
 

 

Abstract— Creating Sequence diagrams with UML tools can 

be incomplete, inconsistent, and incorrect. It also requires 

expertise, effort, and time. With model transformation 

technology, this paper presents an approach to automate the 

generation of UML Sequence diagrams from Use Case 

Description and Class diagrams. ATL is used as the model 

transformation language for converting the source metamodels 

of Use Case description and Class diagrams to the target 

metamodel of Sequence diagram. The resulting file in XMI 

format is then transformed by XSLT to another XMI file that 

suits for rendering the image of Sequence diagram as the final 

output. The proposed method would result in the improvement 

of software process. Rather than constructing the models from 

scratch during the different development life cycle stages, 

model transformations enable the reuse of information that 

was once modeled, as well as enhance the consistency among 

the models representing different views of the system. 

 
Index Terms—model-driven, model transformation, 

sequence diagram, process improvement 

 

I. INTRODUCTION 

ODAY, UML is accepted by the Object Management 

Group (OMG) as the standard for modeling object 

oriented programs. Several diagrams are defined to support 

the design of object-oriented systems. One of the UML 

diagrams includes the Sequence diagram which is used 

primarily to show the interactions between objects in the 

sequential order that those interactions occur. The diagrams 

allow the designer to specify the sequence of messages sent 

between objects in collaboration. As opposed to 

Collaboration diagrams, Sequence diagrams emphasize the 

sequence of the messages rather than the relationships 

between the objects. 

UML models had been improved by the OMG to be 

capable of delivering Model Driven Architecture (MDA), 

i.e. the UML had to function as a more model driven 

notation. Model driven describes an approach to software 

development whereby models are used as the primary 

source for documenting, analyzing, designing, constructing, 

deploying, and maintaining a system. The promotion of 

MDA as  an  architectural  framework  for software 

development is one  of  the  major initiatives accomplished 

 
P. Sawprakhon is a graduate student pursuing Master degree of Science 

in Software Engineering, Department of Computer Engineering, 

Chulalongkorn University, Bangkok 10330, Thailand (e-mail: 

Photchana.S@student.chula.ac.th).  

Y. Limpiyakorn is an Associate Professor in Department of Computer 

Engineering, Chulalongkorn University, Bangkok 10330, Thailand (e-mail: 

Yachai.L@chula.ac.th).   

 

 

by the OMG to  help  reduce  complexity,  lower  costs,  and  

hasten  the introduction  of  new  software  applications.  

Metamodeling and model transformations are the key 

concepts in Model Driven Development (MDD) approaches 

as they provide a mechanism for automated development of 

well-structured and maintainable systems [1]. Metamodeling 

provides a means of describing models with complete and 

precise specification. Different models represent different 

views of the system, and they are constructed conforming to 

their metamodels. A model transformation is the process of 

converting a source model into a target model via a model 

transformation language. The current well-known 

transformation languages include QVT (Query/ View/ 

Transformation) and ATL (ATLAS Transformation 

Language). Model transformations play a role to create new 

models based on the existing information throughout the 

MDD process. Rather than constructing the models from 

scratch during the different development life cycle stages, 

model transformations enable the reuse of information that 

was once modeled, as well as enhance the consistency 

among the models representing different views of the 

system. 

This article presents a method to automate the generation 

of UML Sequence diagrams from Use Case Description 

(UCD) and Class diagrams. With a set of rules defined in 

the chosen model transformation language ATL, the source 

metamodels of Use Case Description and Class diagrams are 

converted to the target metamodel of Sequence diagram. 

The resulting file in XMI format is then transformed by 

XSLT (eXtensible Stylesheet Language Transformations) to 

another XMI file that suits for rendering the image of 

Sequence diagram via the visualization program.  

II. MODEL DRIVEN DEVELOPMENT 

MDD is based on several concepts and technologies like 

model, metamodel, meta-metamodel, Model Driven 

Architecture, and model transformation. A model is an 

abstract representation of a system defined in a modeling 

language. Models are the primary artifacts of the MDD 

process and they represent the system on different levels of 

abstraction. A model contains enough details for (semi) 

automatic generation of executable code. 

 

A. Model Transformation  

Meta-model is the construction of a collection of 

"concepts" within a certain model [2]. A model is an 

abstraction of reality in the real world, while a metamodel is 

another abstraction highlighting properties of the model 

itself. A model conforms to its metamodel similar to the way 

Sequence Diagram Generation with Model 

Transformation Technology 

Photchana Sawprakhon, Yachai Limpiyakorn 

T 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

that a computer program conforms to the grammar of the 

programming language in which it is written. 

