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Abstract—We search for the optimum life test plans of electri-
cal insulation for thermal stress assuming that the Arrhenius
law holds between the thermal stress and the lifetime, and
that the logarithmic lifetime follows some consistent probability
distributions at a constant stress. The optimization target is to
find the optimum number of test specimens at each test stress
level, and we consider the case of the number of stress level
is three. The criterion for optimality is measured by the root
mean squared error for the lifetime in use condition. To take
into account the reality, we used the parameter values in a real
experimental case. Comparing the optimum results with those
using the conventional test method where test specimens are
equally allocated to each test stress level, we have found that
the confidence interval for the predicted value in the optimum
case becomes around 80-85% of that in the conventional test.
However, there is only a small difference between the optimum
test result and the conventional test result if linearity of the
Arrhenius plot is required. It would be useful to know the
semi-optimum test plan in which the efficiency is close to that
in the optimum one and the test condition is simple. In that
sense, we have found that we may regard the conventional test
plan as one of the semi-optimum test plans.

Index Terms—optimum test plan, thermal deterioration,
Arrhenius law, method of least squares, maximum likelihood
estimation method.

I. INTRODUCTION

IT is well known that the Arrhenius law is dominant as
the aging model due to the thermal stress in electrical

insulation. Many researchers, such as Montsinger, Dakin,
Simoni, Montanari, and Nelson referred to those modeling
([1], [2], [3], [7], [8], [9], [11], [12], [15]). However, there are
not so many references describing the probability distribution
model for the thermal deterioration due to the thermal stress.
Recently, Hirose and Sakumura [4] proposed the mathemat-
ical deterioration models due to the thermal stress, where
three probability distribution models are combined with the
Arrhenius law. In the mathematical models, we assume that
the Arrhenius law holds between the thermal stress and
the lifetime, and that the logarithmic lifetime follows some
probability distributions at a constant stress. We considered
the Pareto distribution, the generalized logistic distribution,
and the normal distribution for such probability distribution
models.

When the probability distribution models for lifetime are
established, we can find the reliability of the target in use
condition in a life model, such as the confidence intervals
of the estimates for life model parameters. In addition, we
may pursue the optimum accelerated life test design so that
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we can use less test time and less cost, i.e., the efficient
test plan. In this paper, we search for the optimum number
of test specimens at each test stress level in the accelerated
lifetime test when the Arrhenius law and some probability
distribution model is appropriately assumed. The criterion
for optimality is measured by the root mean squared error
for the lifetime in use condition. Such optimum test plans for
thermal stress are investigated by Nelson, Meeker, and others
([5], [6], [13], [14], [16]). In [12], [13] and [14], optimum
plan for two stress levels are discussed; in [6], three stress
levels are incorporated but the number of test specimens at
one level is fixed. We consider the case of the number of
stress level is three. This is a new challenge.

However, if the optimum test obtained is too complex to
perform, practitioners would be reluctant to use the method.
Therefore, in this paper, we also aim at finding the semi-
optimum test plan in which the efficiency is close to that
in the optimum one and the test condition is simple. To do
that, we compare the optimum results with those using the
conventional test method where test specimens are equally
allocated to each test stress level.

To take into account the reality, we first obtained the
estimates of parameters as a typical model using a real
experimental case. Then, using the parameters just obtained,
we investigated the efficiency by using the simulation study
for the three probability distribution models.

II. MATHEMATICAL MODEL

A. Arrhenius Law

We assume that under a constant thermal stress of T [K]
there is a relationship between the thermal stress T and the
chemical reaction rate k such that

k = A exp(− E

RT
), (1)

where, E, R, and A are the activation energy, Boltzmann
constant, and a constant. Then, the time to failure, t, can be
given by

t =
C

k
= A′ exp

(
E

RT

)
. (2)

Transforming this to the logarithmic formula, we obtain the
logarithmic lifetime y = log t, such that

y = log t =
E

R

1
T

− log B. (3)

Then, we have a linear relationship between y = log t and
1/T . This is called the well-known Arrhenius Law.
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B. Probability Distribution Model for Deterioration
We assume some probability distribution models for ther-

mal deterioration. These are, 1) the generalized Pareto distri-
bution model, 2) generalized logistic distribution model, and
3) the normal distribution model as shown in [4]. We usually
observe the degradation phenomenon by the logarithmic time
scale, we may transform y such that y = log t where t is time
to failure.

