Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

An Automated Testing Tool Using Ul Structure

Nutharat Harnvorawong, Taratip Suwannasart, Member, IAENG

Abstract—Testers usually run a new version of software
against existing test cases to validate that changes do not cause
any unexpected results in legacy functionalities when the
software is modified or enhanced. A solution that can reduce
cost is automated testing. However regression testing and
automated testing are resources consuming and high cost. In
this paper we propose a framework called Neo Automation
Framework (NAF) which allows testers to create and develop
automated test cases easily and efficiently. The framework can
generate Ul structure of a given form inside application. The Ul
structure is a list of usable Ul controls in hierarchical data
structure in a class format of programming language.
Automated test cases can be automatically generated from the
Ul structure. The framework also provides tools for simply
modifying test case and analyzing usage of Ul controls in the
test cases. The analyzer tool can identify Ul controls which are
not used and so testers can be aware of area lacking of test in
their test cases.

Index Terms—Automated Testing, GUI,
Software Testing, Neo Automation Framework

Automation,

I. INTRODUCTION

oftware testing is one of essential parts in software

development life cycle to ensure software works
correctly as expected [1]. Software testers need to
understand software under test in order to design test cases
properly and therefore defects in the software can be
detected or discovered. When a new feature is developed,
new test cases are created to validate functionalities and
ensure if quality of the software is satisfied. Not only the
new feature is tested but also existing features should be
tested to ensure what was previously working still works
correctly [2]. This is regression testing. Obviously number
of test cases can be increasing rapidly and effort to execute
test cases is numerous whereas resources are still being the
same. It is a hard work of testers to validate new developed
features and also validate all existing features every time a
new version of software is released.

Nowadays automated testing is widely used in software
testing [3] especially for regression testing as it is fast,
reliable, and repeatable. It can reduce cost of testing
significantly. However, there are some concerns when
creating scripts to use in automated testing such as overhead
for testers to learn an automation framework, overhead of
maintaining automated test cases when software is changed,
how much automated test cases are enough?, where is area
lacking of test?, and etc. In this paper we propose an
automation test framework which can help testers to

Manuscript received December 9, 2013; revised December 23, 2013.

N. H. Author is a student at the faculty of Engineering, Chulalongkorn
University, Bangkok, Thailand (e-mail: Nutharat. H@student.chula.ac.th).

T. S. Author is with the faculty of Engineering, Chulalongkorn
University, Bangkok, Thailand (e-mail: Taratip.S@chula.ac.th).

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

automate test cases easily and help identify parts in software
which lack of testing in automated test cases.

Il. RELATED WORKS

There are many techniques used in automated testing. A
technique which is easy for creating automated test cases
called capture & playback [4] which was introduced in many
testing tools in market such as Microsoft Visual Studio [5],
and etc. An advantage of this approach is that automated test
cases can be created fast but a disadvantage is that Ul
controls are only recorded if it is used in the automated test
cases. If testers want to add more test cases for other Ul
controls, testers cannot reuse an existing list of Ul controls
and need to rerecord actions for new test cases specially.

Another technique that is frequently used is model based
[6]. André M. P. Grilo and his team [7] have worked in GUI
model for software testing. They have proposed to extract
structural information of GUI and store it in XML format.
From their work, it shows if Ul controls in application are
recorded in hierarchical data structure, i.e. XML, it could be
easy to use and can be processed for other purposes easily.

Another interesting technique used when executing
automated test has been proposed by Alex Ruiz and his team
[8]. They have proposed an approach how to write
automated test cases by using library with concept of "fluent
interfaces” to simplify automated test cases in coding style.
Their work shows that automated test cases written in code
like programming language is readable and is also powerful
as testers can use power of programming language to control
flow of a test scenario.

I1l. NEO AUTOMATION FRAMEWORK

Neo Automation Framework (NAF) is an automation test
framework which provides tools to facilitate testers' works.
It has been designed to support automated testing with
Windows application. We chose Windows application
developed by using .NET framework as a target of
application under test because it is a well-known
programming language and is widely used. NAF has a
library of APl for each supported Ul control [9] which
wraps UIA [10] commands for easy to use. The framework
diagram is shown in Fig 1.

