

Abstract— Refactoring is the process of changing the

internal structures, that preserves external behaviors of
software. To improve software maintainability, we can apply
several refactoring techniques to source code; applying
different sequence of refactoring techniques to different parts
of the source code results in different code changes and
different level of software maintainability. This research uses
Heuristic Search methods to find a sequence of refactoring
techniques usage for code changing from a search space. Each
Heuristic Search method has different characteristics and
algorithm to reach an optimal result in solving the problem.
Heuristic Search methods including Greedy Algorithm,
Breadth First Search, Hill Climbing and A* (A Star) are used
to search for sequence of refactoring techniques usage from
search space and compare the effort and result of the search
methods. The purpose of the research is to find the most
appropriate Heuristic Search method for searching sequence
of refactoring techniques usage with maximum software
maintainability and least searching time. The researcher
evaluates each Heuristic Search method with source code
containing Long Method, Large Class and Feature Envy bad
smell. The result shows that Greedy Algorithm shows the best
results with maximum software maintainability and the least
searching time.

Index Terms—Refactoring, Refactoring Sequencing,
Heuristic Search, Software Maintainability

I. INTRODUCTION
AD SMELL [1] is characterized by bad design or bad
coding of software developers. Source code with bad

smell makes software complex, low software quality and
reduces software maintainability. To resolve this problem,
refactoring technique has been introduced. Refactoring [1]
is the process of changing the internal structure of software
that preserves its external behavior. Martin Fowler [1] has
identified characteristics of bad smell. Each refactoring can
change source code that impacts internal attributes such as
size, complexity, coupling and cohesion differently. In
some software, many refactoring techniques are used to
apply to several parts of source code. Different of

Manuscript received January 30, 2014.
Ratapong Wongpiang is with Center of Excellence in Software

Engineering Department of Computer Engineering, Chulalongkorn, Bangkok,
Thailand; e-mail: Ratapong.W@Student.chula.ac.th).

Pornsiri Muenchaisri is with Center of Excellence in Software Engineering
Department of Computer Engineering, Chulalongkorn, Bangkok, Thailand;
e-mail: Pornsiri.Mu@chula.ac.th).

refactoring techniques usages becomes a choice for
developer to change the source code. Selecting the
appropriate sequence of refactoring techniques to obtain the
changed source code with optimal software maintainability
value is investigated. In general, if we search for optimal
result (maximum or minimum value depend on domain
problem) without using search algorithm, we have to create
all possible paths and then select the best path that resolves
a problem with optimal result. To resolve the problem
without using search algorithm, we cannot find an
appropriate result because the problem has many paths or
large space. It is a waste of time to find a result. So search
method helps us to resolve a problem obtaining optimal
result and least searching time.

The purpose of the research is to find the most
appropriate Heuristic Search method for selecting sequence
of refactoring techniques usage for code changing with
maximum software maintainability and least searching
time. In this paper, we use Heuristic Search methods to
search for sequence of refactoring techniques usage for code
changing. Heuristic Search methods that we focus are
Greedy Algorithm, Breadth First Search, Hill Climbing and
A* (A Star). The research evaluates each Heuristic Search
method with the source code containing Long Method,
Large Class and Feature Envy bad smells. The result shows
that Greedy Algorithm shows the best results with
maximum software maintainability and least searching
time.

This paper is organized as follows. Section 2 introduces
the related work. Section 3 describes algorithm of each
Heuristic Search method. Section 4 describes the search
methods steps for searching sequence of refactoring
techniques usage. Section 5 presents an experiment for the
results of each Heuristic Search method. Finally, section 6
is discusses conclusions and future work.

II. RELATED WORK
T. Mens, G.Taentzer and O.Runge [2] present

refactoring techniques as graph transformations, the
techniques of critical pair analysis and sequential
dependency analysis to detect the implicit dependencies
among refactoring techniques. Their approach can suggest
developer to select appropriate refactoring techniques and
refactoring order to be applied.

