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Abstract—Value at Risk (VaR) is a widely used measure for
qualifying risk. It specifies the maximum loss a portfolio can
suffer in N days’ time with confidence level X%. A bank’s
portfolio usually consists of thousands of risky assets. To be able
to quickly evaluate the VaR of a large portfolio is challenging.
In this work, we have developed a multi-threaded program on
shared-memory multi-processor systems that calculates the VaR
of large portfolios. We follow the delta-gamma Monte Carlo
approach. To replace the matrix-matrix multiplications in the
gamma term by matrix-vector multiplications we diagonalised
the gamma term and represented it by the productions of its
eigenvectors and eigenvalues. We used Intel’s MKL functions
for the operations on the matrices and vectors. Joe and Kuo’s
pre-computed direction numbers were fed into MKL’s random
number generator to generate Sobol’ quasi-random sequence.
The simulation stage was parallelised by creating POSIX
threads and assigning each created thread an equal number of
the trial paths. The program was tested by a portfolio of 4000
assets. The parallel simulation ran more than 4 times as fast
as the simulation parallelised by MKL’s vectorised automatic
multi-threading functions.

Index Terms—Value at Risk, Monte Carlo simulation, Delta-
gamma approximation, Parallel computing, Sobol’ sequence

I. I NTRODUCTION

V ALUE at risk is a single, summary statistical measure
of possible portfolio losses that would result from

an adverse movement in the risky assets constituting the
portfolio. Since its first use by J.P. Morgan it has become
a benchmark for measuring the risk exposures of financial
portfolios. It has become widely used by corporate treasurers,
fund managers and financial regulators. It is used by the
Basel Committee in setting capital requirements for banks
throughout the world [1].

Given a time horizon (N days) and a confidence level (X%)
the VaR (Y dollars) of a portfolio is the maximum value in
dollars that the portfolio can loss in the next N days with
the confidence level of X%. Put it in another way, there is
a probability of X% that the loss of the portfolio will not
exceed Y dollars in the next N days. Bank regulators require
banks to calculate VaR for market risk with N = 10 and X
= 99 [2].

There are a number of approaches to calculate the VaR of a
portfolio consisting of non-linear financial products. See, for
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example, [3], [4], [5] for discussions about and comparisons
between these methods. In our work, we take the delta-
gamma Monte Carlo method to calculate the VaR of non-
linear portfolios. This approach is a compromise between
the parametric delta-gamma method and the full Monte Carlo
method. It is more accurate than the parametric delta-gamma
method, and, yet, computationally more efficient than the
full Monte Carlo method. In a general delta-gamma VaR
approach, the delta term reflects the part of the portfolio
loss/gain that linearly depends on the value change in the
underlying assets. The quadratic gamma term approximates
the part of the portfolio loss/gain that non-linearly depends
on the value change in the underlying assets.

Usually, a bank’s portfolio consists of thousands of linear
and non-linear risky assets. To be able to evaluate its VaR in
a short time is important to decision markings. To this end,
we have developed a general parallel program that is able
to calculate the VaR of portfolios consisting of thousands
of risky assets. The program is targeting at x86 shared-
memory multi-processor systems. With POSIX threads the
simulation stage of the computation is explicitly parallelised.
The implementation was tested by a portfolio of 4000 risky
assets on a computer powered by an Intel Xeon E5-1660
– a processor having 6 cores, supporting 12 threads and
running at 3.3GHz. For comparison purposes we also created
a program in which the simulation stage is parallelised by
Intel MKL functions’ default multi-threading ability. The
timing results demonstrated that in completing the simulation
stage of the computation our parallel program was more than
4 times as fast as the program using MKL’s automatic multi-
threading.

Organisation of the rest of the paper:Section II
presents the overall delta-gamma Monte Carlo approach in
calculating the VaR of a portfolio and the diagonalisation
optimisation. Section III discusses how to generate Sobol’
quasi-random sequence using Intel MKL’s routine when the
dimension of the randoms exceeds 40. Section IV describes
how the simulation stage of the computation is parallelised
by POSIX threads. Section V presents the test results and the
comparisons between our parallel program and the program
using MKL’s automatic multi-threading. Section VI draws
the conclusion and points out a direction for potential future
work.

