



Abstract—In order to ensure high quality of service (QoS) for

Next Generation Network (NGN), we construct an innovative

Load-Balanced Multipath Self-routing Switching Structure

which consists of the same two multipath self-routing fabrics.

The result of simulation is inspiring for achieving 100%

throughput and no delay or jitter. For this reason, we start on

the implementation on an Altera StratixIV FPGA. And the

whole FPGA system is designed into two collaborative

components: the UDP system and the register system. With two

algorithms around input and output two stages, incoming traffic

is transformed into uniformity and then to their final

destinations. During the later period debugging, software

simulation platform and automated test platform are built,

which contribute to our work very much. At last, we carry out

several experiments to test and verify our system. The report of

the test result accords with what we expected.

Index Terms—Next Generation Network, Load-Balanced,

Self-routing, Switching Fabric, FPGA

I. INTRODUCTION

N recent years, with a rapid increase in the number of

Internet users, the network scale expands unceasingly. Rich

Internet applications, especially the popularity of online video

services [1], contribute to the network congestion that almost

everyone experienced. This phenomenon puts forward a huge

challenge to the vital component, the router. Actually, the

router has become a significant bottleneck in the development

of the network. On the other hand, on the basis of TCP/IP, the

network layer of Internet only provides the best effort delivery

rather than the commitment for quality of service (QoS) [2].

In order to improve the performance of routers and reduce

implementation costs, various kinds of solutions are proposed.

Manuscript received December 23, 2014; revised January 10, 2014. This

work was supported in part by the National Basic Research Program of

China (973 Program) under Grant 2012CB315904, the National Natural

Science Foundation of China under Grant 61179028, the Natural Science

Foundation of Guangdong Province under Grant 201101000923 and

2013020012822, the Basic Research of Shenzhen under Grant

201104210120A and 20130331144502026.

Qian Zhan is with the Peking University Shenzhen Graduate School,

Shenzhen, GuangDong 518055 P.R.China (e-mail: zhanqian0218@

gmail.com).

Hui Li is with the Peking University Shenzhen Graduate School,

Shenzhen, GuangDong 518055 P.R.China. He is the director of Shenzhen

Eng. Lab of Converged Networks Technology and the deputy director of

Shenzhen Key Lab of Cloud Computing Tech. & App. (phone:

0086-755-26035354; mobile phone: 0086-13602672514; e-mail:

huilihuge@163.com).

Fuxing Chen is with the Peking University Shenzhen Graduate School,

Shenzhen, GuangDong 518055 P.R.China (e-mail: chenfuxing@

pku.edu.cn).

Li Ma is with the Peking University Shenzhen Graduate School,

Shenzhen, GuangDong 518055 P.R.China (e-mail: mali5057@163 .com).

The Load-Balanced Birkhoff-von Neumann switch [3]

interests us for that it can achieve 100% throughput under

most network traffic by using a balancer to equalize input

flows. However, the structure does not maintain the order of

packets after switching and the average packet queuing delay

increases linearly with the number of ports. Obviously, it is

not suitable for large scale extension. On the contrary, another

structure we focus on, the Banyan-based Quasi-Circuit Switch

[4] has low component complexity O (Nlog2N, N is the

number of ports) and the ability of self-routing and distributed

processing. However, because of the blocking feature, QoS is

not ensured.

 Based on the advantages and disadvantages of the above

two kinds of structures, we propose a Load-Balanced

Multipath Self-routing Switching Structure by connecting two

multipath self-routing fabrics in series. The first one acts as a

balancer and the other one severs as a router. Concentrators,

which are made up by basic sorting units, are sorted by the

arrangement rules of Multistage Interconnection Network to

construct the whole structure. Theoretical analysis and NS2

simulation indicate that our model can obtain 100%

throughput under normal circumstances and easy to be

expanded in size [5].

Further, we translate the theoretical model into a modular

FPGA system which consists of two main parts: the UDP

system and the register system. And then, the whole system

has been implemented on an Altera StratixIV FPGA. In the

testing phase, our system works steadily and efficiently and

meets the basic requirements for QoS applications.

The rest of the paper is organized as follows. Theoretical

basis and modeling are introduced in Section II. Section III

describes the system design and implementation based on

FPGA. Section IV presents system testing with real network

traffic, and then Section V summarizes the whole work.