Eduardo Pivetam, Joao Araujo, Marcelo Pimenta, Pedro
Guerrerirro and R. Tom Price [3] present an approach to
reduce the search space for refactoring opportunities, by

Comparing Heuristic Search Methods for
Selecting Sequence of Refactoring Techniques

Usage for Code Changing
Ratapong Wongpiang, Pornsiri Muenchaisri

B

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

providing mechanisms to create and simplify a
Deterministic Finite Automata representing the applicable
refactoring sequences in existing software. They exemplify
the approach with five refactoring patterns; Equivalent,
Commutative, Inverse, Forbidden and Parallel, to further
reduce the scope of refactoring.

Sanjay K.D. and Ajay R. [4] propose a model and
analyze the effects of relationship between the CK metrics
[10] and the software maintainability to assess software
system quality. They show that keeping low values of CK
metrics results in invariably software’s maintainability
improving, for a qualitative utility.

R. Wongpiang and P. Muenchaisri [5] propose an
approach to select sequence of refactoring techniques usage
for code changing, using Greedy Algorithm. They use
Greedy Algorithm to obtain a sequence of refactoring
techniques usage from search space, with optimal software
maintainability and less searching time. They show that the
changed source code using sequencing refactoring
techniques usage improves software maintainability better
than that without the techniques.

III. ALGORITHMS OF HEURISTIC SEARCH METHOD

A. Greedy Algorithm
Greedy Algorithm [11] is an algorithm that follows the

problem solving heuristic of making the locally optimal
choice at each stage with the hope of finding a global
optimum. This search method doesn’t consider the previous
stages, so that reduces the search space and gets the result
in short time. In general, Greedy Algorithm have five
components:

1. A candidate set, from which a solution is created
2. A select function, which chooses the best candidate

can be used to contribute to a solution
3. A feasibility function, that is used to determine if a

candidate can be used to contribute to a solution
4. An objective function, which assigns a value to a

solution, or a partial solution
5. A solution function, which will indicate when we have

discovered a complete solution
The General From of Greedy Algorithm can be shown on

Fig 1.

function select (C : candidate_set) return candidate;
function solution (S : candidate_set) return boolean;
function feasible (S: candidate_set) return boolean;
function greedy (C: candidate_set) return candidate_set is
 x : candidate; S : candidate_set;
begin
 S := {};
 while (not solution(S)) and C /= {} loop
 x := select (C); C:= C – {x};
 if feasible (S union{x}) then
 S := S union{x};

if solution(S) then return S;
else return es;

Fig 1 General Form of Greedy Algorithm

B. Breadth First Search
Breadth First Search [12] is a graph search algorithm

which is limited to essentially two operations: (a) visit and
inspect a node of a graph and (b) gain access to visit the
neighbor nodes of currently visited node. That means this
searching method considers a previous stage for choosing
the next nodes from a currently selected node. The
searching process can choose to go to the previous nodes,
from a currently selected node, to get the better result in the
end of the process; If the next node give a worse result than
a previous one. This algorithm use a queue data structure to
store intermediate results as it traverse the graph, as
follows:

1. Enqueue the root node
2. Dequeue a node and examine it
 2.1 If the element sought is found in this node, quit the

search and return a result.
 2.2 Otherwise enqueue any successors (the direct child

nodes) that have not yet been discovered.
3. If the queue is empty, every node on the graph has

been examined – quit the search and return “not found”.
4. If the queue is not empty, repeat from step 2.
The psedocode of Breadth First Search for traversing

from node A to G can be shown in Fig 2.

