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Abstract—Testing for object-oriented programs is compli-
cated and burdensome. One reason is the difficulty associated
with generating method sequences that create instances and
change object states to achieve high branch coverage. Auto-
mated test generation using mixed static and dynamic analysis
is not only an effective approach to save time and reduce the
burden of testing, but also an efficient way to find bugs.

Seeker is an implementation for automated test generation
that includes method sequences using static and dynamic
analysis. However, when we need to change several values
of variables to cover branches, the technique cannot generate
method sequences that achieve all of the desired object states.
In this paper, we extend the technique for automated test
generation when multiple object states are required for the cov-
erage of more complicated branches. Our approach identifies all
variables that are involved in uncovered branches and evaluates
method sequences according to a fitness function. Then we apply
a retrieval strategy to suppress combinatorial explosion. Our
results show that the proposed approach achieves higher branch
coverage than that used in a previous study and also suggest
that the effectiveness of the proposed approach tends to vary
according to the specific characteristics of different projects.

Index Terms—Automated test generation, Dynamic Symbolic
Execution, Method sequence, Branch coverage

I. INTRODUCTION

SOFTWARE testing is an important process in software
development projects for building high reliability sys-

tems. In testing for object-oriented programs, we not only
need method arguments but also some method calls to change
object states to desired values before verifying assertions.
However, in many cases, we cannot spare sufficient time for
testing due to the cost, and thus, research of new methods
for automated test generation is an active field. Seeker
[1] is an implementation of automated test generation for
object-oriented programs. When we need to modify multiple
variables in order to cover a condition in a certain execution
path, Seeker cannot generate test cases that include proper
method sequences. However, branches that relate multiple
variables tend to be complicated, and thus, we need to
sufficiently test such branches. Hence testing of branches
related to multiple variables is a considerable problem.

In this paper, we present an approach for automated test
generation that requires modifying multiple variables in con-
ditions to cover branches, and we implement the technique
as an extension of Seeker. We expected a combinatorial
explosion in the number of candidate method sequences, so
we suppressed it by assigning evaluation values to candidate
method sequences.
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The rest of the paper is structured as follows. Section II
describes the background and related works of automated test
generation for object-oriented programs. In Section III, we
describe the existing approach and its problems. In Section
IV, we explain the idea of the proposed method. In Section
V, we present our experiments and the results and in Section
VI, we state our conclusions and discuss future work.

II. BACKGROUND AND RELATED WORKS

A. Dynamic Symbolic Execution
Dynamic Symbolic Execution (DSE) [2], [3] is a state-of-

the-art automated test generation technique. DSE combines
tests with concrete values and symbolic execution [4], so
that the technique also is called Concolic testing [5], [6].
Figure 1 shows an overview of DSE. In concrete execution,
we explore a method under testing and collect constraints
from the predicates in branch statements in the method under
testing. Then, we negate a part of the collected constraints
and attempt to solve it and assign proper values to variables
that relate the condition by SMT solvers [7]. Thus, we can
execute different paths using these values as test input data.

Fig. 1. An Overview of Dynamic Symbolic Execution

B. Method Sequence
Software testing for modern programs, in particular object-

oriented languages like C# or Java, often requires a sequence
of method calls (in short, a method sequence) to obtain
desired object states [8], [9], [10]. To achieve high coverage,
receiver objects of methods under testing or arguments must
turn into desired states to cover branches. Thus, we need to
call some methods to create and transform objects before the
method under testing.

For example, we consider a method AddEdge, which adds
an edge to a graph in Source code 1. The goal is to achieve
full coverage of AddEdge. To test the ability of the operation
to add an edge to a graph, we must add method calls to
add nodes to a graph in advance, such as Source code 2.
In this manner, we often need method calls to test methods
especially for object-oriented programs.
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Source code 1. Graph Class
1 class Graph {
2 private ArrayList<Edge> edges;
3 private ArrayList<Node> nodes;
4
5 public void AddNode(Node n) {
6 if (n == null) throw new Exception();
7 nodes.Add(n);
8 }
9 public void AddEdge(Node source, Node target

){
10 if (nodes.Contains(source) &&
11 nodes.Contains(target)) {
12 edges.Add(source, target);
13 } else {
14 throw new Exception();
15 }
16 }
17 ...
18 }

Source code 2. An Example Test Case for Graph#AddEdge()
1 Graph graph = new Graph();
2 Node s1 = new Node();
3 Node s2 = new Node();
4 graph.AddNode(s1);
5 graph.AddNode(s2);
6 graph.AddEdge(s1, s2);
7 // some assertion

III. SEEKER

Seeker is one of several novel implementations for au-
tomated test generation with method sequences on C#. It
uses Pex as the engine for DSE. Seeker is based on the
technique of DSE and generates test cases using dynamic
and static analyses of programs. Our approach is based on
Seeker’s algorithm, and thus, we illustrate the algorithm in
this section.