II. THEORETICAL BASIS AND MODELING

A. 2×2 Basic Sorting Unit

The 2×2 basic sorting unit is a sequential logic circuit, with

two inputs and two outputs (respectively called 0/1 port).

According to the theory of algebraic distributive lattices [6],

we define the two inputs as Ω0 and Ω1, each of which has three

kinds of data: the one going to output0, the one going to

output1 and the invalid data. As list in Table I, the sorting unit

has two essential states: Cross and Bar. That means the inputs

go to the different outputs: input0/input1 to output1/output0

and input0/input1 to output0/output1, corresponding to Cross

and Bar, respectively.

Design and Implementation of Load-Balanced

Multipath Self-routing Switching System

Qian Zhan, Hui Li
*
, Fuxing Chen, Li Ma

I

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

TABLE I. THE STATES OF 2×2 SORTING UNIT

States
Ω1

0-bound idle 1-bound

Ω0

0-bound CONF BAR BAR

idle CROSS EITHER BAR

1-bound CROSS CROSS CONF

If the inputs compete for the same one output, the state

will be Conflict and the final choice of BAR or CROSS

will depend on their priority. All the three states are

clearly shown in Fig. 1.

00

11

Input

0

1

0

1

0

1

0

1

Output

(a).BAR (b).CROSS (c).CONFLICT

Input InputOutput Output

Fig. 1 basic sorting unit and its states

B. Inter-stage Bit-permuting Model

An N×N (N=2
n
) self-routing network is a Multistage

Interconnection Network (MIN) built by 2×2 basic sorting

units. By using first stage permutation σ0, inter-stage

permutation σ1, σ2 … σ(n-1) and last stage permutation σn, the

network can be represented as [σ0: σ1: σ2:…: σ(n-1): σn]. Each

colon symbolizes a stage of 2x2 units. We can define a Trace

sequence and a Guide sequence [8] as follows:

Tk=(σ0σ1…σK-1)
(-1)

(n) 1≤k≤n (1)

Gk=(σ0σ1…σK-1)(n) 1≤k≤n (2)

Route is specified by Trace or Guide. As Fig. 2 shows, for

the network [: (43): (42) (31): (43):], data from the origination

address I1I2I3I4 finally gets to the destination O1O2O3O4 with

the decision at each stage by the Trace or Guide.

X(43) X (42) X(43)

X (43

Stage- 1

switching

Stage- 2

switching

X(43)

Stage- 3

switching

Stage- 4

switching

I1I2I3I4 I1I2I3 O1 I1I2 O1I3 I1I2 O1O2 O1O2 1I2 O1O2 O3 O1 O2 O3I1 O1 O2O3O4

X (31)

X (42) X (31)

I 1I

Basic Unit

 Fig. 2 an example of self-routing network

C. Multipath Self-routing Switching Structure

Multipath Self-routing Switching Structure (MSSS) [9] is

an innovative structure, which combines MIN with

concentrators.

To construct MSSS, we substitute each basic sorting unit

for the 2G-to-G concentrator and replace the single cable with

a bundle of G cables. Fig. 3 illustrates the multipath structure

(N=128 M=16 and G=8) which is based on a 16×16

self-routing network. G shows the size of group, M is the

number of group and N=M×G indicates the whole number of

input/output ports (G=2
g,

M=2
m
, N=2

n
, n=m+g, n, m, g are

positive integers). Acting as an indispensable part of MSSS,

the 2G-to-G concentrator [10] separates the larger G signals

of the whole 2G inputs from the other G signals, finally

forming two ordered output groups.

G=8

2G to G Concentrator

M=16

 Fig. 3 Multipath Self-routing Switching Structure (M=16, G=8)

D. Load-Balanced Multipath Self-routing Switching

Structure

 As shown in Fig. 4, two MSSSs are used in series to

compose the Load-Balanced Multipath Self-routing

Switching Structure (Load-Balanced MSSS), with the

VOGQs (Virtual Output Group Queues) [5] ahead of the first

fabric and the assemblages at the end of the second fabric.

