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Abstract—Machine learning is the basis of important ad-
vances in artificial intelligence such as image and speech
recognition and natural language processing. Unlike general
machine learning, which uses the same task for training and
testing, transfer learning uses the results trained by other tasks
to learn a new task. Among the various transfer learning algo-
rithms have been proposed to date, we focus on attribute-based
transfer learning. This algorithm realizes transfer learning by
introducing attributes and transferring the results of training.
However, the existing algorithm does not consider the extent to
which attributes contribute to predicting the target class (called
the predictive ability in this study). Here, we weighted each
attribute by the extent to which it contributes to the evaluation
equation. We confirmed that the accuracy rate of the proposed
technique was higher than that of the preceding work.

Index Terms—transfer learning, attributes, multiclass classi-
fication, SVM.

I. INTRODUCTION

MACHINE learning is the method by which patterns
and knowledges are automatically learned from train-

ing data, and it is used to predict unseen test data. Machine
learning has proven successful in diverse fields such as
image recognition, speech recognition, and natural language
processing. Many machine learning techniques require large
datasets to overcome the over-fitting problem. In the real
world, such large data samples are readily extractable from
the Internet, and offer a means of improving the above prob-
lem. However, this approach does not work well in machine
learning such as supervised learning because Internet-derived
samples are almost unlabeled, and their feature spaces or
distributions (i.e. source task or source domain) are different
from that of the working problem (i.e. target task or target
domain). To solve this problem, transfer learning can be
applied. In the transfer learning[1][2] framework, source
task data are used to train the target task by transferring
prior knowledge acquired from the source task to the target
task. The difference between traditional machine learning
and transfer learning is illustrated in Figure 1. Among the
various transfer methods, we focus on attribute-based transfer
learning[3].

The transfer learning algorithm exploits the semantic
knowledge of the object attributes such as shape, color, and
texture. This knowledge is shared by all objects in the source
and target tasks. Therefore, we can learn target tasks even
if few or no training samples exist. Since human beings
appear to also recognize unseen objects by transferring object
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Fig. 1. Traditional machine learning(a) and transfer learning(b)

attributes, this transfer learning approach is intuitive and nat-
ural. However, the extent to which the attributes contributed
to the precision of the target is not considered in the existing
algorithm. We define this property as the predictive ability.
In this study, we assumes that the predictive ability of each
attribute differs, but is the same for all classes. The weighted
attributes are then introduced into a DAP model.

The remainder of this paper is organized as follows: Sec-
tion II discusses the related work, and Section III introduces
our approach. Experimental results are presented in Section
IV. Section V concludes the paper and discusses ideas for
future study.

II. RELATED STUDIES

Subsection II-A of this section describes the existing re-
search on transfer learning. Attribute-based transfer learning,
referred to as the DAP model, is presented in subsection II-B.

A. Transfer learning

Whereas traditional machine learning assumes the same
feature space or distribution for both the training and test
data, transfer learning allows them to be different. The data of
the source task are used to train the target task by transferring
prior knowledge acquired from source task to target task (as
shown in Figure 1). Transfer learning was conceptualized
long ago and has been assigned many names; inductive
transfer, domain adaptation, multitask learning, and others.

The term transfer learning is used within the broad
framework of machine learning; therefore, it eludes a precise
definition and discussion. In 2005, the NIPS workshop on
“ Inductive Transfer: 10 Years Later”[4] defined transfer
learning as the problem of retaining and applying the knowl-
edge learned in one or more tasks to efficiently develop an
effective hypothesis for a new task. A few surveys have been
published on transfer learning[1][2].

B. Attribute-based transfer learning

Attribute-based classification is a computer vision algo-
rithm that realizes transfer learning. This algorithm, which
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Fig. 2. Traditional machine learning(a) and attribute-based transfer learn-
ing(b)

has been investigated in several studies[5][6][7], is here
called attribute-based transfer learning to emphasize its trans-
fer learning property.