IMECS 2014

Software

Ul Structure
Generator

ul Struc/tu:e\J

N

Test Case
Generator

Ul Usage Test Cases

———»| Test Manager

Analyzer
N

@ Test Case Editor o=

Ul Usage Report

Test Report

Fig 1. Neo Automation Framework

A. Software

A Graphical User Interface (GUI) application consists of
Ul controls that can interact with users, for example button,
radio button, and text box. Layout of these Ul controls are
designed and set since design phase by programmers. In case
of many Ul controls, they probably are grouped in a Ul
container control such as group box, tab, and etc., for ease of
use.

A Windows application developed by using .NET
framework and running on Windows operating system can
be used in automated testing of this paper.

B. UI Structure Generator

Ul Structure Generator is a tool that analyzes application
under test and extracts information of Ul controls such as
automation ID, type of control, position of control, and etc.,
and generates a list of Ul controls as a hierarchy and saves it
into a format of class. Testers can use the generated Ul
structure in their test project and can access the Ul control
by accessing properties of Ul structure class.

This tool has an ability to find a form which is expected to
be a root in Ul structure class. Testers just drag and drop
cursor onto target form of application under test, then the
tool will automatically extract Ul control information of
selected form and its children Ul controls.

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

Drags the red icon over target control to get information
Find Form automatically
Find children
- Window - FmMain Detais | U Structure |
- Hypedink - LnkAbout -
Buton - BrOpenLagFle Ul Strucure Properties
Buiton - BinClose: Fiendy name: Frmbain
Document - TdConnectionStatus_Remote Host Automation D s
Edit - TstConnectionStatus_ConnectionStatus omaton mifisin
&~ Group - GroMode: Control type: ControlType. Window M
Spinner - NumMode_Server_Port
Bution - Bnlode _Stoo 7] Hidden cortrol Save
RacloButton - RdoMode_Server = .
Button - Btnode_Start
- RadioButton - RdoMode_Client Adtomation element properties:
Edit - TitMode_Cliert_IPAddress Propety Value -
Spinne - NumMods_Ciert_Port Mouse Py I
£ Tabkem - Tabkem
£1- Group - Gp Settings_General Mouse-Y 12
-~ ComboBox - CboSettings_EscapeCharacterForinterprate.
CheckBox - Chk Settings_AlwaysOnTop
1 Group - GrpSedtings_Monor Lab Simator
Hyperiink - Lnk Settings_CommentColor_Defaul CortrolType ControlType Window
Hyperink - Lnk Settings_CommentColor_Change ClassName WindonsForms 10 Window 8.app.0.378734a
- Hyperiink - Lnk Settings_EmorColor_Default -
Hyperink - Lnk Seftings_irformationColor_Change BoundingRectangle 427.105.660.60
Hyperink - Lnk Settings_RemoteHosi Color_Defauit Automation|D fmblan
Hyperiink - Lnk Settings_Lab SimulatorColor_Default FramewokiD WinFom
Hypetiink - Lnk Sattings_Lab SimulatorColor_Change
- Hyperinkc - Lk Settings_InformationColor_Defaut IsEnzbled Tue
Hyperiink - Lnk Settings_RemoteHostColor_Change IsCortrolElement Te
Hyperink - Lnk Seftings_EmorCelor_Change
2 G G Settge, Som: IsCortentElement Tre
Spinner - NumSattings _MadmumConnections IsKeyboardFocusable Tre
- Tabhtem - Tabkem 1 Tl [HasKeyboardFocus Falss o
“ i v
Showhighiht (7] Shous idden cortrols Hichiiht Seffings Loa Fie

Fig 2. Ul structure Generator tool with an example of Ul
structure

Ul Controls that are usable in automated test will be
displayed in a hierarchical tree as shown in Fig 2. Testers
can select each Ul control and see where the Ul control is
and also be able to change its name to be more
understandable or descriptive. The original name of each Ul
control comes from automation ID of the control, therefore
sometimes it is not a good name or is a code defined by
programmer. If the Ul control is not supposed in automated
test such as label control, testers can mark it as hidden
control so it will not be generated in a Ul structure class.

One of useful data retrieved from Ul control is automation
ID. It is unique under the same parent control since it is used
as an identifier. In some cases, Ul controls do not have
automation ID. NAF has a process to handle such cases. For
example tab item control which is an individual tab in tab
list control, by default it does not have automation ID, NAF
uses name of tab item control instead when finding a target
Ul control, e.g. running automated test cases to access the
tab item.

Once testers have completed reviewing the Ul controls,
they can simply generate a Ul structure and the tool will
show a generated Ul structure in the preview area and testers
are able to save it into a file, as shown in Fig 3.