Actually, by using simple algorithms and small buffers, the

first stage fabric serves as a balancer, which spreads the

incoming traffic to all the ingress ports of the second stage

fabric. Then the second stage fabric forwards the data in a

self-routing manner to their final destinations. Every G

inputs/outputs are bundled into an input/output group, thus N

input lines form M groups on the input side (N=M×G), so is

the output side. To ease presentation, IG/OG denotes

input/output group, and MG represents a line group between

the two stages. In the project, there are 4 IGs, 4 MGs and 4

OGs. Each group has 8 lines.

 VOGQs are responsible for storing packets and making

data ready for IGs. We use VOGQ (i,j) to denote the VOGQ

whose packets are destined for OGj from IGi.

IG

00 OG

00

OG

01

OG

10

OG

11

VOGQs
Load-Balancer Self-routing Forwarder

Assemblage

.

.

.

m(t)

n(t)

IG OG MG IG OG IG

Detailled cell formats in the switching process

MG-middle group

address

OG-output

group address

IG-input group

address

MG

00

IG

01

IG

10

IG

11

MG

01

MG

10

MG

11

payload payload payload

Fig. 4 Load-Balance Multipath Self-routing Switching Structure
Generally, for the structure we proposed, the processing of

arriving packets in each time slot is composed by several

sequential phases which are shown as follows. In addition, to

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

achieve maximum processing speed, we should use pipeline

structure as far as possible.

1) Preparatory phase: With checking and judging, the

arriving packet which is destined for OGj from IGi is

stored into VOGQ (i,j).

2) Splitting phase: Packets in VOGQs are split into cells

according to Algorithm 1. And each cell will be added

with some certain packet headers.

3) Balancing phase: With the help of MG tags, cells will be

routed to every middle group simultaneously and

uniformly. When the cells reach the middle groups, MG

tags will be dropped.

4) Routing phase: Cells are further to their final destinations

directed by OG tags. When they get through the second

stage fabric, OG tags will be discarded.

5) Assembling phase: Cells are to be assembled to original

packets according to Algorithm 2. When completed,

packets will be output from the OGs.

Algorithm 1: For each input group, packets stored in

VOGQs should be split into cells with equal length during

splitting phase. Furthermore, we add MG tags, OG tags, IG

tags and some other control messages ahead of each cell. The

MG tags are set artificially. For example, a packet is split into

five cells and their respective MG tags should be 0, 1, 2, 3, 0,

orderly. If the following packet can be split into three cells,

the tags will be 1, 2 and 3. The rule is also suitable for other

various packets.

Algorithm 2: For each output group, cells with the same

IG address are assembled during assembling phase. IG tags,

sequence numbers and flags of the last cells will help us to

reorganize the scrambled cells. For example, we get a few of

cells in OG address 01. Some of them have the same IG tag 00

and the sequence numbers 3,2,4,1. By the way, the cell with

sequence number 4 is marked with the trailing flag. The others

own IG tag 10 and the sequence numbers 3, 2, 1, but no cell

has the trailing flag. By now, we can easily get the packet

which is from IG 00 by connecting the cells together in the

order 1,2,3,4. For the packet from IG 10, we still need to wait

for the last cell to arrive.

III. SYSTEM DESIGN AND IMPLEMENTATION

BASED ON FPGA

We use Verilog HDL to carry on the main design and Tcl

script language to build an operating platform for the register

system. Functional simulation is also an important part, which

is implemented by Perl and Makefile.

A. The Overall Architecture of the System

The whole system is implemented on an Altera StratixIV

FPGA, with a Marvell 88E1111 PHY chip being used for

physical layer. The TSE (Triple-Speed Ethernet) IP core,

interacted with the PHY chip through RGMII interface,

provides standard Ethernet frames.

We divide the system into two main parts: the user data

path (UDP) system (There are the same four UDP systems in

the whole system, each of which servers a group of MSSS and

we just need to introduce one of them in the paper.) and the

register system. They are independent structurally and

interrelated functionally. The UDP system is responsible for

data processing and cell switching with many sub-modules,

FSMs (Finite-State Machines) and FIFOs in it. In order to

facilitate debugging, we have designed the register system to

monitor signals and states in UDP in real-time.

Lastly, the logic utilization is 32% according to the

compilation report generated by Quartus II 11.0.