II. T HE DELTA-GAMMA MONTE CARLO VAR APPROACH

We assume the timet positions in a portfolio ofN risky
assets areX0, X1, . . . , XN−1, respectively. Over a very short
time period∆t, such as 1 day’s time, we assume the returns
R = (∆X0/X0,∆X1/X1, . . . ,∆XN−1/XN−1) of the assets
follow a multivariate normal distribution with zero mean
vector and the variance-covariance matrixΣS, and, so, we
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haveR ∼ NN (0,ΣS). We useP (t) =
∑N−1

i=0 Xi to denote
the time t value of the portfolio andP (t + ∆t) to denote
the updated value of the portfolio at the end of the∆t time
period. The value change∆P of the portfolio over this time
period is what we are interested in. Ifδi = ∂P (t)/∆Xi,
i = 0, 1, . . . , N−1, is the sensitivity of the portfolio with re-
spect to the change in valueXi, andΓij = ∂2P (t)/∂Xi∂Xj ,
i, j = 0, 1, . . . , N − 1 is the sensitivity of the change
in δi with respect to the change inXj , the value change
∆P = P (t+∆t)−P (t) can be approximated by the Taylor
polynomials as

∆P =
N−1
∑

i=0

δi∆Xi +
1

2

N−1
∑

i=0

N−1
∑

j=0

Γij∆Xi∆Xj . (1)

Using the return adjusted deltas and gammasδ̃i = δiXi

and Γ̃ij = ΓijXiXj , Equation 1 can be written in terms of
the returnsRi = ∆Xi/Xi as

∆P =
N−1
∑

i=0

δ̃iRi +
1

2

N−1
∑

i=0

N−1
∑

j=0

Γ̃ijRiRj . (2)

In matrix form Equation 2 is

∆P = δ̃
T
R+

1

2
R

TΓ̃R, (3)

where δ̃ = (δ̃0, δ̃1, . . . , δ̃N−1) and Γ̃ = [Γ̃ij ]. The variance-
covariance matrixΣS and the adjusted gamma matrixΓ̃ are
symmetric.

Using the Cholesky factorisation we can find a lower
triangular matrixC and C ’s transposeCT such that the
variance-covariance matrixΣS = CCT. The correlated
returnsR = (R0, R1, . . . , RN−1) can then be expressed in
terms of the independent standard normal variablesZ =
(Z0, Z1, . . . , ZN−1) ∼ NN (0,1) asR = CZ. So, in terms
of Z Equation 3 becomes

∆P = δ̃CZ +
1

2
Z

T(CTΓ̃C)Z. (4)

To reduce the matrix-matrix multiplications in the gamma
term to matrix-vector multiplications, we follow the diago-
nalisation approach presented in [6] and [7]. Using spectral
decomposition we can find matricesU and Λ such that
1/2CTΓ̃C = UΛUT, where

Λ =

∣

∣

∣

∣

∣

∣

∣

∣
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λ0
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. . .
λN−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

is a diagonal matrix andU is an orthogonal matrix (UUT =
I) whose columns are eigenvectors of1/2CTΓ̃C. The di-
agonal elementsλi of Λ are eigenvalues of1/2CTΓ̃C. We
substituteUΛUT into the gamma term in Equation 4, and it
becomes

1

2
Z

T(CTΓ̃C)Z = ZTUΛUTZ

= (UTZ)TΛ(UTZ)

= H
TΛH, (5)

Algorithm 1 : Computing delta-gamma VaR in Monte Carlo simulation.

Input : Variance-covariance matrixΣS, vectorX of N asset positions,
vectorδ, matrix Γ, percentileα, numberM of experiments.

Output : Portfolio value change vectorV , 1 day(1−α) value at risk
VaR.

begin1

δ̃i ← δiXi, Γ̃ij ← ΓijXiXj , // i, j = 0, 1, . . . , N − 12
Find lower triangular matrixC such thatΣS = CCT3

Find matricesΛ andU such that1/2CTΓ̃C = UΛUT4

B ← UTCTδ̃5
for i = 0 to M − 1 do6

Generate vectorZ from Sobol’ sequence7
H ← UTZ8
∆P ← 09
for j = 0 to N − 1 do10

∆P ← ∆P +BjHj + λjH
2

j11

Vi ← ∆P12

SortV in ascending order13
VaR← V⌊αM⌋14

end15

whereH = UTZ. In order to be able to use vectorH in
computing the delta term as well, we transform the delta
term as

δ̃CZ = (CT
δ̃)T

Z = (CT
δ̃)TUUT

Z

= (CT
δ̃)TUH

= (UTCT
δ̃)T

H (6)

If we let vectorB = UTCTδ̃, the delta term can be written
asBT

H. The value change∆P of the portfolio, therefore,
is

∆P = B
T
H +H

TΛH

=

N−1
∑

i=0

(BiHi + λiH
2

i ). (7)

In Monte Carlo simulation we generateM N -dimensional
vectorsZ = (Z0, Z1, . . . , ZN−1). Using eachZ we calculate
a ∆P . We then sort theM ∆P ’s in ascending order. For a
given percentileα, such as 5%, the 1 day(1−α) VaR is the
∆P at the⌊αM⌋-th position in the sequence. The procedure
is summarised in Algorithm 1.