Procedure BFS(G,v) is
 create a queue Q
 create a set V
 enqueue v onto Q
 add v to V
 while Q is not empty loop
 t Q.dequeue()
 if t is what we are looking for then return t
 for all edges e in G.adjacenEdges(t) loop
 u G.adjacentVertex(t,e)
 if u is not in V then add u to V enqueue y onto Q
 return none

Fig 2 Psedocode of Breadth First Search

C. Hill Climbing
Hill Climbing [13] is a mathematical optimization

technique which belongs to the family of local search. It is
an iterative algorithm that starts with an arbitrary solution
to a problem, then attempts to find a better solution by
incrementally changing a single element of the solution. If
the change produces a better solution, an incremental
change is made to the new solution, repeating until no
further improvements can be found. This search algorithm
always head towards a state which is better than the current
one and terminates when are better than the current state
itself. The psedocode of Hill Climbing can be shown in Fig
3.

Proceduce Hill Climbing
 currentNode = startNode;

Fig 3 Psedocode of Hill Climbing (1)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

 loop do
L = NEIGHBORS(currentNode)

 nextEval = -INF
 nextNode = NULL
 for all x in L
 if(EVAL(x) > nextEval)
 nextNode = x
 nextEval = EVAL(x)
 if nextEval <= EVAL(currentNode)
 Return currentNode
 currentNode = nextNode

Fig 3 Psedocode of Hill Climbing (2)

D. A* (A Star)
A* [14] uses a Best First to search and find the least cost

path from a given initial node to a goal node, one or more
possible goals. As A* traverses the graph, it follows a path
of the lowest expected total cost or distance and keeps a sort
priority queue of alternate path segments along the way. A*
considers two functions for selecting node to traverse: the
past path cost function (g(x)) which is the known distance
from the start node to the current node x and the future path
cost function (h(x)). The equation of A* to get the goal
state can be defined as:

f(x) = g(x) + h(x)
 - f(x) refers to a goal stage

- g(x) refers to the past path cost function, which is the
known distance from the staring node to the current node x

- h(x) refers to a future path-cost function, which is
admissible heuristic of the distance from x to the goal

The psedocode of A* can be shown in Fig 4.

Procedure A*(star, goal)
 closedset := the empty set
 openset := {start}
 came_from := the empty map
 g_score[start] := 0

 f_score[start] := g_score[start] +
heuristic_cost_estimate(start, goal)

while openset is not empty
 current := the node in openset having the lowest

f_scroe[] value
 if current = goal
 return reconstruct_path(came_from, goal)

 remove current from openset
 add current to closedset
 for each neighbor in neighbor_nodes(current)
 if neighbor in closedset
 continue

 tentative_g_score := g_score[current] +
dis_between(current,neighbor)

 if neighbor not in openset or tentative_g_score <
g_score[neighbor]

Fig 4 Psedocode of A* (1)

 came_from[neighbor] := current
 g_score[neighbor] := tentative_g_score
 f_score[neighbor] := g_score[neighbor] +

heuristic_cost_estimate(neighbor, goal)
 if neighbor not in open
return failure

function reconstruct_path(came_from, current_node)
 if current_node in came_from
 p := reconstruct_path(came_from,

came_from[current_node])
 return (p + current_node)
 else
 return current_node

Fig 4 Psedocode of A* (2)

IV. COMPARING FOUR SEARCH METHODS IN SELECTING
SEQUENCE OF REFACTORING TECHNIQUES USAGE FOR CODE

CHANGING
To compare the search methods in selecting sequence of

refactoring techniques usage for code changing, we
consider for two criterias: maintainability of changed
source code after sequencing of refactoring techniques
usage and searching time (number of retrieved nodes) to get
a result. We want to find which Heuristic Search method is
appropriate for selecting refactoring techniques usage of
code changing with optimal software maintainability and
the least searching time. The steps of searching for
sequence of refactoring usage paths of the search methods
are defined as follow.

A. Greedy Algorithm
1. Apply each refactoring technique to the positions to be

changed in source code.
2. Calculate software maintainability of changed source

codes that have already been applied by refactoring
techniques.