B. Design and Analysis of User Data Path System

Packets enter into the system through the RJ45 network

port firstly. And after being processed in physical layer by

PHY chip, they will be sent to the UDP system, which is the

major part of data processing. There are four main functions

in UDP. First of all, we can extract necessary information

from packets or cells, such as the packet length, priority and

the target address, etc. Second, by utilizing the information

we extract, the UDP system generates various packet headers,

which will be very useful to assist the data processing. Third,

it achieves load balancing and self routing by constructing the

switching fabric. At last, it completes the assembling of the

cells.

The left part of Fig. 5 gives us a full view of the process.

The solid arrows indicate the direction of data flow. We can

see that input packets pass through nine sub-modules (not

including PHY) in turn and get back to PHY.

The functions of each sub-module are as follows.

1) Sgmii_ethernet: It is an interface module between the

UDP system and the external PHY chip. Mainly

constructed by Altera Triple-Speed Ethernet (TSE) IP

cores, it provides standard Ethernet frames.

2) Rx_queue: This sub-module accepts frames, extracts

length information and generates the splitting header.

The information is important for Splitter and will be kept

until Assemblage.

3) Output_lookup: It extracts the information of destination

address and priority, which form the lookup header for

Router.

4) Splitter: For efficiency and easiness of implementation,

the following sub-modules are designed based on cells.

So, the Splitter will be a key sub-module. It splits each

packet into several cells and generates three kinds of

headers, the load balancing header for Balancer, the

self-routing header for Router and the assembling header

for Assemblage.

5) Arbiter: As we know, the group size of MSSS we

proposed is G=8. Thus, cells should be placed as a group

of eight lines. The size of data on each line is 10bit (8 bits

for payload and 2 bits for a control signal). This is what

Arbiter do.

6) Balancer: The structure is the same as MSSS. It

transforms the incoming traffic into uniformity with the

help of the load balancing header.

7) Router: It is also a MSSS. Cells switch here and then go

to their final destinations. The process is directed by the

self-routing header.

8) Assemblage: After switching, groups of cells arrive at

every time slot. Assemblage assembles them back to

standard Ethernet frames and generates the beginning

mark header, which is just to show the very starting of

each frame.

9) Tx_queue: It contains some memory buffers to cache the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

app:ds:physical
app:ds:layer

frames and then sends them back to Sgmii_ethernet.

 DATA(8)
…… 8 bit
Payload 8 bit
…… 8 bit

Output

lookup

 DATA(8) CTRL(2)
0000_0000 8 bit 11
…… 8 bit 00
Payload 8 bit 00
…… 8 bit 00
Eop 8 bit 10

6

 DATA(8) CTRL(2)
Dst_port 4 bit 11
Tos 4 bit
Src_port 4 bit 01
Cell_len_hi 4 bit
Cell_len_lo 7 bit 01
Last_cell_flag 1 bit
FUll_cell_num 5 bit 01
Last_cell_pad_hi 3 bit
Last_cell_pad_lo 8 bit 01
…… 8 bit 00
Payload 8 bit 00
…… 8 bit 00
Eop 8 bit 10

 DATA(8) CTRL(2)
Src_port 4 bit 11
Cell_len_hi 4 bit
Cell_len_lo 7 bit 01
Last_cell_flag 1 bit
FUll_cell_num 5 bit 01
Last_cell_pad_hi 3 bit
Last_cEll_pad_lo 8 bit 01
…… 8 bit 00
Payload 8 bit 00
…… 8 bit 00
Eop 8 bit 10

 DATA(8) CTRL(2)
Lbs_active_mid 1 bit 11
Lbs_dst_mid 3 bit
Lbs_priority_mid 4 bit
Lbs_active 1 bit 01
Lbs_dst 3 bit
Lbs_priority 4 bit
Lbs_ig 4 bit 01
Lbs_nog_hi 4 bit
Lbs_nog_lo 1 bit 01
Lbs_noc 6 bit
Lbs_eop 1 bit
Src_port 4 bit 01
Cell_len_hi 4 bit
Cell_len_lo 7 bit 01
Dummy_cell_flag 1 bit
Full_payload_cell_num 5 bit 01
Dummy_cell_pad_zeros_hi 3 bit
Dummy_cell_pad_zeros_lo 8 bit 01
…… 8 bit 00
Payload 8 bit 00
…… 8 bit 00
Eoc 8 bit 10

Assemblage

Router

Splitter

Rx_queueTx_queue

Sgmii_ethernet

PHY

5

3

2

1

1

4

Balancer

Arbiter

1

Fig. 5 data processing and data format in UDP

The right part of Fig. 5 pointed by dotted arrows describes

the specific data format in each sub-module. Moreover, as

shown in the right part, the standard size of data in UDP is 8bit.