The Meta-Object Facility (MOF) [3] can be regarded as 

an OMG standard to write metamodels. MOF originated in 

the Unified Modeling Language as a metamodeling 

architecture to define the UML. MOF is designed as a four-

layered architecture as shown in Fig. 1. It provides a meta-

metamodel at the top layer, called the M3-layer. The MOF 

meta-metamodel is referred as the MOF Model. This M3-

model is the language used by MOF to build metamodels, 

called M2-models. An example of a Level 2 MOF model is 

the UML metamodel, which is the model describing the 

UML itself. MOF metamodels are usually modeled as UML 

Class diagrams. These M2-models describe elements of the 

M1-layer, and thus M1-models. Examples of M1-models 

include those models created in UML, such as Class and 

Sequence diagrams. The last layer is the M0-layer or data 

layer. It is used to describe real world objects, such as code 

and documentation. The XML Metadata Interchange (XMI) 

[4] is a standard format for exchanging information about 

MOF compliant models (M3, M2, M1 Levels) using the 

eXtensible Markup Language (XML). It includes 

information about elements in a model and their 

relationships. 
 

 
Fig. 1.  Metamodeling layers in MOF. 

 

The MOF specification is the foundation of the OMG 

standard environment where models can be created, 

integrated, and transformed into different formats. The 

OMG’s Model Driven Architecture relies on the MOF to 

integrate the modeling steps and provide the model 

transformations. 

Model transformations aim to provide a means to produce 

target models from a number of source models in the scope 

of Model Driven Engineering (MDE). MDE is a software 

development methodology that is mainly concerned with the 

evolution of models as a means of developing software by 

focusing on models. Some of the well-known MDE 

initiatives include the OMG’s initiative of Model Driven 

Architecture, and the Eclipse ecosystem of programming 

and modeling tools (Eclipse Modeling Framework EMF) 

[5]. 

Model transformations in MDE follow a common pattern 

as depicted in Fig. 2. A model conforms to a metamodel, 

while a metamodel conforms to a meta-metamodel. The 

transformation model defines how to generate models that 

conform to a particular metamodel from models that 

conform to another metamodel or the same metamodel. 

From Fig. 2, the transformation model Mt transforms Ma to 

Mb. Mt, Ma, and Mb are the models conforming to MMt, 

MMa, and MMb, respectively. The three metamodels 

conform to a common meta-metamodel MMM. 
 

 
 

Fig. 2.  Pattern of model transformations [6]. 

B. Atlas Transformation Language (ATL) 

ATL [7] is a model transformation language and toolkit. 

It is one of the most popular and widely used model 

transformation languages. ATL is a hybrid model 

transformation language containing a mixture of declarative 

and imperative constructs based on Object Constraint 

Language (OCL) for writing expressions. ATL 
transformations are unidirectional, i.e. operating on read-

only source models and producing write-only target models. 

During the execution of a transformation, source models can 

be navigated but changes are not allowed. Target models 

cannot be navigated. 

ATL provides a means to produce a number of target 

models from a set of source models. An ATL transformation 

program is composed of rules that define how source model 

elements are matched and navigated to create and initialize 

the elements of the target models. Developers can define the 

way source model elements must be matched and navigated 

in order to initialize the target model elements. ATL is a 
hybrid of declarative and imperative. The preferred style of 

transformation writing is declarative, providing that simple 

mappings can be expressed simply. However, imperative 

constructs are provided so that complex mappings can still 

be specified. 

Fig. 3 illustrates when  ATL is applied in the context of 

the transformation pattern. A source model Ma is 

transformed into a target model Mb according to a 

transformation definition mma2mmb.atl written in ATL. 

The transformation definition is a model conforming to the 

ATL metamodel (Fig. 4). All metamodels conform to MOF. 

ATL is developed on Eclipse platform. Eclipse platform 

defines EMF framework which is a modeling framework 

and code generation facility for building tools and other 

applications based on a structured data model. The core 
EMF framework includes a metamodel (ECORE) for 

describing models and runtime support for the models 

including change notification, persistence support with 

default XMI serialization, and a very efficient reflective API 

for manipulating EMF objects generically. 

ECORE is the core meta-model at the heart of EMF. It 

allows expressing other models by leveraging its constructs. 

ECORE is also its own meta-model because ECORE is 

defined in terms of itself.  
 
 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

 
Fig. 3.  Transformation pattern with ATL [8]. 

 

 
Fig. 4.  Tailored ATL metamodel. 

III. IMPLEMENTATION 

The process of model transformation consists of four main 

steps as illustrated in Fig. 5. Details are briefly explained in 

the following subsections. 

