\[\mathbb{Z}_2 (\mathbb{Z}_2 + u\mathbb{Z}_2) \]

Linear Cyclic Codes

Taher Abualrub, Irfan Siap, and Ismail Aydogdu

Abstract—Let \(n = \alpha + 2\beta \). In this paper, we introduce a new type of linear and cyclic codes defined over the ring \(\mathbb{Z}_2 R \) where \(\mathbb{Z}_2 = \{0, 1\} \) is the binary finite field and the ring \(R = \{0, 1, u, u + 1\} \) where \(u^2 = 0 \). We give the definition of these codes as subsets of the ring \(\mathbb{Z}_2^2 \times R^2 \). We give a one-to-one correspondence between elements in \(\mathbb{Z}_2^2 \times R^2 \) and elements in the ring \(R_{\alpha, \beta} = \mathbb{Z}_2[x]/(x^\alpha - 1) \times R[x]/(x^\beta - 1) \), and hence relate these codes to subsets of the ring \(R_{\alpha, \beta} \). We prove that \(C \) is a \(\mathbb{Z}_2 R \)-cyclic code if and only if \(C \) is an \(R[x] \)-submodule of \(R_{\alpha, \beta} \). We provide some examples of \(\mathbb{Z}_2 R \)-linear cyclic codes that produce optimal binary linear codes.

Index Terms—Linear codes, \(\mathbb{Z}_2 R \)-linear codes, submodules.

I. INTRODUCTION

Let \(n = \alpha + 2\beta \) where \(\alpha, \beta \) are positive integers. Consider the finite field \(\mathbb{Z}_2 = \{0, 1\} \) and the finite ring \(\mathbb{Z}_2 + u\mathbb{Z}_2 = R = \{0, 1, u, u + 1\} \) where \(u^2 = 0 \). It is known that the ring \(\mathbb{Z}_2 \) is a subring of the ring \(R \). We construct the ring \(\mathbb{Z}_2 R = \{(e_1, e_2) | e_1 \in \mathbb{Z}_2 \) and \(e_2 \in R\} \).

The ring \(\mathbb{Z}_2 R \) is not closed under standard multiplication (mod 2) by the element \(u \) in the ring \(R \). This implies that the ring is NOT an \(R \)-module under the operation of standard multiplication. To make the ring \(\mathbb{Z}_2 R \) an \(R \)-module we need to introduce the following method of multiplications: Define the mapping

\[\eta : R \rightarrow \mathbb{Z}_2 \]

\[\eta(r + uq) = r. \]

So, \(\eta(0) = 0, \eta(1) = 1, \eta(u) = 0 \) and \(\eta(u + 1) = 1 \). It is clear that the mapping \(\eta \) is a ring homomorphism. Now for any element \(d \in R \), define the following multiplication

\[d \ast (e_1, e_2) = (\eta(d)e_1, de_2). \]

This a well-defined multiplication. In fact this multiplication can be generalized over the ring \(\mathbb{Z}_2^2 \times R^2 \) in the following way: for any \(d \in R \) and \(v = (a_0, a_1, ..., a_{\alpha-1}, b_0, b_1, ..., b_{\beta-1}) \) in \(\mathbb{Z}_2^2 \times R^2 \) define

\[dv = (\eta(d)a_0, \eta(d)a_1, ..., \eta(d)a_{\alpha-1}, \eta(d)b_0, \eta(d)b_1, ..., \eta(d)b_{\beta-1}) . \]

This definition gives us the following result:

Lemma 1: The ring \(\mathbb{Z}_2^2 \times R^2 \) is an \(R \)-module under the above definition.

Definition 2: A non-empty subset \(C \) of \(\mathbb{Z}_2^2 \times R^2 \) is called a \(\mathbb{Z}_2 R \)-linear code if \(C \) is an \(R \)-submodule of \(\mathbb{Z}_2^2 \times R^2 \).

II. \(\mathbb{Z}_2 R \)-LINEAR CYCLIC CODES.

Definition 4: A subset \(C \) of \(\mathbb{Z}_2^2 \times R^2 \) is called a \(\mathbb{Z}_2 R \)-linear cyclic code if

1. \(C \) is a linear code, and
2. For any codeword \(u = (a_0a_1 \ldots a_{\alpha-1}, b_0b_1 \ldots b_{\beta-1}) \in C \), its cyclic shift
 \[T(u) = (a_{\alpha-1}0 \ldots a_0, b_{\beta-1}b_0 \ldots b_{\beta-2}) \]
 is also in \(C \).

An element \(c = (a_0a_1 \ldots a_{\alpha-1}, b_0b_1 \ldots b_{\beta-1}) \in \mathbb{Z}_2^2 \times R^2 \) can be identified with a module element consisting of two polynomials

\[c(x) = \left(\begin{array}{c} a_0 + a_1x + \ldots + a_{\alpha-1}x^{\alpha-1}, \\ b_0 + b_1x + \ldots + b_{\beta-1}x^{\beta-1} \end{array} \right) = (a(x), b(x)) \]

in \(R_{\alpha, \beta} = \mathbb{Z}_2[x]/(x^\alpha - 1) \times R[x]/(x^\beta - 1) \). This identification gives a one-to-one correspondence between elements in \(\mathbb{Z}_2^2 \times R^2 \) and elements in \(R_{\alpha, \beta} \).

