
 

 

Abstract—Testers usually run a new version of software 

against existing test cases to validate that changes do not cause 

any unexpected results in legacy functionalities when the 

software is modified or enhanced. A solution that can reduce 

cost is automated testing. However regression testing and 

automated testing are resources consuming and high cost. In 

this paper we propose a framework called Neo Automation 

Framework (NAF) which allows testers to create and develop 

automated test cases easily and efficiently. The framework can 

generate UI structure of a given form inside application. The UI 

structure is a list of usable UI controls in hierarchical data 

structure in a class format of programming language. 

Automated test cases can be automatically generated from the 

UI structure. The framework also provides tools for simply 

modifying test case and analyzing usage of UI controls in the 

test cases. The analyzer tool can identify UI controls which are 

not used and so testers can be aware of area lacking of test in 

their test cases. 

 
Index Terms—Automated Testing, GUI, Automation, 

Software Testing, Neo Automation Framework 

I. INTRODUCTION 

oftware testing is one of essential parts in software 

development life cycle to ensure software works 

correctly as expected [1]. Software testers need to 

understand software under test in order to design test cases 

properly and therefore defects in the software can be 

detected or discovered. When a new feature is developed, 

new test cases are created to validate functionalities and 

ensure if quality of the software is satisfied. Not only the 

new feature is tested but also existing features should be 

tested to ensure what was previously working still works 

correctly [2]. This is regression testing. Obviously number 

of test cases can be increasing rapidly and effort to execute 

test cases is numerous whereas resources are still being the 

same. It is a hard work of testers to validate new developed 

features and also validate all existing features every time a 

new version of software is released. 

Nowadays automated testing is widely used in software 

testing [3] especially for regression testing as it is fast, 

reliable, and repeatable. It can reduce cost of testing 

significantly. However, there are some concerns when 

creating scripts to use in automated testing such as overhead 

for testers to learn an automation framework, overhead of 

maintaining automated test cases when software is changed, 

how much automated test cases are enough?, where is area 

lacking of test?, and etc. In this paper we propose an 

automation test framework which can help testers to 

 
Manuscript received December 9, 2013; revised December 23, 2013. 

N. H. Author is a student at the faculty of Engineering, Chulalongkorn 

University, Bangkok, Thailand (e-mail: Nutharat.H@student.chula.ac.th). 

T. S. Author is with the faculty of Engineering, Chulalongkorn 

University, Bangkok, Thailand (e-mail: Taratip.S@chula.ac.th). 

automate test cases easily and help identify parts in software 

which lack of testing in automated test cases. 

II. RELATED WORKS 

There are many techniques used in automated testing. A 

technique which is easy for creating automated test cases 

called capture & playback [4] which was introduced in many 

testing tools in market such as Microsoft Visual Studio [5], 

and etc. An advantage of this approach is that automated test 

cases can be created fast but a disadvantage is that UI 

controls are only recorded if it is used in the automated test 

cases. If testers want to add more test cases for other UI 

controls, testers cannot reuse an existing list of UI controls 

and need to rerecord actions for new test cases specially. 

Another technique that is frequently used is model based 

[6]. André M. P. Grilo and his team [7] have worked in GUI 

model for software testing. They have proposed to extract 

structural information of GUI and store it in XML format. 

From their work, it shows if UI controls in application are 

recorded in hierarchical data structure, i.e. XML, it could be 

easy to use and can be processed for other purposes easily. 

Another interesting technique used when executing 

automated test has been proposed by Alex Ruiz and his team 

[8]. They have proposed an approach how to write 

automated test cases by using library with concept of "fluent 

interfaces” to simplify automated test cases in coding style. 

Their work shows that automated test cases written in code 

like programming language is readable and is also powerful 

as testers can use power of programming language to control 

flow of a test scenario. 

III. NEO AUTOMATION FRAMEWORK 

Neo Automation Framework (NAF) is an automation test 

framework which provides tools to facilitate testers' works. 

It has been designed to support automated testing with 

Windows application. We chose Windows application 

developed by using .NET framework as a target of 

application under test because it is a well-known 

programming language and is widely used. NAF has a 

library of API for each supported UI control [9] which 

wraps UIA [10] commands for easy to use. The framework 

diagram is shown in Fig 1. 

