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Abstract— It’s always been a tough problem to make 

conservative estimate of yield due to limited silicon test 

samples. Besides, lack of understanding of relationship 

between yield and design parameters gives low confidence to 

designer. This paper gives rigorous mathematical treatment to 

the subject of yield analysis and optimization. It outlines the 

approach for conservative estimate of yield even for smaller 

sample size, n < 25. It bridges the gap between our subjective 

knowledge to objective conclusions. Finally it analyses Intel-

22nm USB2 Squelch circuit for yield and sets yield 

optimization guidelines.  
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I. INTRODUCTION 

Probability and Statistics is a separate discipline of 

mathematics which is close to natural phenomena’s of this 

real world. Statistical methods are used to test scientific 

theories, hypothesis and to determine physical constants. It’s 

used to solve numerically a variety of deterministic problems 

with the help of computers. For example, value of a constant 

 is determined by a well known random experiment 

“Buffon’s needle”. It plays major role in the improvement of 

quality of product or service. This paper discusses the 

statistics of estimation of unknown parameters from the 

known distribution and observations. It analyses the yield of 

Intel 22nm Squelch circuit and discusses optimization flow 

for better yield result. The commonly used measure to 

quantify yield is “defects per million” (a.k.a dpm) [1]. This 

results due to manufacturing variability [2] [3]. In the yield 

analysis we try to find dpm number based on observations 

from silicon and known distribution model. On the other side, 

in optimization problem we replace our silicon observations 

with observations from Monte Carlo simulations and try to 

find out the required standard deviation to meet target dpm 

number.  This requires few design iterations to converge to 

the final solution. To prepare reader towards this goal we 

start with statistics revision in sections II-IV. Equipped with 

this knowledge we proceed for final goal of yield analysis 

and optimization of Squelch circuit as test case.  

This paper is organised in 6 sections. Section II discusses 

typical distributions widely used in probability and statistics 

[4]. Section III defines sample mean and variance of 

observation vector of random variables. Section IV discusses 

estimation of unknown parameters of model, especially mean 

and variance under different given constraints. Section V 

analyses yield of Squelch circuit and sets guidelines for 

optimization. Finally section VI concludes this work. 
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II. TYPICAL DISTRIBUTIONS 

A. Normal distribution 

Normal/Gaussian distribution is one of the most 

important distributions in statistics because various natural 

phenomena’s follow this distribution. In fact normal 

distribution arises as an outcome of central limit theorem 

which states that under certain general conditions the 

limiting distribution of the average of large number of 

independent identically distributed random variables is 

normal. This distribution has the form,  
 

                                                                      (1) 

This function being continuous area under this curve is 

given by Riemann integral, 

                                                                (2) 

 Therefore, 

                                                 (3)                                                                                          

Changing the domain of the integration from Cartesian co-

ordinate to polar co-ordinate system by change of variables, 

x=rcos, y=rsin  

=> Jacobian,  

                                           (4) 

and  

                                                                 

                                                       (5)  

Therefore area under function,  

                              is     

One of the 3-axioms of probability states that the probability 

of any event lies between 0 and 1. i.e. 0  P(A)  1. Hence 

normalizing the distribution to maintain area under curve to 

unity we get, Normal density function,  

                                                   (6) 

with the parameters of distribution as mean =  and variance 

=
2
 as shown in fig.1. Here the parameter mean is a measure 

of central tendency and variance is a measure of dispersion 

from mean. The corresponding distribution function is given 

by, 
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                                             (7) 

                       

 
Fig. 1.  Normal probability density (pdf) function 

 

A special case of normal distribution is standard normal 

distribution denoted as z ~N(0,1) where =0 and 
2
=1. Here 

standard normal variable can be formed as  

                                                

=>  

                                (8) 

Where the function,  

                                                           (9) 

can be rewritten as, 

(10) 

Therefore, 

                                            (11) 

Generally the error function erf(z) is available in tabulated 

form as shown in fig. 2 and hence G(z) can be evaluated by 

use of (11). First column of this tabulated form represents z 

and first row its hundredth digit. The intersection of column  

 

 
Fig. 2.  Error function in tabulated form 

and row represents the value of erf(z). For example z = 

2.15 => erf(z) = erf(2.15) = 0.4842. The error function 

er(z) and normal probability density function z(z) plots 

are as shown in fig.3. 

 

 
Fig. 3. Normal pdf and error function plots 

 

Percentiles: 

The u percentile of random variable z is the smallest 

number zu such that u = p{z  zu }= Fz(zu). Thus zu is the 

inverse of the function u = F(z). It’s domain is the interval 0 

 u  1 and it’s range is horizontal-axis. Thus inverse 

function, Fz
-1

(u) = zu can be found by interchanging 

horizontal and vertical axis. Here zu is called the u percentile 

of the standard normal density. 