Let \(f(x) = f_0 + f_1x + \ldots + f_nt^t \in R[x] \), \((g(x), h(x)) \in R_{\alpha, \beta} \) and consider the following multiplication

\[f(x) \ast (g(x), h(x)) = (\eta(f(x))g(x), f(x)h(x)). \]
where
\[\eta(f(x)) = \eta(f_0) + \eta(f_1)x + \ldots + \eta(f_x)x^t \]

This multiplication operation on \(R_{a,\beta} \) leads to the following easily proven theorem.

Theorem 5: The multiplication above is well-defined. Moreover, \(R_{a,\beta} \) is an \(R[x] \)-module with respect to this multiplication.

As is common in the discussion of cyclic codes, we can regard codewords of a cyclic code \(C \) as vectors or as polynomials interchangeably. In either case, we use the same notation \(C \) to denote the set of all codewords. We follow this convention in the definition below and in the rest of the paper.

Definition 6: A subset \(C \subseteq R_{a,\beta} \) is called a \(Z_2R \)-cyclic code if

1) \(C \) is a subgroup of \(R_{a,\beta} \), and
2) If

\[
c(x) = \begin{pmatrix}
a_0 + a_1x + \ldots + a_{\alpha-1}x^{\alpha-1}, \\
b_0 + b_1x + \ldots + b_{\beta-1}x^{\beta-1}
\end{pmatrix} \in C,
\]

then for any \(a \in R \), we have

\[
a \cdot x \cdot c(x) = \begin{pmatrix}
\eta(a)(a_0 + a_1x + \ldots + a_{\alpha-2}x^{\alpha-1}) \\
\eta(a)(b_0 + b_1x + \ldots + b_{\beta-2}x^{\beta-1})
\end{pmatrix}
\]

is also in \(C \).

Theorem 7: A code \(C \) is a \(Z_2R \)-cyclic code if and only if \(C \) is an \(R[x] \)-submodule of \(R_{a,\beta} \).

III. Examples

In this section we introduce some examples within this family of codes which have good parameters.

Example 8: Let \(R_{2,3} = Z_2[x]/(x^2 - 1) \times R[x]/(x^3 - 1) \) and consider a \(Z_2R \)-linear cyclic code of the form \(\mathcal{C} = ((x - 1),(x^2 + x + 1) + u) \). The code \(\mathcal{C} \) has \(2^2 \times 2^2 = 16 \) codewords.

\[
\mathcal{C} = \begin{cases}
(0,0,0,0), (1,1,1 + u, 1), (1, 1, 1 + u, 1 + u, 1), \\
(1, 1, 1 + u, 1), (1, 1, 1 + u, 1 + u, 1 + u), \\
(1, 1, 1, 1 + u), (1, 1, 1 + u, 1 + u), (1, 1, 1 + u, 1 + u), \\
(1, 1, 1, 1), (0, 0, u, u), (0, 0, u, u), (0, 0, 0, u, u), \\
(0, 0, 0, u, 0), (0, 0, 0, 0, u), (0, 0, 0, 0, u)
\end{cases}
\]

Example 9: Let \(\mathcal{C} \) be a \(Z_2\overline{R} \)-linear cyclic code of type \((7, 3, 0, 3)\) in the form of \(\mathcal{C} = (1 + x + x^2 + x^4, u(1 + x)) \). Therefore \(\mathcal{C} \) has the generator matrix,

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 1 & 0 & 0 & u & u & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & u & u & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & u & u & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & u & u & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & u & u & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & u & u
\end{bmatrix}
\]

The Gray image gives the optimal binary linear code with parameters \([21, 6, 8]\).

Example 10: Let \(\mathcal{C} \) be a \(Z_2\overline{R} \)-linear cyclic code of type \((15, 15; 4, 1, 0)\) in the form of

\[
\mathcal{C} = \begin{pmatrix}
1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}, 1 + x + x^2 + \\
+ x^{14} + u(1 + x + x^2 + x^4 + x^5 + x^8 + x^{10})
\end{pmatrix}
\]

The Gray image gives the binary linear code which has good parameters \([45, 6, 22]\).

IV. Conclusion

In this work, linear and cyclic codes are introduced over the ring \(Z_2R \) where \(Z_2 = \{0, 1\} \) is the binary finite field and the ring \(R = \{0, 1, u, u + 1\} \) where \(u^2 = 0 \). Their algebraic structure is studied. It is shown that code \(C \) is a \(Z_2R \)-cyclic code if and only if \(C \) is an \(R[x] \)-submodule of \(R_{a,\beta} \). Our examples show that these codes can be used to construct optimal binary linear codes.

References