 

An Automated Testing Tool Using UI Structure 

Nutharat Harnvorawong, Taratip Suwannasart, Member, IAENG 

S 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

UI Usage 
Analyzer

Test ReportUI Usage Report

            Software

UI Structure

Test Cases

Test Case 
Generator

Test Manager

UI Structure 
Generator

Test Case Editor

 
Fig 1.  Neo Automation Framework 

 

A. Software 

A Graphical User Interface (GUI) application consists of 

UI controls that can interact with users, for example button, 

radio button, and text box. Layout of these UI controls are 

designed and set since design phase by programmers. In case 

of many UI controls, they probably are grouped in a UI 

container control such as group box, tab, and etc., for ease of 

use. 

A Windows application developed by using .NET 

framework and running on Windows operating system can 

be used in automated testing of this paper. 

B. UI Structure Generator 

UI Structure Generator is a tool that analyzes application 

under test and extracts information of UI controls such as 

automation ID, type of control, position of control, and etc., 

and generates a list of UI controls as a hierarchy and saves it 

into a format of class. Testers can use the generated UI 

structure in their test project and can access the UI control 

by accessing properties of UI structure class. 

This tool has an ability to find a form which is expected to 

be a root in UI structure class. Testers just drag and drop 

cursor onto target form of application under test, then the 

tool will automatically extract UI control information of 

selected form and its children UI controls. 

 
Fig 2.  UI structure Generator tool with an example of UI 

structure 

 

UI Controls that are usable in automated test will be 

displayed in a hierarchical tree as shown in Fig 2. Testers 

can select each UI control and see where the UI control is 

and also be able to change its name to be more 

understandable or descriptive. The original name of each UI 

control comes from automation ID of the control, therefore 

sometimes it is not a good name or is a code defined by 

programmer. If the UI control is not supposed in automated 

test such as label control, testers can mark it as hidden 

control so it will not be generated in a UI structure class. 

One of useful data retrieved from UI control is automation 

ID. It is unique under the same parent control since it is used 

as an identifier. In some cases, UI controls do not have 

automation ID. NAF has a process to handle such cases. For 

example tab item control which is an individual tab in tab 

list control, by default it does not have automation ID, NAF 

uses name of tab item control instead when finding a target 

UI control, e.g. running automated test cases to access the 

tab item. 

Once testers have completed reviewing the UI controls, 

they can simply generate a UI structure and the tool will 

show a generated UI structure in the preview area and testers 

are able to save it into a file, as shown in Fig 3. 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

 
Fig 3.  UI structure Generator tool with an example of 

generated UI structure class 

 

C. UI Structure 

UI structure contains list of UI controls in hierarchical 

data structure recorded in format of C# language. Each form 

in application under test is extracted and recorded in a 

separate class. 

A form will be generated as a class and its children 

controls will be generated as properties with appropriated 

type of control. The class has a variable storing automation 

ID value of the form. Also property members have 

automation ID values in a get method. An example of UI 

structure class is shown in Fig 4. 

 

 
Fig 4.  An example of UI structure class 

 

D. Test Case Generator 

Once testers have the UI structure class they should add it 

into the test project and compile it into an assembly file such 

as DLL. 

Test Case Generator is a tool that analyzes the assembly 

which contains the UI structure class and automatically 

generates automated test cases based on the given UI 

structure class. All UI controls in the given UI structure class 

will be used at least once in a sequence of Top-Down and 

then Left to Right based on position of UI control. This is to 

ensure all UI controls have been accessed in order to ensure 

UI controls of application have been tested. However, the 

generated test cases by accessing UI controls in such 

sequence may not be valid test cases. Testers can modify test 

cases manually or use the editor tool which will be described 

below. Fig 5 shows our Test Case Generator tool and an 

example of generated test case in the tool. 

 

 
Fig 5.  Test Case Generator tool and an example of 

generated test case 

 

Test case generation consists of 3 parts. 

1. Configuring NAF settings 

This part contains commands to configure setting values 

of NAF such as Show highlight of target UI control, Use 

caching of UI control, and Duration to delay for searching 

UI control or after action performed. 

2. Initializing variable of target form 

This part creates and instantiates a variable of target form 

so it can be called by later test steps. 

3. Test steps 

Actions to be performed on each UI control are included 

in the test steps. If the UI control has multiple actions, the 

commonly used action will be selected. For example, 

checkbox control has Toggle, GetState actions; the default 

action is Toggle. 

After a test case is generated, it can be saved into a new 

file in C# format. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

 

 
Fig 6.  An example of a generated test case 

 

Fig 6 shows an example of a generated test case. 

E. Test Case Editor 

Test Case Editor is a tool that provides basic operations to 

modify test cases so testers can update test cases according 

to test design. Testers can add a new test step, remove a test 

step or change order of a test step as they want to follow a 

real user scenario. Fig 7 shows the Test Case Editor tool and 

an example of a test case being edited. 