 

                   

 

Fig. 4. Normal distribution and its inverse function 

  

Thus zu=-z1-u and G(-z1-u) = G(zu)=u. The normal distribution 

function and it’s inverse plots are as shown in fig. 4. 

B.  Chi-square distribution 

The random variable x is said to be 
2
(n) with n degrees of 

freedom if 

                                          

                      (12) 

The graphs of this 
2
(n) density function for various values 

of ‘n’ are as shown in fig. 5. 
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Fig. 5. Chi-square density function for various degrees of freedom 

 

 

Fig. 6. Chi-square density function in tabulated form 

 

This density function is also available in tabulated form as 

shown in fig. 6. Here degree of freedom (DF) can be read 

from first column and probability of random variable (P) is 

from second row. For example P(x > 40.646) = 0.025 for DF 

= 25. 

 

C. Student t distribution 

A random variable z has student t distribution t(n) with n 

degrees of freedom if - < z <  and 

 

           (13) 

This random variable z has student t distribution such that 

   

where x and y are two independent random variables, x is 

N(0,1) and y is 
2
(n).  

 

      (14) 

i.e. student t distribution represents the ratio of a normal 

random variable to the square root of an independent 
2 

random variable divided by its degree of freedom. This 

density function for various values of ‘n’ is s shown in fig.7 

whereby t(n) distribution approaches to normal as n. 

This pdf is also available in tabulated form as shown in fig. 

8. Here degree of freedom, DF = n-1 where n = sample size. 

‘A’ represents the probability that the random variable lies 

between –t and t whereas ‘P’ represents the probability that 

it lies outside –t and t range. For example A = P(-2.063< x 

<2.063) = 0.95 and P = P(-2.063> x>2.063) = 0.05. 

 
Fig. 7. Student t density function for various degrees of freedom 

 

 

Fig. 8. Student t density function for various degrees of freedom 

 

III.  SAMPLE MEAN & VARIANCE 

The sample mean and the sample variance of random 

variable xi are given by, 
 

                  (15) 

If random variables xi are uncorrelated with the same mean 

E{xi} =  and variance i = 
2
 the mean of  is  

                              (16) 

and variance,        

                                (17) 

            (18) 

Since uncorrelatedness property of random variables, xi 

leads to covariance coefficient,  

                                  (19) 

Therefore we get 

  (20) 

and                                                 (21) 

Thus  is a normal random variable with parameters,  and 

/n represented as  ~N(,/n). 

Similarly the expected value of s
2
 is given by, 

                              (22) 

                      (23) 

Where  

     (24) 
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                                                (25) 

Therefore,  

              (26) 

                                   (27) 

For given n i.i.d N(,) random variables xi  the unbiased 

sample variance is given by, 

                                   (28) 

Where newly formed random variable from (28) is 

                                     (29) 

This is a 
2
(n-1) random variable. This can be shown as 

follows, 

 (30) 

Summing this identity from 1 to n yields, 

       (31) 

Therefore, 

                          (32) 

For random variable  with normal density function, 

N(,/n). Let’s form other random variables, 

                              (33) 

Hence x’~N(0,1), standard normal variable and     

                                                 (34) 

Therefore, 

                  (35) 

                                                                             (36) 

where x’(x’) being symmetrical density function, 

                                   (37) 

Further implies y(y) is Chi-square density with n=1 from 

(12). Therefore random variable  

                                       (38) 

For two independent random variables with Chi-square 

distributions, 
2
(m) and 

2
(n) respectively, the sum also 

results in 
2
(m+n) random variable. Hence the random 

variable, 

                                    (39) 

and hence it proves from (12), (38) and (39) that 

                              (40) 

 

IV.  ESTIMATION 

The problem of estimation is very fundamental in the 

application of probability where main idea is estimation of a 

random variable y in terms of another random variable x and 

the optimality criteria is to minimize the mean square (MS) 

value of the estimation error. Estimation approaches are 

classified as classical and baysian and we’ll focus on 

classical approach here. For any random variable we can find 

point estimate or interval estimate. 

A point estimate is a function  of the observation 

vector X = [x1, x2, x3, .... , xn]. The corresponding random 

variable  is the point estimator of . An interval 

estimate of a parameter  is an interval (1, 2), the end 

points of which are functions 1 = g1(x) and 2 = g2(x) of the 

observation vector X. The corresponding random interval (1, 

2) is the interval estimator of . We say that (1, 2) is a  

confidence interval of    

     if  P{1 <  < 2} =        (41) 

 

The constant  is the confidence coefficient of the estimate 

and the difference   = 1- is the confidence level. Thus  is a 

subjective measure of our confidence that the unknown  is 

in the interval (1, 2). If  is close to 1 we can expect with 

near certainty that estimate is true. Our estimate is correct in 

100 percent of the cases. The objective of interval 

estimation is the determination of the functions g1(x) and 

g2(x) so as to minimize the length 2 -1 of the interval (1, 2) 

subject to constraint 41. However choice of the confidence 

coefficient  is dictated by two conflicting requirements. If  

is close to 1, the estimation is reliable but the interval (1, 2) 

size is large. If  is reduced, interval size is small but estimate 

becomes less reliable. Thus final choice of  is a compromise 

and is based on the application. 