1) Generalized logistic distribution model: We assume
that the logarithmic time to failure, y = log t, follows that
the generalized logistic distribution function F (y) such as

F (y) =
1

{1 + exp(−z)}β
, (4)

where z = (y − µ)/σ, (σ > 0).
2) Generalized Pareto distribution model: We assume that

the logarithmic time to failure, y = log t, follows that the
generalized Pareto distribution function F (y) such as

F (y) = 1 − 1
(1 + ξz)1/ξ

, (1 + ξz > 0), (5)

where z = (y − µ)/σ, (σ > 0).
3) Normal distribution model: We assume that the log-

arithmic time to failure, y = log t, follows that the normal
distribution function F (y) such as

F (y) =
∫ y

−∞

1√
2πσ

exp
{
− (s − µ)2

2σ2

}
ds. (6)

C. Arrhenius Combined Mathematical Models
The Arrhenius law is combined with one of the probability

distribution models mentioned above. These are 1) Arrhenius
Pareto model, 2) Arrhenius logistic model, and 3) Arrhenius
normal model.

III. PARAMETER ESTIMATION METHOD

When we assume that underlying probability distribution
for y = log t follows the generalized Pareto distribution, the
generalized logistic distribution, or the normal distribution,
we use one of the two methods to find the unknown pa-
rameters to be estimated; one is the maximum likelihood
estimation method (MLE), and the other is the method of
least squares (LS).

A. Maximum Likelihood Estimation Method
Assuming that Ti(i = 1, . . . ,m) are the thermal stress

levels, ci are the censoring times under stress Ti, ti,j are
the time to failure under stress Ti, and ni are the number of
specimens under stress Ti. We define ri,j such that ri,j = 0
if the specimen failed, and ri,j = 1 if the specimen did not
fail until ci.

Then, the maximum likelihood function L is given by

L ∝
m∏

i=1

ni∏
j=1

{
g(ti,j)ri,j · (1 − G(ci))1−ri,j

}
, (7)

where, g(x) and G(x) are the density function and the
cumulative probability distribution function, respectively, for
the normal, the generalized logistic, or the generalized Pareto
distribution models. We can obtain the unknown param-
eters when L becomes the maximum. In the probability
distribution models, we assume that the Arrhenius model is
incorporated.

B. Method of Least Squares

When censoring is not planned, the method of (non-
linear) least squares is a useful estimation tool to obtain the
unknown parameters. The optimization method we used here
is the downhill simplex method [10]. We find the parameters
so that RSS shown below becomes the minimum.

RSS =
m∑

i=1

ni∑
j=1

(
Ĝ(xi,j) − G(xi,j)

)2

, (8)

where Ĝ(xi,j) is the estimated value for G(xi,j) in the
normal distribution, the generalized logistic distribution, or
the generalized Pareto distribution.

IV. AN EXPERIMENTAL CASE

For some insulation material, we have an experimental test
case. Test thermal stresses in testing are 250, 270, 290 [deg].
The thermal stresses in use are assumed to be 150, 180, 200
[deg]. Figure 1 shows the times to failure in experiments. The
number of test specimens is 25 to each test stress level. Table
1 shows the estimates for the parameters in the mathematical
models using this real test data case.

We do not know whether this test design was efficient
or not. Thus, we next pursue the optimum test plan by
mimicking this situation; that is, we use the similar test
condition to one mentioned above, but a little bit different
from it. The exception is the number of test specimens to
each stress level. In conventional test cases, we use the same
number of test specimens to each level. Let us check if the
conventional test is efficient or not in the next section.

Fig. 1. Arrhenius Plot of an Experimental Case.

TABLE I
MAXIMUM LIKELIHOOD ESTIMATES FOR PARAMETERS

model Ê log B̂ σ̂ ξ̂ β̂
Pareto 2.12 40.6 4.45 −1.53 -
logistic 2.06 37.0 0.126 - 0.306
normal 2.06 37.3 0.502 - -

V. OPTIMUM TEST ANALYSIS

A. Test Condition

First, by mimicking the real case mentioned above, we
set the test stress levels T such that (TH , TM , TL) =
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(290, 270, 250), the stress levels in use TU are 150, 180,
and 200, and the parameters such as Ê and log B̂ are
the same to those in Table 2. However, the total number
of specimens N is set to be 30 which is smaller than
that in the experimental test case because we assume less
test specimens. The number of specimens at each lev-
els (TH , TM , TL) are denoted by (nH , nM , nL), and we
consider all the combinatorial cases where the number of
specimens (nH , nM , nL) consists of integer combinations
with exceptions that two of {nH , nM , nL} are zero. That
is, we consider 493 = (31 × 30)/2 − 3 cases.