After going across Rx_queue, a packet header is produced

along with the extra added CTRL signal. The 2bit CTRL

signal will be transmitted with data in parallel to assist data

identification and processing. The signal “11” signifies that

the concurrent data is the first byte of a fresh new packet or

cell. And “01” represents the various kinds of headers we

generate. “00”shows the payload data and “10” tells us the

end of a packet or cell.

To sum up, the UDP system extracts the information from

incoming frames, and then generates six kinds of headers

which are attached in front of the former frames. We use

labels “1”, “2”, “3”, “4”, “5”, “6” to represent splitting header,

output header, assembling header, self-routing header, load

balancing header and beginning mark header, respectively.

1) Splitting header: It is created by Rx_queue and contains

4 bytes information. Src_port is the source address of the

current frame. The 4bit signal can represent 16 ports, but

the group size of our system is M=4. Obviously, it is

convenient for scale expansion in the future. The sum of

cell_len_hi and cell_len_lo is 11bit, which indicates the

standard length of the cell. We set them 2`b0001 and

7`b000_0000, meaning 128Byte. Last_cell_flag

indicates whether the current frame can be split into a

certain number of cells exactly. Set to high, the signal

means that the size of the packet isn`t an integral multiple

of 128Byte. Thus the last cell should be padded some

bytes to keep the same length. Then, last_cell_pad_hi and

last_cell_pad_lo show the number of bytes to be padded.

Finally, signal full_cell_num is the number of complete

cells.

2) Output header: Compared with others, it`s a simple one

for containing only one byte information. Dst_port is the

destination port of the packet and tos means the priority.

3) Assembling header: Generated by Splitter and carrying

important information for Assemblage, this header helps

to assemble the cells later. Lbs_ig corresponds to the

input group number IG shown in Fig. 4. We know that

Arbiter places the cells on a group of eight lines.

Lbs_nog_hi and lbs_nog_lo point out which line the cell

belongs to. We can enlarge the group size to 32 furthest.

Lbs_noc is the significant serial number, declaring the

actual position of the cell in the original packet. The last

signal lbs_eop is the mark of the last cell. We can use

these signals to reassemble the cells and specific methods

are mentioned in Algorithm 2.

4) Self-routing header: It is just the output group number

OG shown in Fig. 4 and it will be dropped after passing

through Router. In fact, it is the recoding of the output

header. Analogously, lbs_active proves the cell active

and lbs_dst gives the destination. Reviewing the 2×2

basic sorting unit introduced in the beginning, if the state

is conflict, signal lbs_priority will make the decision.

5) Load balancing header: Being similar to self-routing

header, lbs_active_mid is the significance bit and

lbs_priority_mid indicates the priority. The only

difference between the two headers is that the destination

shown by lbs_dst_mid is the middle group number MG in

Fig. 4. Load balancing header is set according to

Algorithm 1 and it will be discarded after passing through

Balancer.

6) Beginning mark header: Being simple but necessary, it is

used to show the very starting of the frame after

assembling.

C. Functional Simulation Platform for Sub-modules in

UDP

The design and functional realization of a module need to

pass the test of simulation software firstly. Our simulation

platform is built with the help of three main tools: the Perl

scripting language, Makefile scripting language and the

simulation software Modelsim. Perl is used to generate kinds

of standard Ethernet frames. Makefile can greatly simplify the

work of building a simulation platform and Modelsim makes

it possible for us to study the design details visually.

Now, we will introduce the design and verification in detail

by taking the key sub-module Assemblage as an example.

Assemblage stands in sharp contrast to what's happening in

Splitter and Fig. 6 illustrates its complicated design structure.

Three state machines FSM1, FSM2 and FSM3 are

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

responsible for cell processing with plenty of FIFOs to store

temporary data.

