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Abstract— Spectral purity of an oscillator, quantified in 

terms of phase noise is the most critical and important 
parameter for RF/ wireless communication systems and digital 
electronic systems. Over years most compact and insightful 
phase noise models have been developed. Some of them are 
pure mathematical physics, some are CAD oriented and some 
are design oriented. This paper reviews those phase noise 
models of oscillator and discusses historical challenges, 
similarities, differences and limitations. It starts with the 
earliest and most outstanding work by D. B. Leeson. Further it 
overviews phase noise analysis and modelling by B. Razavi, Ali 
Hajimiri, Alper Demir and Donhee Ham. This review adds to 
better understanding of phase noise phenomena from 
mathematics, physics, design, and simulation point of view. 
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I. INTRODUCTION 

Oscillators are the key building blocks in almost all of 
today’s digital electronic systems and RF communication 
systems. More specifically used in phase locked loops, clock 
recovery circuits and frequency synthesizers. An oscillator 
being fundamentally nonlinear system their behavior is hard 
to analyze. One of the most important and stringent 
performance characteristics of an oscillator is the way its 
phase varies due to both deterministic and random noise 
sources. This characteristic is expressed in terms of timing 
jitter or phase noise. Phase noise and timing jitter are two 
equivalent definitions of oscillator’s short term frequency 
instabilities. These two definitions are closely related and 
their values can sometimes be derived from each other. Phase 
noise is viewed as frequency domain counterpart of timing 
jitter and has stringent requirements in wireless 
communication. In recent years, much research has been 
devoted to the analysis of oscillator phase behavior [5-9][13].  

Phase noise study of an oscillator considers its transfer 
function as linear with respect to infinitesimally small input 
noise perturbations to output phase. Furthermore transfer 
function varies based upon time instant of injected noise. 
This gives rise to more accurate linear time variant (LTV) 
approach. Traditional linear time invariant (LTI) analysis has 
some limitations for phase noise studies which are overcome 
by this new approach. In an oscillator, low frequency noise 
can be up-converted to the carrier vicinity and noise can also 
be aliased from the frequencies close to the harmonics of the 
carrier. This makes the phase noise study historically difficult 
and challenging. Additionally, the biasing conditions of 
devices change periodically, hence device noise, which 
contributes to circuit phase noise, are modulated in the same 
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manner. Therefore it’s no longer stationary. Its statistical 
properties repeat periodically and it becomes cyclostationary 
[11] further complicating the analysis. 

All these difficulties, challenges, different historical phase 
noise models/theories motivate to write this survey based 
paper. In this paper existing phase noise models are 
reviewed. Some are LTI and others are more complicated 
models. We will discuss most well known Leeson’s model in 
section II. B. Razavi’s model in section III, Ali Hajimiri’s 
model in section IV and most accurate Alper Demir’s model 
in section V and Donhee Ham’s model in section VI. 
Comparison of all these existing phase noise models for their 
similarities, differences and limitations is in table I. finally 
section VII gives brief summary. 

 

II. LEESON’S MODEL 

The most well-known phase noise model is Leeson’s 
model which was proposed by D. B. Leeson in 1966 [1]. He 
presented a derivation of the expected spectrum of a 
feedback oscillator in terms of known oscillator parameters 
without any formal proof. 

Leeson’s model is expressed by equation (1) where 
S() is the input phase noise spectrum and is given by 
equation (2). This input phase noise spectrum is expected to 
have two regions. One region is due to the additive white 
noise, 2FKT/Ps at frequencies around the oscillator 
frequency. The second region is due to / introduced by 
parameter variation at low frequencies. This includes both 
white noise and flicker noise which has a power spectral 
density inversely proportional to frequency. This can be seen 
from equation (2) by  in denominator. In equations (1) 
and (2) 0 is the frequency of oscillation, Q is loaded quality 
factor such that Q = 0/2B. Here B is half bandwidth of 
oscillator.  is the offset frequency of interest,  is a 
constant determined by the flicker noise level, F is an 
empirical parameter (often called as excess noise number), K 
is the Boltzman’s constant, T is the absolute temperature, and 
Ps is the signal power. 
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Although it seems intuitively true, Leeson’s model was 
proposed without proof considering the effects of the input 
noise in two regions as shown by equations (1), (2) [1] and 
fig. 1a). When  << 0/2Q, the input noise causes the same 
spectrum of the frequency variation with a multiplication 
factor of (0/2Q)2. Hence the phase noise is multiplied by a 
factor of (0/2Q)2 where the  in the denominator is 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 4 August 2014) IMECS 2014