IMECS 2014

[Ul Structure Generator.

Drags the red icon overtarget cortrolto get infomation
Find Fom automatically
Find children.

= Window - FrMain
Hyperink - Lnk About
Button - BnOpenLogFle
Bution - EinClose
Document - TrtConnsstion Status_Rem|
Edit - TtConnectionStatus_Connections] _| | e =
Groug - GrpMode = || 7 This code was generated by a tool
oy - Nomblods. Server Fort 1/ Changes1o s ey casse ncarec bfavorand i be o e code s regreried.
Button - Biniode _Stop
RiscioButton - RdoMode_Server
Button - Binbode_Start
RadoBuiton - RdaMods_Ciert
Edit - TitMode_Clent_IPAddress
Spinner - NomMode_Clint_Port
Tabltem - Tabltem
(Group - Grp Setings _Genersl
ComboBox - CooSettings_Escar
CheckBox - Chk Settings_Away:
Group - Grp Settings _Montor
Hyperink - Lk Settings_Comme:
Hyperink - LnkSettings_Comme:
Hyperink - Lk Seltings_ErorCol
Hyperink - Lk Settings_Informat
Hyperink - Lk Settings_Remate
Hyperlink - Lrk Settings_LabSimi i
Hhparc - LrkcSctinge Lah o INeoCortral("-31988_32035 87 231
Hyperink - Lrk Settings_informa pubiic: NeoButton BtnOpenLogFile {
Hyperlink - Lk Settings_Remote et { retum new NeoButton{'frmMain binCpenLogFile”); }
Hyperink - Lrk Settings_EmorCol)
Group - Grp Settings _Server « ,,, ,
Spinner - NumSettings_Maximun

>

Ul Structure

Namespace: UiSinucture

Ul structure class

using NeoAutomation Framewark Attributes;
using NeoAtomation Framework Controls:

ramespacs UlStucture {

[UIStructureClasstrue)]
public partal class FrmMain - NeoWindow {

private const string _actomationlD = "fmMain”"

public FrmMain)
base(_automationiD) {

H
[NeoConirol("-32173_32030_35_13]

public NeoHyperlink LnkAbout {
get { retum new NeoHyperink (fimMain InkAbout))

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

as DLL.

Test Case Generator is a tool that analyzes the assembly
which contains the Ul structure class and automatically
generates automated test cases based on the given Ul
structure class. All Ul controls in the given Ul structure class
will be used at least once in a sequence of Top-Down and
then Left to Right based on position of Ul control. This is to
ensure all Ul controls have been accessed in order to ensure
Ul controls of application have been tested. However, the
generated test cases by accessing Ul controls in such
sequence may not be valid test cases. Testers can modify test
cases manually or use the editor tool which will be described
below. Fig 5 shows our Test Case Generator tool and an
example of generated test case in the tool.

e e 1ol FEE

Tabhem - Tabltem_1
| Tt T ,
Show highlight [] Show hidden controls Highlight Settings Log Flle Close

Fig 3. Ul structure Generator tool with an example of
generated Ul structure class

C. UI Structure

Ul structure contains list of Ul controls in hierarchical
data structure recorded in format of C# language. Each form
in application under test is extracted and recorded in a
separate class.

A form will be generated as a class and its children
controls will be generated as properties with appropriated
type of control. The class has a variable storing automation
ID value of the form. Also property members have
automation ID values in a get method. An example of Ul
structure class is shown in Fig 4.

generated by a to
de is regenerated

6 Elusing NeoAutomationFramework.Attributes;
using NeoAutomationFramework.Controls;

Einamespace UIStructure {

11 [UIStructureClass(true)]
B public partial class Calculator

4 private const string _automationID = "Main.*.Screenl”;

public CalculatorUIStructure()
7 8 : base(_automationID) {

("623_645_267_38")]
TxtAnswer {
23 get { return new NeoEdit("Main.®.Screenl.txtanswer”); }

("623_595_267_31")]
TxtExpression {
28 get { return new NecEdit("Main.*.Screenl.txtExpression”); }

"623_377_77_31")]
pinner NumOperand2 {
get { return new NeoSpinner(“Main.*.Screenl.numOperand2”); }

"623_426_267_184")]
ist LstOperation {
eturn new Neolist("Main.*.Secreenl.lstOperation”); }

23_328_77_31")]
pinner NumOperandl {
eturn new NeoSpinner(“Main.*.Screenl.numOperandl™); }