3. Select a path or changed source code which has
maximum software maintainability to be applied
refactoring techniques in the remained positions.

4. Check that there are positions to be applied refactoring
techniques or not.

 4.1 If there are positions then repeats from step 1 to
step 4 until there are no positions to be changed or no
refactoring techniques to apply.

 4.2 If there are no position then stop searching
process.

5. Obtain the sequence of refactoring techniques usage
which makes the changed source code with optimal
software maintainability.

The number of nodes which has to be retrieved for the
result using Greedy Algorithm can be found by formula as
follow:

Total Number of Retrieved Nodes GA = Sum of

considered refactoring techniques each round (

z

r
r

1

Re)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

rRe = Sum of considered refactoring techniques each

position to be applied (

z

i
iP

1
)

- Re refers to number of refactoring techniques to
consider each round.

- P refers to number of refactoring techniques to consider
each position.

- r refers to round of searching.
- z refers to number of positions to be applied refactoring

techniques.
- i refers to position number to be applied refactoring

technique.
From the formula, the number of positions to be applied

refactoring technique decreases by one position at the end
of each round.

B. Breadth First Search
1. Apply each refactoring technique to the positions to be

changed in source code.
2. Calculate software maintainability of changed source

codes that have already been applied by refactoring
techniques.

3. Select a path or changed source code which has
maximum software maintainability to be applied
refactoring techniques in the remained positions by
considering previous nodes (except root node or the first
round of searching process).

4. Check that there are positions to be applied refactoring
techniques or not.

4.1 If there are positions then repeats from step 1 to
step 4 until there are no position to be changed or no
refactoring techniques to apply.

4.2 If there are no position then stop searching
process.

5. Obtain the sequence of refactoring techniques usage
which makes the changed source code with optimal
software maintainability.

The number of nodes which has to be retrieved for the
result using Breath First Search can be found by formula as
follow:

Total Number of Retrieved Nodes BFS = Sum of
considered refactoring techniques each position to be

applied in the 1st round (

z

i
iP

1

) + Sum of considered

refactoring techniques from 2nd round on (

z

r
r

2

Re)

rRe = Sum of considering refactoring techniques each

position to be applied (

z

i
iP

1

) + (Sum of considering

refactoring techniques of previous round - 1)

From the formula, the number of positions to be applied
refactoring technique decreases by one position at the end
of each round.

C. Hill Climbing
1. Apply each refactoring technique to the positions to be

changed in source code.
2. Calculate software maintainability of changed source

codes that have already been applied by refactoring
techniques.

3. Select a path or changed source code which has
software maintainability better than current path to be
applied refactoring techniques in the remained path. Select
path which has maximum software maintainability in case
there are many better paths.

4. Check that there are better positions to be applied
refactoring techniques or not.

 4.1 If there are position then repeats from step 1 to
step 4 until there are no positions to be changed or no better
positions than current path.

 4.2 If there are no position or no better positions than
current path then stop searching process.

5. Obtain the sequence of refactoring techniques usage
which makes the changed source code with optimal
software maintainability.

From the step of searching process, the searching process
can be stop if the software maintainability of current path is
better than other next paths. As a result, some positions
may not be changed by refactoring techniques after
finishing process. The number of nodes which has to be
retrieved for the result using Hill Climbing can be found by
formula as follow:

Total Number of Retrieved Nodes HC = Sum of

considering refactoring techniques each round (

z

r
r

1

Re)

rRe = Sum of considered refactoring techniques each

position to be applied (

z

i
iP

1

)

From the formula, the number of positions to be applied
refactoring technique decreases by one position at the end
of each round.

D. A* (A Star)
The equation of A* to get the sequence of refactoring

techniques usage can be defined as in
f(x) = g(x) + h(x)

 - f(x) refers to goal stage which all positions are applied
refactoring techniques.

- g(x) refers to software maintainability of current node.
- h(x) refers to average of software maintainability of

other refactoring techniques to go to the goal stage from
current node.