Seeker takes a target method to generate test cases as
input and finally outputs test cases with a method sequence.
Seeker repeatedly applies static and dynamic analyses to
the target program. In each step, Seeker grows the method
sequences and reduces candidates of method sequences that
do not contribute to increasing the coverage. We provide
an overview of Seeker and then briefly describe the main
components. Seeker works as follows:

1) Seeker generates a primitive test case that calls only
the method under testing.

2) It generates test cases that cover respective paths by
changing arguments in DSE.

3) For uncovered branches in the previous step, it detects
the variables that must change in order to cover the
branch by analyzing execution traces. The variable is
referred to as the target field.

4) It analyzes the relation (e.g. inheritance, comprehen-
sion) of the class that includes the target field.

5) From the relation extracted in 4), it finds methods that
can change the value of the target field.

6) If the branch remains uncovered, Seeker adds candi-
dates for methods to the existing method sequences,
then returns to 2) and repeats the process. Otherwise
the process ends.

A. Dynamic Analysis
When we generate test cases for a certain method under

testing, we first apply DSE to the target program. DSE gen-
erates many test cases that cover paths individually and also

returns covered and uncovered branches. During exploration
of DSE, execution traces are collected to analyze in each
static analysis step. Algorithm 1 shows the pseudocode of
Dynamic Analysis.

Algorithm 1 DynamicAnalysis
Require: tb of TargetBranch (TB)
Require: inputSeq of MethodSequence (MSC)
Ensure: targetSeq of MethodSequence (MSC) or null
1: Method m = GetMethod(tb)
2: MSC tmpSeq = AppendMethod(inputSeq,m)
3: DSE(tmpSeq, tb, out tSeq, out covBranch, out

uncovBranch)
4:
5: if tb ∈ covBranch then
6: return targetSeq
7: end if
8:
9: if tb ∈ uncovBranch then

10: return StaticAnalysis(tb, inputSeq)
11: end if
12:
13: if tb /∈ uncovBranch then
14: List<TB>tbList = ComputeDominants(tb)
15: for all TB dominantBranch ∈ tbList do
16: inputSeq = DynamicAnalysis(dominantBranch, inputSeq)
17: if inputSeq == null then
18: break
19: end if
20: end for
21: if inputSeq ̸= null then
22: return DynamicAnalysis(tb, inputSeq)
23: end if
24: end if
25: return null

B. Static Analysis

In the static analysis phase, Seeker uses uncovered
branches and executed method sequences in the previous dy-
namic analysis phase as inputs. Then, the program detects the
variable that must change in value to satisfy the constraints
of uncovered branches (target field). Therefore, it finds the
dependency of the class including the target field. From the
identified dependency, it builds a hierarchy of fields (referred
to as the field hierarchy). Finally, it extracts candidates of
methods that may mutate the value of the target field for
addition to existing method sequences. Algorithm 2 shows
the pseudocode of static analysis. Next we describe important
components in static analysis.

Algorithm 2 StaticAnalysis
Require: tb of TargetBranch (TB)
Require: inputSeq of MethodSequence (MSC)
Ensure: targetSeq
1: Field targetF ield = DetectField(tb)
2: List<TB>tbList = SuggestTargets(targetF ield)
3: for all TB prevTb ∈ tbList do
4: MSC targetSeq = DynamicAnalysis(prevTb, inputSeq)
5: if targetSeq ̸= null then
6: targetSeq = DynamicAnalysis(tb, targetSeq)
7: if targetSeq ̸= null then
8: return targetSeq
9: end if

10: end if
11: end for

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



TABLE I
DEFINITION OF FITNESS FUNCTION

Expression True False
a == b 0 ∥a− b∥
a >b 0 (b− a) + 1
a ≥ b 0 (b− a)
a <b 0 (a− b) + 1
a ≤ b 0 (a− b)

1) Detection of Target Field: In the target field detection
step, Seeker detects the variable that must be changed in
order to cover the uncovered branches in the last DSE.
Detecting target field seems trivial, but there is difficulty
in many cases. For example, it is simple to identify the
target field for branches such as if (list.size > 0),
because the variable size is a public member of the instance
list of some container class. When the target field is a
public member, we can modify the value directly. However,
we often find branches that involve method calls such as if
(graph.ComputeDistance() > 10). Then we must
analyze what the statement returns and these methods may
include further method calls, causing the step of detecting
the actual target field to be a complicated task.