Fig 4. Anexample of Ul structure class

D. Test Case Generator

Once testers have the Ul structure class they should add it
into the test project and compile it into an assembly file such

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Generate Test Case | Edil Test Case|

fssembly: C:\Users\nutharath\Desktop\ Test Dils\UlTest di]

Load Assembly

Ul structure class: UlStructure. Form Ul Structure Generstord -

Generate Ll Test Class

Namespace: UlStructure

I Class name: FormUIStructureGeneratord_U| TestClass

Method name: UlTestMathod

Ul test class:

i -
£/ This code was generated by a tool

£/ Changes to this file may cause incomect behavior and will be lost if the code is regenersted.
i

using System;
using System Text;
using System Drawing; I
using System Collections Generic;

using System Ling;

using System Windows. Automation;

using Microsoft Visual Studio. Test Tools. Unit Testing;
using NeoAutomation Framework. Commen;

namespace UlStructure {

[TestClass]
public class FormlU|StructureGeneratord_UI TestClass |

[TestMethod]
public void UlTestMethod() {

/ HEHEE Neo Automation Framework Settings SHEHE

< . b

Fig 5. Test Case Generator tool and an example of
generated test case

Neo Automation Frameworkc Settings

Log File

Test case generation consists of 3 parts.

1. Configuring NAF settings

This part contains commands to configure setting values
of NAF such as Show highlight of target Ul control, Use
caching of Ul control, and Duration to delay for searching
Ul control or after action performed.

2. Initializing variable of target form

This part creates and instantiates a variable of target form
so it can be called by later test steps.

3. Test steps

Actions to be performed on each Ul control are included
in the test steps. If the Ul control has multiple actions, the
commonly used action will be selected. For example,
checkbox control has Toggle, GetState actions; the default
action is Toggle.

After a test case is generated, it can be saved into a new
file in C# format.

IMECS 2014

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,

IMECS 2014, March 12 - 14, 2014, Hong Kong

& Elusing System.Drawing;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NeoAutomationFramework.Common;

Einamespace UIStructure {
[TestClass]
public <lass Screenl UITestClass {

[Testtethod]
16 B public void UITestMethod() {

74w Neo Automation Framework Settings sy

/4 [Setting] Name-ShowHighlight

NeoAutomationFramen ShowHighlight = true;

/4 [Setting] Name=WaitUnt:
22 NeoAutomationFramew

vailable_TimeoutInMilliseconds
ter.WaitUntilavailable TimeoutInMilliseconds = 10609;

26 7/ [Setting] Name=Targetelement HighlightColor
7 NeoAutomaticnFrameworkCenter TargetElement_HighlightColor = Color.Fromargh(-65536);

29 /4 ###4% Initialization Commands ##8##

#J [Initialization] Objectlame=screenl, UIStructureClass=UIStructure.Screenl

UIStructure.CalculatorUIStructure screenl = new UIStructure.CalculatorUIStructure();
E2Y [/ wmss Test Steps ssut
36 /4 [TestStep] Description=, Name-NumOperandl, Type-NeoAutomationFramework.Controls.NeoSpinner, Baseeol

screenl . NumOperandl.SetValue("6");

39 7/ [Teststep] Description=, Name=Numoperand2, Type=NeoAutomationFramework.Controls.NeoSpinner, BaseleoC
screenl.NumOperand2.Setvalue("6");

/4 [TestStep] Description=, Name=TxtExpression, Type-NeoAutomationFramework.Controls.NeoEdit, BaseNeoCc
screenl. TxtExpression, SetValue("");

a5 f/ [Teststep] Description=, Name=TxtAnswer, Type=NeoAutomationFramework.Controls.NeoEdit, BaseNeoContrc
P P , + Typ 3
46 screenl.TxtAnswer. SetValue("");
4 1
19 }
1

Fig 6. An example of a generated test case

Fig 6 shows an example of a generated test case.

E. Test Case Editor

Test Case Editor is a tool that provides basic operations to
modify test cases so testers can update test cases according
to test design. Testers can add a new test step, remove a test
step or change order of a test step as they want to follow a
real user scenario. Fig 7 shows the Test Case Editor tool and
an example of a test case being edited.

finding usage for each Ul control one by one. Ul control can
be called by a test method directly or other shared method.
For example, testers may create a common method for the
login screen so each test method calls to the shared method
instead of having steps perform in the login screen.
Therefore, the result of Ul control usage will be from
traversing through all call chains in the application.