The step of searching refactoring techniques usage path
using A* can be defined as follow.

1. Apply each refactoring technique to the positions to be
changed in source code.

2. To find g(x), calculate software maintainability of
changed source codes that have already been applied by
each refactoring from step 1.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

3. To find h(x), apply refactoring techniques at all other
positions from changed source code in step 1. And then
calculates average of software maintainability of all possible
paths from changed source code.

4. Consider sum of g(x) and h(x) of each path from step
1 by select a path which has maximum value.

5. Check that there are positions to be applied refactoring
techniques or not.

5.1 If there are positions then repeats from step 1 to
step 5 until there are no position to be changed or no
refactoring techniques to apply.

5.2 If there are no position then stop searching
process.

6. Obtain the sequence of refactoring techniques usage
which makes the changed source code with optimal
software maintainability.

The number of nodes which has to be retrieved for the
result using A* can be found by formula as follow:

Total Number of Retrieved Nodes A* = Sum of

considered refactoring techniques each round (

z

r
r

1
Re)

rRe = Sum of all possible nodes of refactoring
techniques of Pi with other positions.

From the formula, the number of positions to be applied
refactoring technique decreases by one position at the end
of each round.

V. EXPERIMENT
In the experiment, we apply each Heuristic Search

method to search for sequence of refactoring techniques
usage to change Statement method of Customer class on
Movie Rental System [1]. The Statement method contains
Long Method, Large Class and Feature Envy bad smells.
We apply refactoring techniques at three positions to
remove bad smells. Each position can be applied by two
refactoring techniques: Extract Method and Move Method
(shown in Table I). To calculate software maintainability,
we focus on three Object Oriented Metrics: Weight Method
per Class (WMC), Lack of Cohesion in Method (LCOM)
and Coupling between Object Classes (CBO) [7]. For
Coupling between Object Classes metric, we consider two
couplings: Efferent Coupling (EC) and Afferent Coupling
(AC). The relationship between the metrics and software
maintainability are inverse [6].

01 Class Customer {
02 public String statement(){
03 double totalAmount = 0;
04 int frequentRenterPotints = 0;
05 Enumeration rentals = _rentals.elements();
06 String result = “Rental Record for ” + getName(); + “\n”
07 while(rentals.hasMoreElements()){
08 double thisAmount = 0;
09 Rental each = (Rental) rentals.nextElement();

Fig 5 Customer Class (1)

10 if(each.getMovie().getPriceCode() ==
Movie.REGULAR)){
11 thisAmount += 2;
12 if(each.getDaysRented() > 2)
13 thisAmount += (each.getDaysRented() - 2) * 1.5;
14 }
15 else if(each.getMovie().getPriceCode() ==
Movie.NEW_RELEASE){
16 thisAmount += each.getDaysRented() * 3;
17 }
18 else if(each.getMovie().getPriceCode() ==
Movie.CHILDRENS){
19 thisAmount += 1.5;
20 if(each.getDaysRented() > 3)
21 thisAmount += (each.getDaysRented() - 3) * 1.5;
22 }
23 if((each.getMovie().getPriceCode() ==
Movie.NEW_RELEASE) && each.getDaysRented() > 1)
24 frequentRenterPoints++;
25 result += “\t” + each.getMovie().getTitle() + “\t” +
String.valueOf(thisAmount) + “\n”;
26 totalAmount += thisAmount;
27 result += “Amount owed is ” + totalAmount
28 result += “You earned ” + frequentRenterPoints + “
frequent renter points”;
29 return result;

Fig 5 Customer Class (2)

TABLE I
LIST OF REFACTORING TECHNIQUES TO APPLY WITH

CUSTOMER CLASS
Position Applied refactoring techniques

P1 (line 8-23) : Calculating
movie charge part

R1 : Extract this part to new method of
Customer class.
R2 : Move this part to a new method of
Rental Class.