2) Field Hierarchy: Next, Seeker builds field hierarchy
that indicates the dependency between classes related to the
target field from execution traces. We can trace the relation
to the target field from field hierarchy.

Source code 3. An Overview of Stack Class
1 class Stack {
2 private ArrayList<int> list;
3 public int Count() {
4 list.Count();
5 }
6 ...
7 }
8 class ArrayList {
9 private int _count;

10 public int Count() {
11 return _count;
12 }
13 ...
14 }

For example, when the target field is a member _count in
Arraylist class, the field hierarchy is Stack list →
ArrayList _count in Source code 3.

3) Method-Call Graph: A method-call graph is a graph
that shows the relation of methods that may modify the value
of the target field and classes that include these methods. It
creates a graph using field hierarchy and code analysis. The
terminal nodes in the method-call graph are candidate meth-
ods to append existing method sequences. These methods
can mutate the value of the target field directly or indirectly.
Hence, new method sequences that are candidate methods
for appending may convert a target field to a desired state
and cover target branches.

IV. APPROACH

We have shown the difficulty in automated test case
generation considering object states and the existing ap-
proach to overcome this problem by generating method
sequences. However, some problems remain. Seeker cannot
cover branches that require changing multiple objects to
desired states. In fact, branches that relate multiple variables

TABLE II
AN OVERVIEW OF TARGET PROJECTS

Project Version Classes Methods Branches KLOC
Dsa 0.6 27 308 665 3.3

QuickGraph 1.0 88 634 1119 5.1
xUnit 1.6.1 151 1267 2379 11.9
NUnit 2.5.7 225 2344 1810 8.1

tend to be complicated and thus require sufficient testing.
Hence, testing of branches related to multiple variables is a
considerable problem. Therefore, we focused on this problem
and propose an approach to solve it. We have implemented
our approach in C# by extending a previous study of Seeker,
because the proposed approach is based on Seeker.

The algorithm of the previous study identifies only one
variable as the target field. Here we focus on all variables that
influence target branches. We have improved the algorithm
to identify all variables related to target branches. However,
we can easily imagine that combinatorial explosion will
occur among the combinations of all method calls to achieve
conversion of all variables to the desired states. For this
reason, we introduce a technique to suppress the explosion.
We show the pseudocode of the proposed static analysis for
multiple target fields in Algorithm 3. Next, we illustrate the
details of the proposed algorithm.

Algorithm 3 StaticAnalysisForMultiTargetFields
Require: tb of TargetBranch (TB)
Require: inputSeq of MethodSequence (MSC)
Ensure: targetSeq
1: List<Field>targetF ields = DetectAllFields(tb)
2: List<TB>tbList = new List<TB>
3: for all Field targetF ield ∈ targetF ields do
4: tbList.Append(SuggestTargets(targetF ield))
5: end for
6: for all TB prevTb ∈ tbList do
7: MSC targetSeq = DynamicAnalysis(prevTb, inputSeq)
8: if targetSeq ̸= null then
9: calculatePriority(targetseq)

10: if isCandidate(targetseq) then
11: targetSeq = DynamicAnalysis(tb, targetSeq)
12: if targetSeq ̸= null then
13: return targetSeq
14: end if
15: end if
16: end if
17: end for

A. Static Analysis

The proposed static analysis for multiple variables is based
on that of a previous study. The algorithm of the previous
study identifies only one variable as target field. In this study,
we focus on all variables that influence target branches.
Thus, the algorithm identifies these variables as the target
field. Field hierarchy and a method-call graph are built for
the variables. From this, our algorithm can generate proper
method sequences that cover target branches with multiple
target fields.

B. Reduction of Candidates

When we consider the combinations of method calls for
all target fields, we can easily imagine that the number
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TABLE III
BRANCH COVERAGE ACHIEVED BY SEEKER AND PROPOSED METHOD TESTS

Project Seeker Proposed Method
# of tests Branch coverage Time (hours) # of tests Branch coverage Time (hours)

Dsa 961 88.1% 5 1387 91.5% 8.5
QuickGraph 1923 68.2% 8 2694 69.5% 17.3

xUnit 1360 41.1% 6.3 2391 46.8% 8.5
NUnit 1804 44.3% 12.8 5125 45.5% 23.3(Util Namespace)

of combinations of method calls needed to transform all
variables to the desired states will lead to combinatorial
explosion. Furthermore, permutations of method calls are
sometimes important.