A. Mean 

Let’s estimate the mean  of the random variable X. The 

point estimate of  is the value 

 

          (42) 

of the sample mean   of x. An interval estimate of  is 

difficult problem since  is sum of random variables Xi 

hence its resulting density function involves multiple 

convolutions. To simplify this problem we assume that  is 

normal. This assumption is true if x is normal and 

approximately true for any x with arbitrary distribution if n is 

large. This follows from central limit theorem. Here we 

estimate the interval under two scenarios. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



i. Known variance 

Suppose the variance 
2 

of x is known. The normality 

assumption leads to the conclusion that the point estimator   

of  is N(, /n). Therefore we conclude that  

           (43) 

But Zu = -Z1-u and G(-Z1-u) = G(Zu) = u where u = /2, This 

yields 

                  (44) 

We can thus state with confidence coefficient  that  is in 

the interval   Z1-/2  /n.  

ii. Unknown variance 

If 
2 
 is unknown, we can not use (44). To estimate , we 

form the sample variance 

                                       (45) 

This is an unbiased estimate of 
2 
as n  . Hence for large 

n, we can use the approximation s   in (44). This yields to 

the approximate confidence interval 

                               (46) 

The exact confidence interval under the normality 

assumption of x can be found forming random variable  

    

Where 

                             (47) 

Where 

       is standard normal random 

variable, Z~N(0,1) and   

     is 
2
(n-1) from (29)-(40). 

Therefore from (13) and (14) the random variable  

          has a Student t distribution with 

(n-1) degrees of freedom. Denoting by tu its u percentile, we 

conclude 

                         (48) 

This yields the exact confidence interval to be [3] 

        (49) 

 

B. Variance 

Let’s now find point estimate and interval estimate of 

variance of normal random variable x in terms of the n-

samples xi of x. This estimate again for two cases as 

described below. 

i. Known mean 

First we assume  of x is known and we use as the point 

estimate of v the average 

              (50) 

Therefore  

         (51)

          (52) 

Since                           (53) 

where  is a consistent estimator of 
2
. Next to find interval 

estimate we form random variable  

                                                    (54) 

which from (51) is a 
2
(n) density. This density is not 

symmetrical hence the interval estimate of 
2
 is not centered 

at 
2
. To determine it, we introduce two constants c1 and c2 

such that 

                              (55) 

as shown in fig.9. 

Therefore  

         implies      (56) 

                      (57) 

Where c1 is 
2
/2(n) and c2 is 

2
1-/2(n). 

Therefore 

        (58) 

Hence for chosen confidence  the interval estimate is 

              (59) 

ii. Unknown mean 

If  is unknown, we use as the point estimate of 
2
 the 

sample variance s
2
. The random variable (n-1)s

2
/

2
 has 

2
(n-

1) distribution. Hence 

 

 

Fig. 9. Chi-square density function.  

 

            (60) 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



This yields the interval estimate to be [3] 

              (61) 

 

V.  YIELD ANALYSIS & OPTIMIZATION 

This section analyses Intel 22nm USB2 Squelch circuit 

for yield and sets guidelines for optimization. The interest 

here is not the details of squelch circuit architecture but 

statistical analysis over its trip point variation. Hence circuit 

details are omitted focusing only on statistical analysis of 

trip point. We have performed lab measurement of Squelch 

trip point on 3999 silicon samples available. First we will be 

analyzing for very limited number of silicon samples, n = 25 

based upon approach outlined in sections I through IV. Later 

we will compare these statistical results with results 

produced by JMP statistical analysis software using large 

sample size (n=3999).  In the first approach sample size is 

small and conservative results are obtained due to accurate 

statistical approach. Fig. 10 a) shows squelch trip point data 

for 25 samples and b) shows yield analysis for given dpm 

target of 25 with confidence coefficient of 0.95 which is 

very common and widely used.  The purpose of this analysis 

is to find upper specification limit (USL) and 

 

 

a) 

 

   b) 

Fig. 10. a) Squelch trip point data for 25 samples b) Yield analysis for 

Squelch circuit. 

lower specification limit (LSL) to meet target dpm count of 

25, at confidence coefficient of 0.95. Further to check USL 

and LSL against respective USB2 Squelch maximum and 

minimum trip point specifications. The analysis is as follows. 

Target dpm = 25, Number of samples, n=25. Statistical 

results expected within confidence coefficient of 0.95. 

