : (v —y,w) > 0,Vy € C}. Then
T is maximal monotone and € T if and only if v €
VI(C,Vf); (see [12]) for more details.

Let (v,w) € G(T), we havew € Tv = V fv+ Ncv, and
hencew — Vfv € Nev. So, we havelv — y, w — V fv) >
0,Yy € C. On the other hand, frony, = Pc(z, —
M Ve, yn) and v € C, we have(z, — \,Vfa,yn —

9n,gn—v) > 0,and hence<v—gn, I tn +Vfanyn> > 0.

Vfv+ Nov if veC,
0 if veC,

Therefore, fromw — V fv € Ncv andg,; € C, it follows
that

<vfgnj,w>
Z <’U_gnj7va>
gnj 71'711'
> (v—gn,;, Vo) - S W L LY
gnj 71'71]'
= <v_gnj7va>_<U_gnj7?+vfynj>
—Qn; <U — Gn;, yn1>
= <’U_gnj7va_vfgnj>+<U_gnjvvfgnj_vfynj>
gn]‘ 7$n]‘
- 'U_gnjaT _a7lj<v_gnj‘)y’flj>
9In; — Tn,
< <vignj7vfgn]‘ nynj><vgn]‘7%>
g

—CQnp; <U — 9n;> yn]>

So, we obtain(v — u,w) > 0, as j — oo. SinceT is
maximal monotone, we have € T-'0, and henceu €
VI(C,Vf). Therefore, by Lemma 10 (i), it is clear thate
I'. Consequently: € N°2, Fix(S,) NT. That isw,,(z,) C
N2, Fiz(S,) NT.

Step 5. We show that{xz,}, {y.} and {z,} converge
strongly t0 P | pix(s,)nrZo-

In (18), if we takep = P pig(s,)nrZo, We get

o — Zns1ll < llwo — Pree | pix(s,)nrZoll- (28)
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Notice that wy(z,) C NS, Fixz(S,) N T. Then, (28)
and Lemma 8 ensure the strong convergence{f.}
t0 Pre  pie(s,)nrvo- Consequently{y,} and {z,} also Springer Series in Operations Research, vols. | and II.
converge strongly t&h=  rix(s,)nrzo. This completes the Springer, New York (2003).
proof. B [10] G. M. Korpelevich An extragradient method for finding
Taking W,, = S, one finds the following result: saddle points and for other problem&konomika i
Mathematicheskie Metody, 12 (1976), 747—-756.
N. Nadezhkina and W. Takahasdtrong convergence
theorem by a hybrid method for nonexpansive mappings
and Lipschitz-continuous monotone mappirgig\M J.
Optim., 16 (2006), 1230-1241.
[12] R.T. RockafellarMonotone operators and the proximal
Yn = Po(n — MV fa, n), point algorithm SIAM J. Control Optim., 14 (1976),
2n = PBnTn + (1 - ﬂn)SPC(xn - Anvfanyn)a 877-898.
Crnrr={2€Chn:|lzn —2|> < |lzn — 2|2 (29) [13] X. Yu, Y. Yao and J.C. YaoStrong convergence of
F2an Ak (k4 [[yl])}, a hybrid method for pseudomonotone variational in-
Tn+1 = Pe, %0, n2>1, equalities and fixed point problem#nalele Univer-
sitatii "Ovidius” Constanta - Seria Matematica. Vol.
20, Issue 1, 489504, ISSN (Online) 1844-0835, DOI:
10.2478/v10309-012-0033-4.
[14] L. C. Ceng, Q. H. Ansari and J. C. YaBglaxed extra-
(i) {Bn} C [c,d] for somec,d € (0,1); gradient m.ethod.f(_)r finding minimum-norm solut_ions
of the split feasibility problemsNonlinear analysis,
then the sequences:, }, {yn} and {z,} generated by (29)  \plyme 75, Issue 4, March 2012, 2116-2125.
converge strongly to the same poifity . (s)nro- [15] L. C. Ceng, M. M. Wong and J. C. Yad\ hybrid
extragradient-like approximation method with regular-
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Corollary 13. LetC be a nonempty closed convex subset ﬁl]
a real Hilbert spacefi. Let S be a nonexpansive mapping o

C into itself such that"iz(S)NT # 0. Letz; = zo € C. For
x1 € C,Cy =C, let {z,},{yn} and {z,} be the sequences
generated as

Wheresup,cqx  piz(s)nr [Pl < k for somek > 0, and the
following conditions:

() limg, oo ap = 0;

(i) {An} C [a,b] for somea, b € (0, 2);
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