For the example of OG2, the assembling of cells is shown

as follows. On the left of Fig. 6, cells arrive from 8 lines

simultaneously, which turn into serial cells after passing

through Cell_buffer. But these cells may come from different

source ports and are very likely to be scrambled after

switching. The state machine FSM1 is designed for cell

identification and cell classification. By means of assembling

header, we can readily pick out which input line the cell

belongs to and then classify the cells into Cell_fifo0 to

Cell_fifo15. The most difficult part remains to FSM2 to

complete it. We use the similar four state machines to

assemble every four groups of classified cells into original

data. Note that, here we have no more need for the packet

header and the padding bytes. In the last step, FSM3 outputs

the packets with the attached beginning mark headers from

Pkt_fifos, whose situation monitored by Token-bins.

OG2
Cell

 buffer
cells FSM1

IG0
FSM2

_1

FSM2

_2

FSM2

_3

FSM2

_4

Pkt_fifo_0

Pkt_fifo_1

Pkt_fifo_2

Pkt_fifo_3

FSM3 Output_2

0 1 2 3

Token-bins

IG1

IG2

IG3

Cell_fifo_0
Cell_fifo_1
Cell_fifo_2
Cell_fifo_3

Cell_fifo_4
Cell_fifo_5
Cell_fifo_6
Cell_fifo_7

Cell_fifo_8
Cell_fifo_9
Cell_fifo_10
Cell_fifo_11

Cell_fifo_12
Cell_fifo_13
Cell_fifo_14
Cell_fifo_15

Fig. 6 the design of sub-module Assemblage

As shown in Fig. 7, inputs are serial cells, which can be

distinguished by observing signal in_wr and signal in_ctrl.

The cell in the circle includes padding bytes, and obviously, it

is the last cell of the packet. Based on this information, we can

speculate that there is an arriving packet, which consists of

seven cells. The output waveform (shown in the rounded

rectangle) conforms to the egress rules and proves our

judgment.

Fig. 7 the simulation waveform of Assemblage

Clearly shown in Fig. 8, the first byte of the output packet is

8`b0000_0000 and corresponding control signal is 2`b11.

Undoubtedly, it is the beginning mark header.

Fig. 8 the starting label header

D. Design and Analysis of Register System

Another major component of the Load-Balanced Multipath

Self-routing Switching System is the register system, which

provides an interface to the outside world for the UDP system.

In practice, we need a mechanism to control the operations in

UDP. And when carrying on back-end design and system

debugging, we are looking forward to a window to monitor

key signals such as the state of FIFOs, the value of counters

and so on. Without register system, we can hardly finish the

following work for a big project like ours.

1) the Structure of Register System

Our register system references the pipeline architecture in

the NetFPGA program conducted by Stanford University [11].

As is shown in Fig. 9, every sub-module in UDP connects

with a general register, called Generic_reg. All the general

registers and another register Regs_master form a ring end to

end. And then it can interact with the host computer through

the Avalon bus devised by Altera.

The sub-module communicates with the general register

through a logical interface (shown by the dark arrow in the

picture). When the host wants to access a register, it sends an

interrogation signal to Regs_master through the Avalon bus.

Then the general registers will pass the signal one by one. In

this case, the signal will go through all the registers but only

one could respond because of the exclusive destination

information in the signal. A register can only accept the

request message which belongs to it by checking the

destination address. If valid, it replies immediately and

transmits the answers backward until back to the host.

Data_bus

Splitter

Generic_

regs1

Arbiter

Generic_

regs2

Balancer

Generic_

regs3

Generic_

regs4

Assemblage

Generic_

regs5

Regs_master

Router
Output

_

lookup

Generic

_regs0

Fig. 9 the whole structure of register system

2) Software Development Platform for Register System

Software development platform is based on the tool System

Console which is used under the environment of Quartus. On

the platform, we mainly perform two tasks with the help of Tcl

scripting language. On the one hand, it configures the

sub-modules in UDP and the TSE IP core; on the other hand,

it extracts the internal signals of the UDP system to help us

debug the system. Every sub-module in UDP has its own

debugging interface. Taking the Balancer as an example, Fig.

10 shows the pivotal function of our system: load balancing.