1. Create Source Models 

In this research, the input of Use Case and Class diagrams 

are created using Visual Paradigm v. 8, that supports UML2 

The diagrams created with Visual Paradigm can be exported 

in XMI-format files (.uml). Moreover, Visual Paradigm 

provides the feature that supports the insertion of 

descriptions into Use Case diagrams. The Use Case diagram 

with inserted descriptions will then be exported in XMI 

format (usecaseWithDesc.uml), and transformed to the 

target model (usecaseDesc.uml) with ATL transformation as 

shown in Fig. 6. A set of mapping rules is defined, together 

with the source metamodel of Use Case (Fig. 7) and the 

target metamodel of Use Case Description (Fig. 8) are 

created to support the ATL transformation process. Since 

the metamodel of Use Case Description is not defined as a 

standard of the OMG, the method how to build the UCD 

metamodel presented in [9] is adopted in this work. 

2. ATL Transformation 

The XMI files of Use Case Description and Class diagram 

are input to the ATL transformation for generating the 

output XMI file of Sequence diagram as illustrated in Fig. 9.  

The source metamodels of Use Case Description (Fig. 8) 

and Class diagram (Fig. 10), accompanied with the target 

metamodel of Sequence diagram (Fig. 11) are used during 

the ATL transformation process. This research has applied 

the approach presented in [10], [11] for creating a Sequence 

diagram from the messages in UCD based on the knowledge 

of natural language and the principles of artificial 

intelligence. 

In addition, a set of mapping rules is defined as 

summarized in Table 1. Each rule covers the construction of 

the component of Sequence diagram from the source 

models. That is, 

 

Rule 1:  Create Message 

 

 

 

 
 

 

Rule 2:  Create Lifeline 

 

 

 

 
 

 

Rule 3:  Create Sender receiving message 
 

 

 

 

 

 

 

 

Rule 4:  Create Receiver receiving message 

 

 

 

 
 

 

 

Rule 5:  Create Combined Fragment having value of 
alternatives 

 

 

 

 

 

 

Rule 6:  Create Combined Fragment having value of options 

 
 

 

 

 

 

Rule 7:  Create Combined Fragment having value of loops 

 

  

 

IF (UCD)Sentence.verb match  any  (CL)Operation.name 
     THEN   

    (SQ)Message.name = (CL)Operation.name 
  ELSE  
      (SQ)Message.name = (UCD)Sentense.verb 

END IF 

 

IF (UCD)Sentence.verb match any (CL)Operation.name 
      THEN  
         (SQ)Lifeline.name = (CL)Class.name 
      ELSE  
         (SQ)Lifeline.name = (UCD)Sentense.object 
END IF 

IF (UCD)Sentence.noun match any (CL)Class.name 
     THEN       

 start = (CL)Class.name 
     ELSE  
        /*create new Lifeline using Sentense.noun*/ 
         start = (UCD)Sentense.noun 
END IF 

 

IF (UCD)Sentence.object match any (CL)Class.name 
  THEN  
      finish = (CL)Class.name 
  ELSE  
    /*create new Lifeline using Sentense.object*/ 
      start = (UCD)Sentense.object 
END IF 

IF (UCD)Item.name match 'Alternative flows and exceptions'                 
and (UCD)flowOfEvent.sequenceNumber exists in Item.value 
  THEN   

     (SQ)Combineedfragment.interactionOperator = 'alt' 
END IF 

IF (UCD)Item.name match 'Alternative flows and exceptions'                 
and (UCD)flowOfEvent.sequenceNumber exists in Item.value 
   THEN   

(SQ)Combineedfragment.interactionOperator ='opt' 
END IF 

IF (UCD)Alternater.name match  'loop' 
  THEN   

    (SQ)Combineedfragment.interactionOperator ='loop' 
 
END IF 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

 
Fig. 5.  Steps of creating Sequence diagram with model transformation. 

 

 
Fig. 6.  ATL transformation from Use Case to Use Case Description. 

 

 
Fig. 7.  Tailored Use Case metamodel. 

 
 

Fig. 8.  Tailored Use Case Description metamodel. 

 

 
 

Fig. 9.  ATL transformation for generating model of Sequence diagram. 

 

 
Fig. 10.  Tailored Class metamodel. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

  

 
Fig. 11.  Tailored Sequence metamodel. 

TABLE I 

EXAMPLE MAPPING RULE TRANSFORMATION 

Input Output 

Mapping 

Rule 
Class Meta-Model 

(CL) 

Use Case Description Meta-model  

(UCD) 

Sequence Meta-Model  

(SEQ) 

EClass
1
 EAttribute

2
 EClass

1
 EAttribute

2
 Element Symbol Example EClass

1
 EAttribute

2
 

- - <Item> <name> <Actor> 

 

 

<Lifeline> <name> 

 

 

- 

<Operation> <name> <Sentence> <verb> <Message> 

 

 

 
 

<Message> <name> Rule1 

<Class> <name> <Sentence> <object> <Lifeline> 

 

 

<Lifeline> <name> Rule2 

<Class> <name> <Sentence> <noun> 
(message) 

 <start> 

 

 
 

-  -  Rule3 

<Class> <name> <Sentence> <object> 
(message) 

 <finish> 

 

 
 