because the phase is the integral of frequency resulting, 
S’() = ()2S() where S’() is power spectrum 
of frequency and S() is power spectrum of phase. When 
 >> 0/2Q, the phase noise is the same of the input noise. 
At resonance the impedance of the RLC tank is 
approximated by equation (3)[17]. As shown in fig. 1b) 
power spectral density (PSD) of resistor noise current is 

given by i୬ଶ ∆f	ൗ = 4KT/R. This noise current through the LC 
tank generates noise voltage vn across it. The RMS value of 
the signal voltage is Vs,RMS and its average power dissipation 
within one cycle is Ps = V2

s,RMS/R. Therefore noise to signal 
ratio at an offset frequency of  is given by equation (4). 
The quality of signal in communication systems is quantified 
by a signal to noise ratio (SNR). However for phase noise 
analysis noise to signal ratio is more relevant as seen from 
equation (5). Hence we drive equation (4) with linearity 
assumption where only additive noise in the vicinity of 0 is 
considered. 
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Fig. 1 a) Power spectral density plots for input device noise and phase noise 
and b) Equivalent one port circuit for LC oscillator [1][17]. 
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Carrier frequency, 0 for radio systems is usually very high 
hence for oscillators, flicker noise is negligible at 0, and 
only thermal noise has to be considered. Thus from 
derivation of equation (4)[17] the phase noise expression can 
be given by [17], 
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The factor of ½ in the numerator of this equation arises from 
neglecting the contribution of amplitude noise, which is 
assumed to be suppressed. This is true in general for all 
CMOS oscillators. 

In equation (5)[17] we have only considered the thermal 
noise generated by the resistor R. In practice there is also 
noise from the active devices which is modeled by ‘-R’. 
Hence combining all the noise sources in to one effective 
noise source, expressed in terms of the resistor noise with 
multiplicative factor, F, known as excess noise number, the 
close-in phase noise can be rewritten as [17], 
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It is difficult to calculate F a priori because it is a posterior 
fitting parameter derived from measured data. Equation (6) 
[17] is consistent with equation (1) in Leeson’s model for  
<< 0/2Q. Within the bandwidth around oscillator frequency, 
the frequency selectivity of the LC tank is very weak hence 
any in-band noise can vary the frequency of oscillation. 
Since the phase is the integral of frequency over time, their 
relationship in the frequency domain is (s) = (s)/s. Hence 
there is a region for the offset frequencies  << 0/2Q 
where the thermal noise induced phase noise power spectral 
density is proportional to 1/2. The power spectral density 
plots for the input device noise and the phase noise are 
illustrated in fig. 1a). It should be noted that the flat portion 
does not extend forever; otherwise phase noise would have 
infinite mean-square. In practice the curve breaks at some 
cut-off frequency [12]. Due to frequency modulation within 
this region of  << 0/2Q, the white thermal noise creates a 
phase noise slope of 1/2, and the flicker noise creates a 
phase noise slope of 1/3. In  >> 0/2Q region, the 
strong frequency selectivity of the LC tank prevents the 
oscillator from drifting, causing only instantaneous phase 
variation due to noise. Thus the phase noise follows the 
white spectrum of the thermal noise because of the phase 
modulation mechanism. Leeson’s phase noise model predicts 
the phase noise spectrum which includes 1/3, 1/2 and 
the white region. One of the misconceptions here needs 
clarification that the device’s 1/f to noise floor corner of 
Sn() does not necessarily coincide with the actual 1/f3 
corner of L(). This model is verified by numerous 
measurement results. It is written in a simple mathematical 
form easy to use and understand. One of the drawbacks of 
this model is that it contains an empirical factor F hence it 
cannot predict phase noise from circuit noise analysis. Thus 
pre-silicon it does not provide any clear direction for circuit 
improvement. However once the phase noise for one 
oscillator is characterized using calculated F factor from 
measured silicon data, phase noise for other oscillators of the 
same circuit topology can be calculated by applying the same 
F factor.  