Therefore  = 0.95. From (56), this gives confidence level, 

=1- = (1-0.95) = 0.05.  

From (42), along with sample data in fig. 10 a) sample mean 

is given by, 

     

Therefore 

   

Similarly from (45), along with sample data in fig. 10 a) 

sample variance, s
2 
is given by,    

   

Therefore  

  

and standard deviation, SD is given by, 

   

Student t score is found from standard student t table in fig. 

8.  

  

From this, estimate of upper interval limit of mean is 

calculated using data in fig. 10 a). We do not know the true 

statistical variance hence we estimate for mean interval as 

per section IV A ii (49) as follows. 

 

Similarly estimate of lower interval limit of mean is given 

by, 

 

Now, Chi-square score can be calculated from table in fig. 6. 

  

From this, we estimate upper interval limit of variance. Here 

true statistical mean is not known hence we use section 

IV B ii(61) for its estimation. 

  

Therefore estimate of upper interval limit of standard 

deviation is given by, 

   

From central limit theorem expected distribution for squelch 

trip point variation is Gaussian as shown in fig. 11. This is 

proved by silicon results. Hence we use z score for 

calculation of USL & LSL. For given dpm target of 25, dpm 

z score can be calculated from table in fig. 2.  

Therefore Z{1-probability of defect density} 

Z{1-(25/1x10
6
)} = 4.055 

Now estimated upper specification limit of trip point is  
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USL = u + Z
.
u = 109.92mV + 4.055(9.44mV) = 148.2mV 

and estimated lower specification limit of trip point is 

LSL = l - Z
.
u = 104.32mV - 4.055(9.44mV) = 66mV 

USB2 standard specifies squelch trip point maximum as 

150mV and minimum as 100mV. The center of this range 

can be calculated as (150mV+100mV)/2 = 125mV. From 

calculated USL & LSL it’s found that the lower side 

specification is violated. This situation arises because trip 

point design of 107.12mV (mean) is not at the center of 

specification range. For trip point design of 107.12mV, back 

calculation to meet LSL = 100mV gives u = 1mV. 

LSL = 100mV= l - Z
.
u = 104.32mV - 4.055

.
u => u = 

1mV. 

 

 

Fig. 11. Squelch circuit trip point Pdf.  

 

This is very stringent requirement to meet. Solution to this 

issue is to adjust trip point at the center of the specification 

range i.e. 125mV and optimize design for standard deviation 

of ~4mV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore assuming u  128mV and l  122mV gives 

USL = u + Z
.
u=128mV+4.055(4mV)=144mV (meeting 

spec) 

LSL = l - Z
.
u= 122mV- 4.055(4mV)=106mV (meeting 

spec) 

Yield optimization steps in the design phase of squelch 

circuit are as shown in fig. 13. In general this approach can 

be adopted for any circuit design to meet yield requirement. 

Fig. 12 shows statistical simulation results calculated 

using JMP statistical analysis software. These results are 

obtained with very large sample size of 3999. There is a 

close match of mean and standard deviation provided by this 

JMP software with respective mean and standard deviation 

produced by our analysis using limited sample size. This 

proves that conservative statistical results can be obtained 

with limited sample size by following proposed approach.  

 

Six-Sigma quality: On the 6- quality of this design [5], we 

calculate process capability, process potential index, and 

process capability index from the statistical results in fig. 12. 

Process capability = 6- = 6 x 6.294 mV = 37.76mV 

Process potential index, Cp = (USL – LSL)/ 6 = (150mV – 

100mV)/37.76mV = 1.32 

Process capability index, Cpk = Cp(1-k) = 0.5 

Where k = |T-|/0.5(USL-LSL) = |125mV – 

109.52mV|/0.5x(150mV – 100mV) = 0.62 and 

T = Specification target = 125mV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Squelch trip point analysis using JMP statistical analysis software. 
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Fig. 13. Design steps for yield optimization of Squelch circuit. 

 

Center of the statistical distribution = 109.52mV which is 

away from center of upper and lower test limits by more than 

1.5. As per six-sigma quality standards, low defect rates (< 

3.4 defective parts per million) are achieved for Cp values 

greater than 2 and Cpk values greater than 1.5. This quality 

standard also mandates center of the statistical distribution is 

no more than 1.5 away from the center of the upper and 

lower test limits. This shows 22nm process capability to the 

Squelch circuit not meeting six-sigma quality standard due to 

tight specification limits.  

 

VI. CONCLUSION 

This paper analyses Intel 22nm Squelch circuit yield and 

lists design steps for yield optimization. To prepare readers 

towards this goal, it develops basic statistical framework in 

sections I through IV. It proves that conservative statistical 

results can be obtained with limited sample size. Finally, it 

analyses 22nm process capability for squelch design on six-

sigma quality standard. 
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