Let (x1, l1), . . . , (xn, ln) ⊂ X × Y be training data
samples, where X is an arbitrary feature space and Y =
{y1, . . . , yK} consists of K discrete classes in the source
task. Our goal is to learn a classifier: X → Z for target task
Z = {z1, . . . , zL} that is different from Y .

Traditional machine learning requires training samples on
X × Z to solve this problem. However, collecting new
training samples for all classes is a difficult task, and we
would prefer to exploit X × Y . Attribute-based transfer
learning is based on attributes, which constitute high-level
semantic knowledge. In addition, each attribute is binary
and shared among all classes. Therefore, information about
each class can be obtain without collecting many samples
and training because human beings can easily provide the
relationships between attributes and classes.

This method, called Direct attribute prediction (DAP), is
illustrated in Figure 2(b). Compared with traditional ma-
chine learning (Figure 2(a)), DAP introduces a middle layer
consisting of attributes A = {a1, . . . , aM}. If the relations
between class y and corresponding attribute values, given by
ay = (ay1, . . . , a

y
M ) are known in advance, we can learn the

classifier: X → Y by learning the classifier β: between input
features and correspond attributes.

The test data used in the test stage are samples belonging
to the target task Z. Moreover, the relations between z and
attribute values, denoted az = (az1, . . . , a

z
M ), are assumed to

be known. Since the posterior of the test class z given the
sample x can be expressed as p(z|x), we can estimate the
best output class from all test classes of the target task using
MAP prediction:

argmax
z

p(z|x) (1)

Since the probability of attributes for a given input is
formulated as p(a|x) =

∏
p(am|x), the posterior p(z|x) can

be calculated as follows:

p(z|x) =
∑

a∈{0,1}M

p(z|a)p(a|x) = p(z)

p(az)

M∏
m=1

p(azm|x) (2)

In Equation (2), the factor p(az) is assumed as a factorial
distribution p(az) =

∏
p(am) and is calculated by p(am) =

1
K

∑K
k=1 a

yk
m . Furthermore, p(azm) has already been learned

as classifier β and the factor p(z) can be ignored because all

classes have the same prior probability. Therefore, we can
estimate class z as follows:

argmax
z

M∏
m=1

p(azm|x)
p(azm)

(3)

III. PROPOSED METHOD

As stated above, attribute-based transfer learning can rec-
ognize a new class by transferring the information p(azm|x).
However, the extent of contribution of the attributes in
predicting the target class is not specified in this approach.
We define this new property as the predictive ability of the
attribute.

When the predictive ability of the attribute is low, the
influence of this attribute should be made small because the
attribute makes a small but non-negligible contribution to
class prediction. Furthermore, we assume that the predictive
ability of each attribute is the same for all classes. Therefore,
we propose to weight each attribute based on its predictive
ability in Equation (3). Since weighting of Equation (3) is
inconvenient, we apply weighting to the logarithm of Equa-
tion (3). Expressing the weight of attribute m as weightm,
the proposed equation is becomes:

argmax
z

M∑
m=1

weightmlog
p(azm|x)
p(azm)

(4)

This equation is equivalent to

argmax
z

M∏
m=1

{
p(azm|x)
p(azm)

}weightm

(5)

In other words, if the predictive ability of an attribute is
higher, this attribute is regarded as more important and makes
a higher contribution to the equation.

We assume that the predictive ability is mainly affected
by two factors; first, whether the attribute is easily learned
from the input data; second, the bias of the attribute value. In
the training stage, because bias in attribute values indicates
imbalanced data, the classifier of each attribute βm cannot be
properly learned. Therefore the influence of biased attributes
should be reduced.

In terms of these factors, we re-express Equation (5) as

argmax
z

M∑
m=1

vmwmlog
p(azm|x)
p(azm)

(6)

where the weights vm and wm reflect the effects of the above-
described first and second factors, respectively.