Leeson’s model approach has been extended by 
accounting for the individual noise sources in the tuned tank 
oscillator model [2]. Unfortunately this approach also 
assumes linear time invariance and represents no 
fundamental improvement. Thus other drawback of this 
model is assumption of time invariance.  

 

III. RAZAVI’S MODEL  

Razavi’s model for noise analysis considers an oscillator 
as two port LTI feedback system. This is in contrast with one 
port viewed in Leeson’s model. Razavi’s model is as shown 
in fig. 2a). Therefore the transfer function of this model is 
given by [4], 
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The only way the feedback system in fig. 2a) produces finite 
output without input is for the denominator to be zero. i.e. 
H(j0) = -1, also referred as Barkhausen’s criteria. In LC 
oscillator, H(j) is the frequency selective block which 
consists of RLC network as shown in fig. 2b). The closed 
loop phase response of this tuned RLC tank feedback system 
is as shown in fig. 2c). Here the Q is proportional to the slope 
of the phase transfer function as shown in equation (9)[4]. 
From fig. 2a) and equation (7), total phase shift around the 
loop has to be integral multiple of 2 to maintain sustained 
oscillations. Due to various noise sources in the circuit, 
temporary phase lead or lag is introduced which needs to be 
compensated by change in frequency according to fig. 2c) 
and equation (9). In an oscillator with large Q, the required 
instantaneous change in frequency for given phase shift is 
smaller, thus giving better frequency stability. This 
observation is in perfect alignment with the tank’s loaded Q 
in denominator of equation (6) and (10)[4]. 

 

 
Fig. 2 a) Two port LTI feedback system model of an oscillator and b) 
Tuned tank feedback system and c) Phase response [4]. 

 

Modern communication systems prefer monolithic 
CMOS VCO design where spiral inductors are implemented 
in CMOS technologies. Drawback of such LC oscillators is 
that integrated inductors take large chip area, and have very 
low Q factor. Another drawback of LC oscillator is small 
frequency tuning range. Hence difficult to maintain the 
center frequency within the limited range across process, 
supply and temperature variations. Therefore, inductorless 
VCOs have attracted tremendous research in recent years. B. 
Razavi proposed a phase noise model [4] in 1996 for 
inductorless VCOs. This model is well suited for CMOS 
differential ring oscillators. In the case of LC resonator, the 
energy is stored as electric energy in the capacitor and the 
magnetic energy in the inductor. A part of the energy is 
dissipated in the parallel resistor in RLC tank. Thus the 
definition for Q factor, Q = 2(energy stored)/ energy 
dissipated per cycle = 0/2B. This is very basic definition 
valid for LC based oscillators. In a ring oscillator, there are 
no inductors. The load capacitors are charged and discharged 
periodically. Hence there is no energy storage within a clock 
cycle and from equation (7) closed loop transfer function 
approaches infinity at frequency of oscillation.  Therefore 
this definition is not applicable for ring oscillators. Hence 
Razavi proposed a new universal definition for Q factor. This 
definition extends applicability of Leeson’s model to a bigger 
class of inductorless oscillators. If an oscillator is modeled as 
in fig. 2a), and let H(j) = A()ej(),  then open loop Q 
factor is defined as shown in equation  (8)[4]. 
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Due to circuit noise at an offset frequency of  the transfer 
function varies instantaneously and the open loop transfer 
function deviates from Barkhausen’s criteria. Proposed 
definition of Q factor in equations (8) is a measure of how 
sensitive the open loop transfer function for circuit 
parameters.  For example, circuit noise causes instantaneous 
change in oscillation amplitude and phase. Hence open loop 
transfer function H(j)= A()ej(),   is changed. A larger Q 
factor means more deviation from Barkhausen’s criteria. 
Therefore, for the same amount of circuit noise, there is a 
stronger feedback that brings the frequency back to its 
nominal frequency 0 so that conditions in Barkhausen’s 
criteria are satisfied. The closed loop transfer function in 
equation (10) can easily be derived [4] and is familiar form 
of LC oscillators in equation (6). Although equation (8) 
defines the Q factor for a ring oscillator it is applicable for 
LC oscillators also due to inherent amplitude limiting 
mechanism in LC oscillators. Inherent amplitude limiting in 
LC oscillator implies dA/d =0 which gives Q factor as in 
equation (9). Thus definition in equation (8) is consistent 
with the existing definitions of Q factor for LC oscillators 
[1][4]. Leeson’s phase noise model in equation (6) can be 
modified to account for N noise sources in N-stage ring 
oscillator. So the close in phase noise for an N-stage ring 
oscillator is given by equation (11)[17].  
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Razavi adopts LTI approach to model differential CMOS 
ring oscillators. Thus small signal single ended equivalent of 
3 stage differential ring VCO looks like in fig. 3 with noise 
current sources of each stage included. To maintain sustained 
oscillations by Barkhausen’s criteria, the total phase shift 
around the loop should be integral multiple of 2 with loop 
gain of each stage ‘1’. These two conditions translate to 
0=3/(RC) and GmR = 2. The transfer function from one 
noise current source to the output voltage at the frequency 
offset of  is given by equation (12)[4]. The expression for 
drain current noise is ı୬ଶഥ ൌ 4KTγᇁୢୱ଴ ൎ 8KT/R, hence 
output power density is given by equation (13)[4]. There are 
three such noise sources in the circuit hence final phase noise 
expression becomes as shown in equation (14)[4] where 
carrier power is V2