To evaluate the test efficiency, we use the root mean square
error (RMSE) for TU by using the Monte Carlo simulations
with 10000 trials to each case. For comparison, we choose
the case of (nH , nM , nL) = (10, 10, 10) as a standard, which
is commonly used in the conventional cases.

B. Efficiency Analysis

Figures 1-3 show the RMSE of y(= log t) for TU =
150, 180, 200 for the combinatorial cases {nH , nM , nL}
mentioned above in the generalized Pareto distribution, the
generalized logistic distribution, and the normal distribution,
respectively. In the figures, horizontal axis means the ratio
p, the number of specimens to the total at TH , and vertical
axis means the ratio q, the number of specimens to the
total at TM . The figure indicates that the optimum cases
are observed when q = 0 and p < 15 which means that
nH < nL. In the figure, the points for (nH , nM , nL) =
(10, 10, 10), (5, 10, 15), (15, 10, 5) are also shown as indices
for simple comparisons.

To compare the efficiency of the optimum cases to the
conventional cases, we computed the ratio of the RMSE of
the optimum case to that of the conventional case. Table 2
shows the ratio of the optimum RMSE value of y = log t
for TU to the RMSE value in the conventional case. The
table reveals us that the RMSE value of y = log t in the
optimum case is around 80-85% of RMSE value in the
conventional test.

TABLE II
RATIO OF RMSE TO THAT OF THE CONVENTIONAL CASE.

model case TU = 150 TU = 180 TU = 200
Pareto optimum 0.858 0.835 0.816

(10, 10, 10) 1 1 1
(15, 10, 5) 1.21 1.23 1.25
(5, 10, 15) 1.01 0.984 0.962

logistic optimum 0.839 0.848 0.860
(10, 10, 10) 1 1 1
(15, 10, 5) 1.13 1.15 1.16
(5, 10, 15) 1.09 1.06 1.04

normal optimum 0.811 0.806 0.800
(10, 10, 10) 1 1 1
(15, 10, 5) 1.15 1.17 1.19
(5, 10, 15) 1.04 1.02 1.00

VI. DISCUSSION

A. Do We Meed More than Two Different Thermal Stresses?

As indicated in Figures 2-4, the optimum cases do not
require the test specimens at TM . It is obvious that only two
different x values are sufficient to make the linear regression
model to be consistent. The simplest and the most efficient
allocation of the specimen is to locate the specimens at TH

Fig. 2. RMSE of y(= log t) for TU = 150, 180, 200 for the
Combinatorial Cases {nH , nM , nL} When the Underlying Distribution is
Assumed to be the Generalized Pareto Distribution.

and TL. The removal of specimens at TM means the stability
increase of the straight line of the Arrhenius plot. When
we are interested in predicting the lifetime at TU in use
at lower temperature, it is naturally imagined that we need
more specimens to TL level than to TH level. This tendency
is indicated in Figures 2-4. However, we cannot assume
the linearity without absolute many evidences. It would be
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Fig. 3. RMSE of y(= log t) for TU = 150, 180, 200 for the
Combinatorial Cases {nH , nM , nL} When the Underlying Distribution is
Assumed to be the Generalized Logistic Distribution.

convenient that we can check if the linearity holds using the
hypothesis testing. Then, the allocation of test specimens at
TM (nM ̸= 0) makes sense. In that sense, the conventional
method that each number of specimens at each stress level is
equivalently allocated is a good choice. Because we do not
lose the efficiency much and the linearity can be assessed.
For linearity check, we need the hypothesis testing.

Fig. 4. RMSE of y(= log t) for TU = 150, 180, 200 for the
Combinatorial Cases {nH , nM , nL} When the Underlying Distribution is
Assumed to be the Normal Distribution.

B. Optimum Test and Semi-optimum Test

We have pursued the optimum test plan for the thermal
stress accelerated test using the real experimental case. The
practitioners use the conventional test such that the allocation
of the test specimens to each stress level is equivalent. The
optimum test using TL and TH becomes efficient regarding
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