 

 
Fig 7.  Test Case Editor tool 

 

F. UI Usage Analyzer 

UI Usage Analyzer is a tool that analyzes usage of UI 

controls in automated test cases. The tool requires 2 inputs 

in order to analyze UI usage: assembly of UI structure class 

and assembly of test cases. 

A technique used to find usage of UI control in test cases 

is code refactoring. All UI controls in a specified UI 

structure will be listed out and then iterates a process of 

finding usage for each UI control one by one. UI control can 

be called by a test method directly or other shared method. 

For example, testers may create a common method for the 

login screen so each test method calls to the shared method 

instead of having steps perform in the login screen. 

Therefore, the result of UI control usage will be from 

traversing through all call chains in the application. 

The result shows number of UI controls in the UI 

structure and number of UI controls which are used and not 

used in a table. Moreover, it can point out which UI controls 

are not used so testers can consider adding more tests to 

increase coverage in their testing. Fig 8 shows the UI Usage 

Analyzer tool and the UI usage result from UI structures and 

test cases. 

 

 
Fig 8.  UI Usage Analyzer tool 

 

The result can also be shown in a printable format as a 

usage report as shown in Fig 9 and Fig 10. 

 

 
Fig 9.  An example of UI usage report 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

 
Fig 10.  An example of unused UI controls in UI usage 

report 

 

G. Test Manager 

Automated test cases we have created in previous steps 

are in C# language. It can be run by using test command of 

.NET framework, i.e. mstest.exe, or can be easily run within 

Microsoft Visual Studio IDE which already provides 

functionalities of running test and test result report. 

IV. APPLICATIONS 

We have tested NAF by creating a few automated test 

cases for example applications. The process of creating UI 

structure is done within few minutes and testers can finish 

writing automated test cases according to test design shortly. 

However, after testers have finished creating the automated 

test cases, we found some UI controls that are not used in the 

test cases. Obviously that UI Usage Analyzer tool could help 

identify what UI controls should be added into automated 

test cases to increase test coverage as much as possible. 

V. CONCLUSION 

We have presented an automation testing framework – 

Neo Automation Framework (NAF). NAF consists of three 

main parts: 1. generating UI structure of specified form in an 

application under test, 2. generating and modifying 

automated test cases which is kind of unit test in C# 

language, and 3. analyzing usage of UI control in automated 

test cases. Our approach is to keep information of UI 

controls in hierarchical data structure which can be used in 

other parts of framework easily. Testers can access UI 

controls directly via a class of UI structure which is stored in 

a class. Therefore, there is no extra work for preprocessing 

of use and it can also be used to verify the automated test 

cases to find unused UI controls. 

Since we have a model of application under test in 

hierarchical data structure so for our future work, it is 

possible to validate the UI structure against the software. It 

could be a quick test to ensure that there is no change in UI. 

If the result of checking UI structure with the software is 

failed, then there might be new UI controls added into the 

software or existing UI controls do not exists anymore. In 

latter case, if it is not an intended change, then it is likely a 

bug in the software detected by UI structure. 

REFERENCES 

[1] James A. Whittaker, “What Is Software Testing? And Why Is It So 

Hard?”, IEEE, 2000 

[2] Wei Jin et al., "Automated Behavioral Regression Testing", in 3rd Int. 

Conf. on Software Testing, 2010, IEEE, pp. 137-146 

[3] ZHU Xiaochun et al., "A Test Automation Solution on GUI 

Functional Test", pp. 1413-1418 

[4] Pekka Aho; Nadja Menz; Tomi Räty; Ina Schieferdecker, "Automated 

Java GUI Modeling for Model-Based Testing Purposes", IEEE, 2011 

[5] Microsoft, “Visual Studio Test Professional”, Available from: 

http://www.microsoft.com/visualstudio/eng#products/visual-studio-

test-professional-2012+product-edition-testpro 

[6] Automated GUI Test Coverage Analysis using GA 

[7] Reverse Engineering of GUI Models for Testing 

[8] GUI Testing Made Easy 

[9] Microsoft, “Control Types and Their Supported Control Patterns”, 

Available from: http://msdn.microsoft.com/en-

us/library/windows/desktop/ee671193(v=vs.85).aspx 

[10] Microsoft, “Microsoft UI Automation”, Available from: 

http://msdn.microsoft.com/en-us/library/ms747327.aspx 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014