swing/2 and Pload is the power dissipated in 
the load device. 

 

 
Fig. 3. Linearized single-ended equivalent model for differential ring 
CMOS VCO [4]. 
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A common misconception about digital, inverter based 
ring oscillators is that it is close to its balanced state during 
the transition and hence a linear model is a good 
approximation to analyze its phase noise. It is seen that the 
input and the output nodes of any of the delay stages never 
reach the balanced state together. Therefore, inverter based 
ring oscillator never act as a linear amplifier during the 
transitions. Hence its phase noise can not be analyzed with 
linearity assumption. 

  

IV. HAJIMIRI’S MODEL 

LTI model is inherently not capable to model phase noise 
of digital, inverter based ring VCO and cannot produce 
sideband noise components. Hence a more accurate linear 
time variant model is developed by A. Hajimiri and T. H. 
Lee in 1998 [5]. It introduces impulse sensitivity function 
(ISF) to consider the effects, time variance and 
cyclostationarity of noise. To understand the general theory 
of phase noise by Hajimiri and Lee, consider a current 
impulse injected in to a circuit node. It changes the voltage 
across load capacitor instantaneously. This change in voltage 
is given by [5], 
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Here q represents injected charge by current noise and Ctotal 
is the total capacitance at output node. A change in voltage 
after normalization is given by V/Vmax where Vmax is peak 
amplitude of oscillation. Phase change is proportional to 
change in voltage hence can be written as [5], 
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Therefore,  
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Here qmax is maximum charge displacement and ሺω଴τሻ	is 
the time-varying “proportionality constant” called as impulse 
sensitivity function. It should be noted that the voltage 
change settles back to its steady state however a permanent 
phase shift persists after noise impulse is injected. Since 
phase noise is the accumulation, or integral, of circuit noise 
over time it can be described as 1/s in frequency domain. 
This is consistent with our analysis in the previous sections 

that the white noise causes 1/2 phase noise region. From 
equation (16)[5] impulse response can be written as [5], 
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where ‘’ is the time when impulse is injected. Phase noise 
depends on the time when the noise current is injected. This 
is illustrated [5] as shown in fig. 4.  

 
Fig. 4. Impulse response of an ideal LC oscillator [5]. 