The result shows number of Ul controls in the Ul
structure and number of Ul controls which are used and not
used in a table. Moreover, it can point out which Ul controls
are not used so testers can consider adding more tests to
increase coverage in their testing. Fig 8 shows the Ul Usage
Analyzer tool and the Ul usage result from Ul structures and
test cases.

o R ——
Ul Structurs Ul Test

Select File. Select Folder | [Include subfolder Select Fie Select Folder | [Include subfolder

Ulsinchure classes: _ 2/2selected Qe Testmethods: 34 selected Cexr
Select Ul Structurs Class Assembly Select _Test Method Test Class Assembly
UlStnucture. FrMain ket (I Uesthietnod UlStnucture. FrmMain_UlTestClass | C:\Users\nutharath\Desk
UiStnucture CalouiatorliSinucture | C:\sers'rutharath D UlTesthlethod2 UlStructure. FrmMain_UTestClass | C:\Users utharath\ Deskd
StattLab SmutorServer | Ui Stucture. FimMain_UTestClass | C:\Lsers\nutherath\Desk]
UTestMethod UlSnueture. Screen_UlTestClass | C:\Ussre\rutharath\Desid
. ow vl o] v
Ul Usages Clear
Ulstructure classes Usages: 92 Neo cortrols. 62 usages in 2methods in 1 dlassesin 1 assemble
Neo ed N Mt Neo Cortrol Callee) _~Method (Cller) Class (Calkr)
UlScte Cass Assemby Corirol Used (2 Nt Used - E
(Percent) | | Snlose .

Count
USwcire bl Clsers %2 31 370n 61 G | e StatLabSrmuistorServer | UlStructurs Frnbisi

UlStructure Caleulator.. | C:\Usersh. . |5 4 lsooon |1 |2000% | | BeDiver_Apoly UlTestMethed2 Ulstructure.Frnbai
BinMode_Statt UlTestMethod2 UlStructure. Frn i
BinMode_Start StartLabSimuatorServer | UlStructure. Frnblai
BinMode_Stop
BinOpenLogFie

BirParser_Parse

BinSendMzssage_Quic,
BinSendMessage_Quic.
BinSendMessage_Send

[
I

<L

=
i

[0 Test Cose Teol xS

Generate Test Case | Edt Test Case

Ul Structure

ety CUsrsbaraDicp Tar Ol UTet i =

Cass: UlStructure. FornUiSinctureGeneratord.

Ul Test
Class: |D \Projects\Nott-NeoAutomationFramework\UITest\UTest cs] = Load
Method: UlTestMethod111222 -
Test Case |
Method name: UTestMethod 111222

Neo Automation Framework Settings: _Edi

Name Value B
B
CachingEnabled e
TrySearchDescendarts s
ThrowException FPerfomingctionlsNotSuccessful | e jl
Teststeps
Select _Descrption __Neo Cortral Operation Command
1| B [nettstep 1 ieo Control of. it operation of ex... |formUIStuctureGenerator. Label Targetinsiuction GetText();
G ot edit Neo Control of. ot edit operation of ex... | fomStructureGenerator Link LabelLog Fie Invoke(;
3 | [|Nottstep 52-.. | <Cannot ect Neo Contral ... | <Canio edt operation of ... fam\IStuctureGenerator ButtonCiose Cick(;
4 | [|Nottstep7- .. | <Cannot edt Neo Gontrol of .. | Gannot edt operation of ... fomUlStuctureGnerator. ButtonGose Cick()
5 | O |z <Cannot edit Neo Conlol o... | <Cannot edit operction of . Tabkem_2 ComboBox Collapsed
6 | [|NotCopy! | <Camnot edt Neo Gontrolof . | <Camnol ect operstion of ex... fomIStuctureGenerator Tabem_2 Check Box? Toggletue):
] [checkBoxshonighight [~ | Teggietrue) = | fomUStructureGerstor.Check BaxShowHighiht. Toggle(rue):
» 8 | O [ButtonClose [= JJcicko. [~ ButtonCioss Clicky)
ad | [CopyiPase] [Delte |

Fig 7. Test Case Editor tool

F. Ul Usage Analyzer

Ul Usage Analyzer is a tool that analyzes usage of Ul
controls in automated test cases. The tool requires 2 inputs
in order to analyze Ul usage: assembly of Ul structure class
and assembly of test cases.