P2 (line 24-25) : Calculating
frequency rental point part

R3 : Extract this part to new method of
Customer class.
R4 : Move this part to a new method of
Rental Class.

P3 (line 28) : Calculating
total movie charge part

R5 : Extract this part to new method of
Customer class.
R6 : Move this part to a new method of
Rental Class.

TABLE II
THE RESULT OBJECT ORIENTED METRICS OF CUSTOMER CLASS

AFTER APPLYING REFACTORING TECHNIQUES USAGE USING
HEURISTIC SEARCH METHODS

Heuristic
Search

Object Oriented Metrics Sequence WMC LCOM AC EC
GA 9 0.6 0 1 R2,R4,R6
BFS 9 0.6 0 1 R2,R4,R6
HC 7 0.625 0 1 R2,R4
A* 9 0.6 0 1 R2,R4,R6

From Table II, the sequence of refactoring techniques
usage from Greedy Algorithm, Breadth First Search and A*
to change Statement method are S[R2,R4,R6] with WMC =
9, LCOM = 0.6, AC = 0 and EC = 1. But the sequence of
refactoring techniques usage from Hill Climbing is
S[R2,R4] which finishes searching process after changing
only two positions because the Object Oriented Metrics
values of changed source code on position 2 and 4 are better
than changed source code after all positions. That causes

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

TABLE III
THE NUMBER OF RETRIEVED NODES TO SEARCH FOR SEQUENCE

OF REFACTORING TECHNIQUES USAGE USING HEURISTIC
SEARCH METHODS TO CHANGE CUSTOMER CLASS

Round GA BFS HC A*
1st 6 6 6 48
2nd 4 9 4 16
3rd 2 5 - 2

the changed source code of Statement method using Hill
Climbing still has bad smell on position 3. So the quality of
changed source code using Greedy Algorithm, Breadth
First Search and A* is better than using Hill Climbing. In
searching time, we consider the number of retrieved nodes
to search for the sequence of refactoring techniques of each
Heuristic Search method. The results can be shown in Table
III. In the first round of Table III, the number of retrieved
nodes of Breadth First Search is as same as the number of
retrieved nodes of Greedy Algorithm and Hill Climbing
because the first round starts from root node and there are
no previous nodes for Breadth First Search to consider. The
number of retrieved nodes of A* are as same as the number
of all possible nodes for applying refactoring techniques to
change the Statement method. Because A* has to consider
about the future path cost, function (h(x)) of six refactoring
techniques and each refactoring technique has eight
possible paths to change the Statement method. So there are
forty-eight paths to calculate for h(x) of the first round. In
the second round, the number of considering positions
decreases by one position, that results the number of
retrieved nodes of Greedy Algorithm and Hill Climbing
decrease by two nodes. So there are four remaining nodes
for Greedy Algorithm and Hill Climbing to consider in the
second round. In Breadth First Search, there are nine nodes
to be retrieved (six from remaining nodes and three from
previous nodes). A* has to consider sixteen node for h(x)
calculating from two remaining positions. In the third
round, there is only one remaining position or two nodes to
retrieve for Greedy Algorithm. For the last position to
consider for A*, current remaining node has already
considered all positions completely that causes h(x) equals
0 or it no need to calculate for h(x). So the number of
retrieved nodes to consider is two nodes. In Breadth First
Search, there are five nodes to retrieve for the last position
(two nodes from remaining nodes and three nodes from
previous nodes). But there are no nodes to consider in Hill
Climbing for the last position because the searching process
has already stopped in the end of previous round.

In searching time, we conclude that Greedy Algorithm to
search for sequence of refactoring techniques usage to
change the Statement method uses less time than Breadth
First Search and A*. Although Hill Climbing use less time
than Greedy Algorithm, it doesn’t remove bad smell
completely.