 

Over a period, oscillator has different noise sensitivity at 
different time instants. An impulse at the zero crossing 
causes maximum phase change and it does not cause 
amplitude noise. An impulse at the peak of tank amplitude 
causes maximum amplitude noise without any phase 
deviation as shown in fig. 4. Thus ISF is a periodic function 
with the same period as the signal waveform. 

The ISF provides way of analyzing oscillator phase noise 
by considering time variance. It accounts for 
cyclostationarity through modulated ISF. If a current impulse 
is injected into the circuit node in simulation, the ISF can be 
obtained by observing its phase shift after it settles to its 
steady state. Once ISF is obtained from circuit simulation, 
the output excess phase (t) can be calculated using the 
superposition integral [5], 
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Since the ISF is periodic function at frequency 0, only noise 
close to DC, 0 and its harmonics will result in non-zero 
excess phase as seen from the integral in equation (18). 
Noise at all other frequencies will average out over time. 
Being periodic function, ISF can be expressed as Fourier 
series [5], 
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The coefficients Cn represent how much noise is contributed 
from the vicinity around frequency n0 where n = 0, 1, 2,.... 
If the circuit has white noise with power spectral density of 

i୬ଶ ∆fൗ , its phase noise is given by equation (20) [5], 
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The phase noise due to the flicker noise is given by equation 
(21)[5]. It indicates the 1/2 region due to white noise and 
1/3 region due to flicker noise. This is consistent with the 
conclusions in Leeson’s model and Razavi’s model. 
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An equation (21) shows that the phase noise due to flicker 
noise is proportional to C0, the DC component of ISF. A 
common belief is that the phase noise 1/3 corner is the 
same as the 1/f corner for flicker noise, since the complete 
spectrum close to DC is up-converted to the vicinity of the 
carrier. However, Hajimiri’s theory proves that the 1/3 
region can be reduced by minimizing C0. In an ideal case 
where the waveform is symmetrical (equal rise and fall 
times), the 1/3 is completely removed, since C0=0. This is 
a major contribution of this work. 

Reference [5] also considers cyclostationary noise by 
modulating (0) by a factor (0). The factor () is 
different for thermal noise and flicker noise. In order to 
minimize 1/3 phase noise, it is crucial to minimize the DC 
component for flicker(0)().  

Even though ISF is good way of modeling phase noise, 
computing ISF has some practical difficulties. An impulse is 
a ‘’ function of time which has to be injected into a circuit 
node to compute ISF. In theory, the value of amplitude in 
limit for delta function is infinity and duration in limit is 
zero. The strength of such delta function is an area under this 
curve. However, practically only a current with finite 
amplitude and time duration can be simulated. A better 
approximation can be achieved with a narrow impulse, small 
current amplitude and short duration. This results in a small 
amount of charge injection which is not sufficient to cause 
enough phase shift to be observed or subject to large 
numerical errors. This greatly limits the achievable accuracy 
of the computed ISF. On the other side, an impulse with 
large strength can drive the circuit away from its normal 
operating state and requires longer settling time. Another 
practical drawback for computing ISF is the long simulation 
time. In order to compute the ISF for a circuit node at time t, 
fine granularity on time scale is required to ensure accuracy 
and longer time is needed to allow the circuit to settle to its 
steady state after the impulse is injected. Therefore, 
computing ISF at a single node and at a single time instant 
needs a long transient simulation. This is to compute ISF 
over a complete period, over many time points for a single 
circuit node. As the circuit complexity grows, computation 
for all the ISFs becomes very time consuming and tedious 
job. 

In conclusion, Hajimiri’s model is a general theory of 
phase noise in electrical oscillators which is extensive 
simulation based and provides a comprehensive phase noise 
analysis. The advantage is that it covers all kinds of 
architectures of VCO. It has some practical limitations 
compared with Leeson’s model and Razavi’s theory, 
however ISF provides a more detailed analysis and design 
insight helpful for optimizing an oscillator phase noise.  