The first factor can be represented by the accuracy of each
attribute. Therefore, the weight vm is estimated as

vm = EX [δ(pm, am)] (7)

where

x = y : δ(x, y) = 1 (8)
x ̸= y : δ(x, y) = 0 (9)

pm is the predicted value of attribute am.
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In assigning wm, we assume that the prediction value
pm is a better measure than the bias of the attribute value
am because its bias is larger than that of am. Furthermore,
the weight wm should be minimized when the mean of the
attribute value is 0 or 1, and maximized when the mean is
0.5. Therefore, the weight wm is estimated as

wm = 1− 2|EY [pm]− 0.5| (10)

However, this equation is non-differentiable when EY [pm]
is 0.5. To express wm in a differentiable form, we define its
entropy function as

wm = −EY [pm]logEY [pm]

−{1− EY [pm]}log{1− EY [pm]} (11)

where 0log0 is taken to be 0.
In this way, we have defined the weights vm and wm.

IV. EXPERIMENTAL RESULTS

Experiments were conducted on the“ Animals with At-
tributes”data set[8]. This data set includes 30,475 images
from 50 animal classes. The classes are defined by 85
attributes. The relations between classes and attributes are
labeled by humans and presented in a 50×85 matrix. In the
experiment, we selected 40 classes as the source task and the
remaining classes as the target task.

In the“Animals with Attributes”dataset, each image is
extracted by six types of features. We selected feature types
SURF and RGB color histograms because these features
yield the first and second highest accuracy rate, respectively,
in the nearest neighbor algorithm[9].

Since the number of feature types is greater than one, we
use Multiple Kernel Learnig(MKL)-SVM. The probability
estimates from SVM are obtained by Platt scaling[10].

To verify the performance of our proposed method, we
separately experiment on the weights vm and wm.

First, we estimated the weight vm by two approaches. The
first approach uses the accuracy of the test data to confirm
that the accuracy rate is truly improved by the weighting.
However, this approach is inappropriate in practice. The
second approach estimates the accuracy by training 90% and
testing the remaining 10% of the training data. We expect that
both approaches will yield the same result.

Figure 3 shows the result of using the weight vm. The
vertical axis indicates the accuracy of the classification,
and the horizontal axis denotes the number of training and
test images in each class. The result is the average of
six experimental runs. While the performance of the first
approach is better than the existing approach, the second
approach is not outperformed.

Next, we experiment on the weight wm. This weight is
expressed by two equations which are respectively evaluated
to obtain a comparison. We also estimate the prediction value
of weight wm by training and testing 90% and 10% of the
training data, respectively.

Figure 4 shows the result of using the weight wm. In this
experiment, both equations outperform the existing method,
although Equation (10) is higher accuracy than Equation
(11).

Fig. 3. Empirical evaluation using the weight vm

Fig. 4. Empirical evaluation using the weight wm

Fig. 5. Empirical evaluation using both weights vm and wm

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



Fig. 6. The accuracy rates sorted by number of classes in the target task:
each class has 30 images

Finally, we introduce both weights vm and wm. The
results are plotted in Figure 5 in which proposed method
also outperforms the existing method. However, since the
accuracy of this result is similar to that of Figure 4, the
weight vm negligibly enhances the performance.

We then altered the number of classes in the target task,
and evaluated the performance. In this experiment, we use
only the weight wm. Moreover, the number of images in each
class is fixed at 30 and the results are the average values of
six runs.

These results are plotted in Figure 6. The vertical axis
indicates the classification accuracy, and the horizontal axis
shows the number of classes in the target task. Again, our
method outperforms the existing method.

V. CONCLUSION

This paper considers the predictive ability of attributes in
attribute-based transfer learning, and improve performance
is confirmed. However, a few weighting schemes are inef-
fective. Moreover, the experiment was restricted to zero-shot
learning in which all classes in the target task are not present
in the training set. In future work, we will experiment on
other data sets and other situations, such as classes in the
target task containing few samples. Furthermore, we aspire
to improve the predictive ability of the existing approach by
factors other than the weight.
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