VI. CONCLUSION
Our research finds the most appropriate Heuristic Search

method for searching sequence of refactoring techniques
usage with maximum software maintainability and the least

searching time. We evaluate four Heuristic Search methods;
Greedy Algorithm, Breadth First Search, Hill Climbing and
A* to change the Statement method of Customer class
containing Long Method, Large Class and Feature Envy
bad smell. In the experiment, we compare sequences of
refactoring techniques usage (changed source code) and
searching time (number of retrieved nodes) to get a result of
each Heuristic Search methods. The result of the
experiment shows that the quality changed source code
using Greedy Algorithm, Breadth First Search and A* is
better than using Hill Climbing because the changed source
code using Hill Climbing still contains bad smell. In
searching time, the number of retrieved nodes to search for
sequence of refactoring techniques usage using Greedy
Algorithm is less than using Breadth First Search and A*.

In our future work, we will classify characteristic of
source code that can be improved by the sequence of
refactoring techniques usage. So, it will help developers
consider applying refactoring techniques to improve their
software maintainability.

REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring:

Improving the Design of Existing Code. Addision Wesley Professional,
1990, pp. 13-72.

[2] T. Mens, G. Taentzer, O. Runge, “Analysing Refactoring Dependencies
Using Graph Transformation,” Software and Systems Modeling, vol.6,
no. 3, 2007, pp. 269-285.

[3] Eduardo Piveta, Joao Araujo, Marcelo Pimenta, Ana Moreira, Pedro
Gurreriro, R. Tom Price, “Searching for Opportunities of Refactoring
Sequences : Reducing the Search Space”, The Annual IEEE
International Computer Software and Applications Conference, 2008.

[4] Sanjay K. D., Ajay R., “Assessment of Maintainability Metrics for
Object-Oriented Software System”, ACM SIGSOFT Software
Engineering Notes, vol. 36, pp. 1-5, September,2011.

[5] R. Wongpiang, P. Muenchaisri, “Selecting Sequence of Refactoring
Techniques Usage for Code Changing Using Greedy Algorithm,” The
2013 IEEE 4th International Conference on Electronics Information
and Emergency Communication (ICEIEC 2013), China, 2013.

[6] Bansiya J. and C. G. Davis, “A Hierarchical Model for Object-Oriented
Design Quality Assessment,” IEEE Transactions on Software
Engineering, vol. 28, 2002, pp. 4-16.

[7] S. R. Chidamber and C.F. Kemerer, “A Metrics Suit for Object-Oriented
Design”, IEEE Transactions on Software Engineering, Vol 20, No. 6,
pp.476-493.,Jun.

[8] KR Chowhary, “Artifical Intelligence (Heuristic Search),” presented at
Department of Computer Science and Engineering MBM Engineering
College, Jodhpur.

[9] P. Meananeatra, S. Rongviriyapanish and T. Apiwattanapong,
“Identifying Refactoring Through Formal Model Based on Data Flow
Graph,” The 5th Malaysian Conference in Software Engineering
(MySEC), Malaysia, 2011.

[10] Hui Liu, Limei Yang, Zhendong Niu, Zhiyi Ma, Weizhong Shao,
“Facilitating Software Refactoring with Appropriate Resolution Order
of Bad Smells,” ESEC-FSE, Amsterdam, The Netherlands , August,
2009.

[11] Paul E. Dunne. Greedy Algorithm. Available:
http://cgi.csc.liv.ac.uk/~ped/teachadmin/algor/greedy.html

[12] Knuth, Donald E, The Art Of Computer Programming Vol 1. 3rd ed,
Boston, 1997, pp. 590-597.

[13] Russell, Stuar J., Norvig, Peter, Artificial Intelligence: A Modern
Approach 2nd edition, New Jersey, 2003, pp. 111-114.

[14] Delling D., Sanders P., Schultes D., Wagner D, Engineering route
planning algorithms. Algorithmics of large and complex networks,
Springer, 2009, pp. 117-139.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