For example, two target fields exist and each variable has
10 methods that may modify the value. Then, the program
generates 20 method sequences that have a length of one. If
the target branch is not covered yet, the program generates
400 method sequences in the next step. Thus, the number of
candidate of method sequences increase exponentially. For
this reason, we give method sequences priority in order to
suppress the explosion. We introduce a fitness function to
evaluate branch distance between constraints and method
sequences. We give an evaluation value to each method
sequence as a priority. In this paper, we define the fitness
function only for a 32-bit integer in Table I. The definition
is the same as that used by Xie et al [11].

V. EXPERIMENTS AND RESULTS

We applied our tool to four open source projects and eval-
uated the effectiveness of our approach. We also compared
our approach to Seeker. We assessed execution time and the
branch coverage of test cases that were generated.

We used four real-world open source projects in our
experiments. Table II lists their features including the number
of classes, methods, branches and lines. Dsa [12] is a
library that provides many data structures and algorithms for
the .NET framework. Quickgraph [13] is C# graph library.
xUnit [14] and NUnit [15] are widely known unit testing
frameworks for .NET languages. In our experiments, we
applied its core component, util namespace, for NUnit.

We conducted the experiment on a machine that was
running 32-bit Windows Vista with a 2.53-GHz Intel Core 2
Duo processor with 4 GB RAM. Our settings were as follows
and were the same as used in a previous study.

• timeout: 500 sec (default: 120 sec)
• MaxConstraintSolverTime: 10 sec (default: 2 sec)
• MaxRunsWithoutNewTests: 214748367 (default: 100)
• MaxRuns: 2147483647 (default: 100)

A. Experimental Results and Evaluation

Table III lists our results. First, the proposed approach
showed a 1–5% improvememt over the previous study. How-
ever, the execution time was approximately doubled. Thus, it
requires more time although it achieves a few improvements
for some projects such as Quickgraph.

B. Discussion

The proposed approach achieved higher branch coverage
than that of the previous study for all projects, but the

improvement was only 5% at most. This indicates that
branches involving multiple variables, which we focused
on, may occur infrequently in many projects. Although the
improvement offered by the proposed approach is small, the
method of the previous study cannot cover these branches
with requiring extra time. Therefore, the proposed approach
represents a trade-off between execution time and branch
coverage. In practice, especially for the generation of test
cases for mission-critical systems, the proposed approach
will be useful.

For some projects such as Quickgraph, the proposed
approach achieves small improvements by taking more time.
Quickgraph is a library that provides data structures and
algorithms for graphs, such that many methods involve
various objects such as Node or Edge. If target projects
have complex dependency, many operations (or long method
sequences) are often required to cover branches. Thus, such
projects tend to require extra time and do not allow high
branch coverage.

The reasons for the small improvements achieved by the
proposed approach are as follows. First, it is thought that
branches involving multiple variables occur infrequently.
Second, we may prune desirable candidates of method se-
quences in the candidate reduction step. This can occur in
projects that have complex dependency, like Quickgraph,
because such projects cause combinatorial explosion of
method sequences. If we set a proper number of reserved
method sequences, we may avoid this problem. However,
execution time is wasted by increasing of the number of
reserved method sequences, and thus we must determine
the setting considering specific requirements for time and
quality of testing. Finally, the fitness function for method
sequences may be inappropriate. In our study, we calcu-
lated evaluation values only for integers. Otherwise, the
fitness function returns maximum value of 32-bit integer
(214748367). Therefore, we need to further review the fitness
function.

VI. CONCLUSION AND FUTURE WORK

Testing for object-oriented programs requires method se-
quences, and many previous approaches have been proposed.
Here, we focused on generating method sequences that
mutate multiple variables and proposed an approach to solve
the problem. We also implemented our approach based on
Seeker and evaluated our approach compared with that of a
previous study by applying them to four real-world projects.
Our approach achieved higher branch coverage than that
of the previous studies but required additional execution
time. Moreover, our results suggest that the effectiveness
of the proposed approach varies according to the specific
characteristics of different projects.
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In our future work, we will improve the fitness function
and retrieval strategy for method sequences. We will adopt
other fitness functions for evaluating variables other than
integers. In addition, we will analyze the dispositions of
covered or uncovered branches and propose a strategy for
them.
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