There are 16384 bytes incoming from IG0. And then, the data

is divided into four parts of the same size: 4096 bytes (see the

right part of Fig. 10).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Fig. 10 the result of Balancer

IV. SYSTEM TESTING WITH REAL NETWORK

TRAFFIC

Having implemented the Load-Balanced Multipath

Self-routing Switching System on FPGA, next we should test

it with real network traffic.

IXIA 400T network tester is our leading network test

instrument. We use four test modules of all the interfaces on

the test board, which can generate or capture standard

Ethernet frames transmitted at the rate of 10/100/1000 Mb/s.

It is so powerful that we can set, if we want to, every byte of a

frame to be sent and get detailed and comprehensive

information about the frames captured. The tester also

provides remote management capabilities. And coupled with

the automated platform set up by Tcl scripting language, we

can implement remote automated testing.

Fig. 11 shows us the final statistical result of a test for four

ports. According to our configuration, port 0 prepares to

receive the output data sent from all the four ports (include

itself). Port2, port3, and port4 follow the same way. We can

see that there is no data dropped at each port in the case of

Line Speed 1000Mbps.

Fig. 11 the statistic views of IXIA

V. CONCLUSION

This paper proposes a new multipath self-routing fabric by

merging the Multistage Interconnection Network (MIN) and

concentrators. Using the same two MSSS, we construct the

Load-Balance Multipath Self-routing Switching Structure and

implement the system model on an Altera StratixIV FPGA.

After testing under kinds of network environment, we

preliminary confirmed that our system can support QoS

applications for Next Generation Network (NGN).

During the process of system implementation, we first

devised the overall system structure and then the two main

constituent parts: the UDP system and the register system.

When introducing the UDP system, we analysed the functions

of every sub-module and give the expatiation of Assemblage.

When presenting the register system, we mainly explained the

data path and the software platform.

So far, our system is based on the MSSS (M=4, G=8). And

next step, we plan to increase it to M=8, G=16. Meanwhile,

the design of large-scale wire-speed multicast base on

Load-Balanced MSSS we constructed will be the focus,

which needs more excellent design and more thorough

support system.

ACKNOWLEDGMENT

Qian Zhan thanks the valuable feedback from Le Yang

(Depaul University, Chicago, USA) during the preparation of

this paper.

REFERENCES

[1] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon

Oberheide, Farnam Jahanian, Internet Inter-Domain Traffic, ACM

SIGCOMM 2010;

[2] John Evans, “QoS Decomposed: The Components of the QoS Toolkit”,

BRKIPM-2010, Cisco Networkers 2007 Conference;

[3] C. S. Chang, D. S. Lee and Y. S. Jou, “Load Balanced Birkhoff-von

Neumann Switches, Part I: One-stage Buffering,” Computer

Communications, vol.25 pp.611-622, 2002;

[4] Y. R. Tsai and C. W .Lo, “Banyan-based Architecture for Quasi-circuit

Switching”, IEEE ICNS 2006, pp. 23-28;

[5] He W, Li H, Wang B, et al. A Load-Balanced Multipath Self-routing

Switching Structure by Concentrators[C]. IEEE ICC 2008;

[6] S. Nojima, et al. "Integrated services packet network using bus matrix

switch," IEEEJ. ofSelectAreasCommun.vol. 5, Oct. 1987, pp

1284-1292.;

[7] Li S Y R. Unified algebraic theory of sorting, routing, multicasting,

and concentration networks [J]. Communications, IEEE Transactions

on. 2010, 58(1): 247-256;

[8] Li S Y R. Algebraic switching theory and broadband applications.

Academic Press, 2001;

[9] Hui Li, Wei He, Xi CHEN, Peng Yi, Binqiang Wang, “Multi-path

Self-routing Switching Structure by Interconnection of Multistage

Sorting Concentrators”, IEEE CHINACOM2007, Aug.2007,

Shanghai;

[10] S. Y. R. Li. Algebraic Switching Theory and Broadband Applications.

Academic Press, 2001;

[11] Register system - NETFPGA Developers Guide, Available:

https://github.com/NetFPGA/netfpga/wiki/DevelopersGuide

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

https://github.com/NetFPGA/netfpga/wiki/DevelopersGuide#wiki-Register_system