 

V. DEMIR’S MODEL 

Alper Demir’s model is the most generic and most 
accurate treatment of noise in oscillators. It’s purely 

mathematical and CAD oriented, suitable for simulator type 
application. However it lacks the circuit design insight and 
does not help designers to optimize oscillator for better phase 
noise performance. This model does not provide intuition in 
to circuits but is definitely remarkable to the simulation of 
phase noise in oscillators.  This model establishes results 
about the dynamics of nonlinear oscillator in the presence of 
deterministic and random perturbations. Here unperturbed 
limit cycle represents oscillator without noise and when noise 
sources are considered, oscillator does not follow the original 
orbit but undergoes change in orbit. This model encompasses 
the decomposition of the perturbation in to two components. 
First component is phase deviation responsible for shifting 
the phase of oscillator and second component is orbital 
deviation responsible for momentarily disturbing limit cycle. 
The orbital deviation does not accumulate and its effect on 
oscillators limit cycle dies to zero if perturbation is removed. 
On the other side phase deviation keeps on accumulating as 
long as perturbation source is present. Once perturbation 
source is removed the phase error produced by it remains 
indefinitely. Demir’s model represents oscillator by a group 
of equations in the form [8], 

																																													
ሻݐሺݔ߲
ݐ߲

ൌ ݂൫ݔሺݐሻ൯																																					ሺ22ሻ 

 

Where x(t) is the oscillator’s output voltage. When the 
oscillator is perturbed by a small perturbation b(t), the output 
voltage takes the form x(t+(t)) +y(t), where y(t) is the 
orbital deviation. Finally the phase noise resulting from the 
voltage perturbation b(t) can be obtained by solving the 
following one dimensional differential equation as [8], 

																												
∂θ
∂t
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This is same as Hajimiri’s phase noise modeling of oscillator 
where instead integral equation is used as below [5]. 
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b(t) and n(t) in equation (23) and (24) respectively are noise 
sources, whereas in both equations, (t) is the oscillator 
phase and (t), (t) are the functions characterizing the 
oscillator topology. They are called as perturbation 
projection vector (PPV) and the impulse sensitivity function 
(ISF) respectively. Both methods produce equal results for 
stationary noise sources. However when analyzing injection 
locking phenomena in oscillators both models yield different 
results with Hajimiri’s model unable to predict the locking 
behavior. This has been confirmed theoretically using 
averaging transformation method introduced in [15][16]. 
This method turns out to be a powerful method to deal with 
the type of equations arising while analyzing oscillator 
behavior. Although both modeling seems almost alike, 
Demir’s model is mathematically more exact and Hajimiri’s 
model is approximate [14]. Hajimiri’s model is simpler, 
facilitating its use for purposes of analysis and design of 
electrical oscillators. Previous analysis based on LTI and 
LTV theories erroneously predict infinite noise power 
density at the carrier; hence infinite total integrated power. 
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On the other side, Demir’s model accurately predicts results 
at frequencies closer to carrier frequency. Further Demir 
rules out cyclostationarity in the oscillator output because it 
would imply prefect time reference which noisy systems can 
not provide. Thus this model provides more accurate analysis 
of oscillator noise. The methods of this model are faster than 
the traditional brute force Monte Carlo approach of phase 
noise simulation. The only disadvantage of Demir’s model is 
that it is mathematically complex, especially for hand 
calculations since one need to solve differential equation 
involving (t) on both sides of equation. 

 

VI. HAM’S MODEL 

Donhee Ham’s model is one of the recent outstanding 
contributions which bridges the gap between fundamental 
physics of noise and the existing phase noise theories [13]. 
Through thought experiment he shows that virtual damping 
rate is a fundamental measure of phase noise. Further this 
model shows that the virtual damping rate can be obtained 
from the Einstein relation without resorting to specific 
circuit parameters.  This model introduces virtual damping 
concept and puts the oscillator phase noise theory and well-
known resonator theory under the same framework. Ham’s 
thought experiment assumes ensemble of N identical 
oscillators. Assuming all oscillators start oscillating at the 
same time instant, it’s found that the ensemble average over 
time exhibits exponential damping. From the ergodicity [11] 
of the system ensemble average of oscillator signal is equal 
to the time average hence time average also shows similar 
exponential damping. This conclusion is from the 

assumption that the system is ergodic which is fundamental 
assumption true in many measurement systems. The concept 
of phase diffusion due to noise is used to build this model. If 
the phase diffusion is due to white noise, the variance of , 
which signifies the width of the probability distribution is 
given by [13], 