 -  - Rule4 

- - 

<Item> <name> 
Fragment  

Alternative 

 

 

<Combined 

Fragment> 

 

 

<interaction 

Operator > 

(alt) 

 

 

 

Rule5 

<flowOfEvent <sequenceNumber> 

- - 

<Item> <name> 
Fragment  

Option 

 

 

<Combined 

Fragment> 

 

 

<Interaction 

Operator > 

(opt) 

 

 

 

Rule6 

<flowOfEvent> <sequenceNumber> 

  <Alternater> <name> 
Fragment  

      Loop 
 

<Combined 

Fragment> 

 

 

<interaction 

Operator > 

(loop) 

 

 

 

Rule7 

  <Item> 

<name> 

(pre-condition, 

post-condition) 

 

Interaction  

Use 
 

<Interaction> 

   

 

<name> 

 

 

 

 

- 

1
EClass is represents a class, with zero or more attributes and zero or more references. 

2
EAttribue is represents an attribute which has a name and a type. 

      

 

 

 

 

 

 
  

 

 

 

 

 
eceiver is … 

 

 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

3.  XSLT Transformation 

The XMI format of Sequence diagram as output from the 

previous step still cannot be image rendered. Another 

transformation process (Fig. 12) is required to construct the 

XMI format that suits for image rendering.  

  

 
Fig. 12.  XSLT transformation process. 

 

4. Visualization 

The output XMI-format file (sequenceRender.uml) of 

Sequence diagram from the previous step is input to the 

visualization tool, Visual Paradigm, for generating the 

image of Sequence diagram that conforms to UML standard 

of OMG.  

IV. CONCLUSION 

UML Sequence diagrams are widely used to describe 
interactions among classes in terms of an exchange of 

messages over time. They clearly display the sequence of 

events, show when objects are created and destroyed, are 

excellent at depicting concurrent operations, and help 

hunting down race conditions. However, the task of creating 

Sequence diagrams is error-prone and consumes effort and 

time. With model transformation technology, this article 

presents a method and develops a prototype to facilitate the 

generation of UML Sequence diagrams from UCD and 

Class diagrams. The tool has been developed based on 

Eclipse Modeling Tools (Kepler-SR1), and ATL is used as 
the model transformation language. The ATL scripts 

containing a set of mapping rules are created and executed 

using Eclipse Modeling IDE. Two ATL plugins are 

implemented and installed as the extension of Eclipse 

Modeling IDE. When applying model transformation, if the 

target model conforms to the target metamodel 

specification, then the model transformation is syntactically 

correct. Since the target metamodel specification of the 

Sequence diagram in this work is defined based on the 

OMG standard, the generated Sequence diagrams are thus 

syntactically correct. 

REFERENCES 

[1] D. Cetinkaya and A. Verbraeck, "Metamodeling and model 

transformations in modeling and simulation," Simulation Conference 

(WSC), Proceedings of the 2011 Winter, pp. 3043–3053, Dec. 2011. 

[2] Object Management Group, Unified Modeling Language
TM

 (OMG 

UML), Superstructure Version 2.4.1, OMG, Inc., Aug. 2011. 

[3] Object Management Group, Meta Object Facility (MOF) 2.0 

Query/View/Transformation Specification version 1.1, OMG, Inc.,  

Jan. 2011. 

[4] Object Management group, “MOF/XMI Mapping version 2.4.1,” 

OMG, Inc., Jun. 2013. 

[5] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF 

Eclipse Modeling Framework., Addison-Wesley Professional, Boston, 

2008. 

[6] Eclipse Foundation, ATL Concepts, Nov. 2013, [Online]. 

Available: http://wiki.eclipse.org/ATL/Concept  

[7] Eclipse Foundation, ATL Transformation Language, Dec. 2013, 

[Online]. Available: http://www.eclipse.org/atl/atlTransformations 

[8] F. Jouault, F. Allilaire, J. Bezivin, and I. Kurtev, "ATL: A model 

transformation tool," Science of Computer Programming, vol. 72, 

Issues 1–2, Jun. 2008, pp. 31–39. 

[9] S. S. Some, “A Meta-Model for Textual Use Case Description”,  

Journal of Object Technology, vol. 8, no. 7, pp. 87–106, submitted for 

publication. 

[10] J. M. Almendros-Jimenez and L. Iribarne, “Describing Use-Case 

Relationships with Sequence Diagrams,” The Computer Journal 

Advance Access, submitted for publication. 

[11] M. C. Segundo, M. C. Herrera, and I. K. Herrera, "UML Sequence 

Diagram Generator System from Use Case Description Using Natural 

Language," Electronics, Robotics and Automotive Mechanics 

Conference, pp. 360–363, Sep. 2007.  

 

 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

http://wiki.eclipse.org/ATL/Concept
http://www.eclipse.org/atl/atlTransformations