A technique used to find usage of Ul control in test cases
is code refactoring. All Ul controls in a specified Ul
structure will be listed out and then iterates a process of

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Fig 8. Ul Usage Analyzer tool

The result can also be shown in a printable format as a
usage report as shown in Fig 9 and Fig 10.

Ul Usage Detail Report

General Information

Assembly: TesProjctt, Vemin=1.0.0.0, Cullure=neutral PubickeyT ohens nul

Patn: c Teat® mjecty Db T eatPrcect 1.0

Mamespace: UIStctus

Closs: Fmitan
Ul Stucture Clsss Neo Coatrol Count Used Used(%) NotUsed WotUsed (%)
Frmblain w2 an BN 6 .30
Moo Caniral Usage
e Gt e Usa Gt
Covered Neo Controls
Weo Contral Type Count
Grallode NeoGroup 2
Tabitem HeoTabitem 2
Tastem_1 HeoTasitem 2
Tatiem_2 HeoTasitem 2
Tabitem_3 HeoTabitem
NumMade_Sorve_Port HeoSpinner
- HeoRioBution

HeoCheckBox
Defut Heoyperink
Chang NeoHypedink

Fig 9. An example of Ul usage report

IMECS 2014

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

could be a quick test to ensure that there is no change in Ul.
., Usage DewliReport If the result of checking Ul structure with the software is
’ failed, then there might be new Ul controls added into the
: : software or existing Ul controls do not exists anymore. In
: latter case, if it is not an intended change, then it is likely a
: bug in the software detected by Ul structure.

E REFERENCES

ooRas:Bten L [1] James A. Whittaker, “What Is Software Testing? And Why Is It So

Hard?”, IEEE, 2000

Mot Goverad Nao Conroly [2] Wei Jin et al., "Automated Behavioral Regression Testing", in 3rd Int.
Conf. on Software Testing, 2010, IEEE, pp. 137-146

[3] ZHU Xiaochun et al., "A Test Automation Solution on GUI

ot _RoGoanen Functional Test", pp. 1413-1418

' [4] Pekka Aho; Nadja Menz; Tomi Réty; Ina Schieferdecker, "Automated
Java GUI Modeling for Model-Based Testing Purposes”, IEEE, 2011

[5] Microsoft, “Visual Studio Test Professional”, Available from:
http://www.microsoft.com/visualstudio/eng#products/visual-studio-
test-professional-2012+product-edition-testpro

T —— [6] Automated GUI Test Coverage Analysis using GA
cn aorypatin [7]1 Reverse Engineering of GUI Models for Testing
— [8] GUI Testing Made Easy
[91 Microsoft, “Control Types and Their Supported Control Patterns”,
. - Available from: http://msdn.microsoft.com/en-
Fig 10. An example of unused Ul controls in Ul usage us/library/windows/desktop/ee671193(v=vs.85).aspx
report [10] Microsoft, “Microsoft UI Automation”, Available from:

http://msdn.microsoft.com/en-us/library/ms747327.aspx

G. Test Manager

Automated test cases we have created in previous steps
are in C# language. It can be run by using test command of
.NET framework, i.e. mstest.exe, or can be easily run within
Microsoft Visual Studio IDE which already provides
functionalities of running test and test result report.

IVV. APPLICATIONS

We have tested NAF by creating a few automated test
cases for example applications. The process of creating Ul
structure is done within few minutes and testers can finish
writing automated test cases according to test design shortly.
However, after testers have finished creating the automated
test cases, we found some Ul controls that are not used in the
test cases. Obviously that Ul Usage Analyzer tool could help
identify what Ul controls should be added into automated
test cases to increase test coverage as much as possible.

V. CONCLUSION

We have presented an automation testing framework —
Neo Automation Framework (NAF). NAF consists of three
main parts: 1. generating Ul structure of specified form in an
application under test, 2. generating and modifying
automated test cases which is kind of unit test in C#
language, and 3. analyzing usage of Ul control in automated
test cases. Our approach is to keep information of Ul
controls in hierarchical data structure which can be used in
other parts of framework easily. Testers can access Ul
controls directly via a class of Ul structure which is stored in
a class. Therefore, there is no extra work for preprocessing
of use and it can also be used to verify the automated test
cases to find unused Ul controls.

Since we have a model of application under test in
hierarchical data structure so for our future work, it is
possible to validate the Ul structure against the software. It

ISBN: 978-988-19252-5-1 IMECS 2014
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