            < 2(t) > = 2Dt                 (25) 
 

Here phase diffusion constant ‘D’ indicates how fast the 
phase diffusion occurs. ‘D’ is the reciprocal of the 
exponential time constant in damping of ensemble/time 
average and is also called as virtual damping rate. By this 
theory phase noise at given offset frequency  is given by 
[13], 

																											Lሺ∆ωሻ ≡
S୚ሺωሻ
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If offset frequency is large enough compared to ‘D’, i.e.  
>> D, equation (26) assumes familiar 1/f2 behavior [13]. 

																																										Lሺ∆ωሻ ൎ
2D

ሺ∆ωሻଶ
																																									ሺ27ሻ 

 

Where diffusion constant D can be evaluated using Einstein 
relation taking in to account sensitivity and loss. This model 
is valid for LTI analysis as well as LTV analysis. For LTV 
analysis time varying effects are taken in to account for 
evaluating diffusion constant. In this theory also loaded 
quality factor is redefined.  

 
Table 1. Similarities, differences and limitations of different oscillator phase noise models. 

Sr. No./Criteria Leeson Razavi Hajimiri Demir Ham 

1]  

Model complexity 

Simple and intuitive 
model without 
formal proof. 

Simple and 
intuitive. 

Simple and intuitive. Complex, pure 
mathematical and 
no circuit intuition. 

Simple and 
intuitive. 

2]  

Type of model 

This model is one 
port, LTI feedback 
system. 

This model is two-
port, LTI feedback 
system. 

This model is LTV 
and described by 
integral equation. 

This model is non 
linear, 
mathematically 
involved and CAD 
oriented. It can be 
described by one 
dimensional 
differential 
equation. 

Valid for both LTI 
and LTV modeling 
of phase noise. 

3]  

Ability to produce 
sidebands and 
ability to take in to 
account 
cyclostationary 
noise sources 

Being LTI model 
it’s unable to 
produce sidebands 
and fails to take in 
to account 
cyclostationary 
noise sources. 

Being LTI model 
it’s unable to 
produce sidebands 
and fails to take in 
to account 
cyclostationary 
noise sources. It 
uses rather 
complex 
mathematical 
formulation to take 
in to account 

Being LTV model 
it’s able to produce 
side bands and 
explains up 
conversion and 
down conversion of 
noise in the vicinity 
of integral multiple 
of oscillation 
frequency. 
Cyclostationarity of 
certain noise sources 

This model proves 
stationarity in the 
oscillator output. It 
rules out possibility 
of cyclostationarity 
in the oscillator 
output since it 
would imply a 
perfect time 
reference which 
noisy systems can 
not provide. 

This model is 
capable to explain 
up conversion, 
down conversion of 
noise in the vicinity 
of integral multiple 
of oscillation 
frequency. It can 
take in to account 
cyclostationarity of 
certain noise 
sources. 
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cyclostationary 
noise sources. 

is taken in to account 
by introducing noise 
modulating function. 

4] 

Model applicability/ 
Validity 

It’s valid to all types 
of LC oscillators 
only. This model is 
not applicable to 
inductorless CMOS 
ring oscillators. 

Valid to all types of 
LC oscillators as 
well as inductorless 
CMOS differential 
ring oscillators.  
However this 
model is not 
applicable to ring 
VCO with digital 
inverters as delay 
stages. 

Valid to all classes 
of oscillators. 

Valid to all classes 
of oscillators. 

Valid to all classes 
of oscillators. 

5] 

Q-factor definition 

Basic Q-factor 
definition in the 
context of LC 
resonators. 

Introduced new Q-
factor definition to 
extend applicability 
of Leeson’s model 
to inductorless 
CMOS differential 
ring oscillators. 

Basic Q-factor 
definition used. 

Q-factor definition 
is not utilized 
throughout analysis. 
It develops solid 
foundation of phase 
noise regardless of 
operating 
mechanism. 

Basic Q-factor 
definition for LTI 
analysis is used. 
New definition of 
Q-factor introduced 
for LTV analysis. 

6] 

Dependence on 
empirical parameter 

This model depends 
on empirical 
parameter, F for 
phase noise 
prediction. This 
parameter is 
posterior parameter 
derived from 
measured data. 

This model 
depends on 
empirical 
parameter, F for 
phase noise 
prediction. This 
parameter is 
posterior parameter 
derived from 
measured data. 

This model does not 
depend on any 
empirical parameter. 
It depends on ISF 
which can be 
calculated through 
circuit simulations. 

This model does not 
depend on any 
empirical parameter. 
It depends on PPV 
which is equivalent 
counterpart of ISF. 

This model does not 
depend on any 
empirical parameter. 

7] 

Circuit insight 

Due to empirical 
parameter F, phase 
noise can not be 
predicted from 
circuit noise 
analysis. Hence no 
clear direction for 
circuit 
improvement. 

Due to empirical 
parameter F, phase 
noise can not be 
predicted from 
circuit noise 
analysis. Hence no 
clear direction for 
circuit 
improvement. 

No empirical 
parameter and clear 
direction for 
improving phase 
noise. E.g. 
Symmetry of rise 
and fall times 
minimizes fourier 
coefficient, C0 which 
reduces 1/3 
corner. This in turn 
reduces integrated 
phase noise within 
given band of 
frequency. 

No empirical 
parameter used but 
being 
mathematically 
involved lacks 
circuit insight. Good 
for simulator type of 
application. 

No empirical 
parameter and 
bridges gap between 
fundamental physics 
of noise and 
oscillator phase 
noise. It provides 
circuit insight for 
improvement. 

8] 

Simulation time and 
computational 
overhead 

It’s simple and does 
not require long 
circuit simulation 
time or complex 
computations. 

It’s simple and 
does not require 
long circuit 
simulation time or 
complex 
computations. 

Long simulation 
time and tedious 
computations 
required to compute 
ISF and involves 
error due to 
approximate nature 
of impulse injected. 

Requires solving of 
complex differential 
equations but more 
accurate. 

Does not require 
long simulation time 
and does not have 
computational 
overhead. 

9] 

Injection locking 
behavior 

Unable to predict 
injection locking 
behavior of 
oscillator. 

Unable to predict 
injection locking 
behavior of 
oscillator. 

Unable to predict 
injection locking 
behavior of 
oscillator. 

It’s able to predict 
injection locking 
behavior of 
oscillator hence its 
universal model. 

Unable to predict 
injection locking 
behavior of 
oscillator. 
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10] 

Close-in phase noise 
prediction 

Erroneously 
predicts infinite 
noise power at 
carrier hence 
infinite total 
integrated noise. 

Erroneously 
predicts infinite 
noise power at 
carrier hence 
infinite total 
integrated noise. 

It predicts accurate 
results even at 
frequencies closer to 
the carrier frequency 
[18]. 

It predicts accurate 
results even at 
frequencies closer to 
the carrier 
frequency. 

It predicts accurate 
results even at 
frequencies closer to 
the carrier 
frequency. 

 

 
 

VII.    SUMMARY 

This paper reviews the existing phase noise models of an 
oscillator starting from earliest work by D. B. Lesson to the 
most popular models by Demir, Hajimiri, and Ham. This 
paper gives designer a guide and degree of freedom to 
choose most suitable model to optimize oscillator topology 
of his interest.  
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Date of modification: 4th August 2014 

Modifications:  

1] Modification done to the last row under columns 
“Hajimiri” and “Ham” as follows. 

“Erroneously predicts infinite noise power at carrier hence 
infinite total integrated noise.”  

Replaced with  

“It predicts accurate results even at frequencies closer to the 
carrier frequency.” 

2] Added another reference [18] 
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