III. G AUSSIAN RANDOM GENERATION FROMSOBOL’
SEQUENCE

As in [8], to generate Gaussian random vectorsZ, we
first generate a sequence of Sobol’ quasi-random numbers
uniformly distributed over the interval[0, 1). We then convert
this sequence to standard normal randoms by the Box-
Muller method [9]. The Sobol’ quasi-random sequences
were first proposed by Sobol’ [10], and was subsequently
implemented by Bratley and Fox [11]. Quasi-random number
generators are often the preferred choice for generating high-
dimensional sequences of uniformly distributed variates. Fig.
1 shows two groups of 150 uniformly distributed random
variates over the interval[0, 1). One was generated by
the Sobol’ sequence and the other by the pseudo-random
generator MRG32k3a [12]. It can be seen from Fig. 1(a)
that the Sobol’ numbers are more evenly distributed over the
interval.
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Fig. 1: Comparison between 150 quasi-random numbers and 150 pseudo-
random numbers.

TABLE I: MKL functions used in computing the matrices and the vectors
before the simulation stage.

MKL function Operation

LAPACKE spotrf Find C such thatΣS = CCT

cblas strmm (twice) ComputeCTΓ̃C (C is triangular)

LAPACKE ssyevd Find U ,Λ for 1/2CTΓ̃C = UΛUT

mkl simatcopy ComputeUT

cblas sgemm, cblassgemv ComputeB = UTCTδ̃

Unlike the authors in [8], in our implementation, we
use the Sobol’ quasi-random number generator provided by
Intel’s Math Kernel Library (MKL) [13], which is based
on Algorithm 659 of Bratley and Fox [11]. To enable the
generator to generate 4000-dimensional random vectors we
use the direction numbers pre-computed by Joe and Kuo [14],
[15] as parameters passed to the MKL routine.

IV. T HE PARALLEL COMPUTING

In the implementation, before theM -trial simulation starts,
we use Intel’s MKL functions to compute the matrices and
the vectors whose computation is presented in Algorithm 1,
line 3 to 5. These MKL functions all support automatic multi-
threading and are able to perform the operations in parallel on
shared-memory multi-processor machines. These functions
are able to dynamically adjust the degree of parallelism
according to how much resource is available in the system.
The use of these MKL functions is summarised in Table I.

The Monte Carlo simulation is explicitly parallelised. If
the number of processors in the system isc, the M -trial
simulation is evenly divided intoc fractions. Each proces-
sor is allocatedM/c trials of the simulation to finish. To

p0 p6 p1 p7 p2 p8 p3 p9 p4 p10 p5 p11

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

256KB L2 L2 L2 L2 L2 L2

15MB L3 unified cache

8GB DDR3-1333MHz memory

Intel QuickPath interface

Fig. 2: Intel Xeon E5-1660.

TABLE II: Runtimes in our explicit and MKL’s automatic parallel execu-
tions. Times were measured in seconds.

Operation Explicit Automatic

Cholesky factorisationΣS = CCT 0.237 0.233

ComputeCTΓ̃C 0.460 0.463

Find U , Λ, UT for 1/2CTΓ̃C = UΛUT 2.051 2.061

ComputeB = UTCTδ̃ 0.429 0.434
M trials 356.9 1472.8
Sort 0.108 0.094

avoid resource contention between MKL’s automatic multi-
threading and our explicit multi-threading we kept the MKL’s
multi-threading switched off during the simulation stage. To
avoid threads from migrating between different processors,
we bound each thread onto a distinct processor at the time
the thread was created. To be able to generate Sobol’ quasi-
random number in parallel each created thread skipped a
certain number of points and started to generate from a
certain position in the stream. If we createc threads and bind
each of them onto one of thec processors, thei-th thread,
i ∈ [0, c − 1], will start to generate from the(iNM/c)-th
position of the stream.

V. EXPERIMENTAL RESULTS

The algorithm presented in Algorithm 1 and its parallel
version were implemented in C/C++. The executable binary
code was generated by Intel’s C/C++ compiler icpc 13.0.1
for Linux. The machine we used in the tests was powered by
an Intel Xeon E5-1660 processor (Fig. 2) running on Ubuntu
Linux 13.04 64-bit version. The processor runs at 3.3GHz.
It has 6 cores supporting 12 threads.

To test the implementations, as in [8], we setN = 4000
and M = 750000. We set the elements in vectorX
all to ones. We ran the simulation in our explicit parallel
scheme with 12 threads, and compared its runtime with the
simulation in 1 thread but parallelised automatically by the
multi-threaded MKL functions. The timing results in seconds
are reported in Table II. Note that the matrix and vector
calculation in the tests were performed by MKL functions
with automatic multi-threading. So the two sets of runtimes
in those operations were very close. But in the simulation
stage the speedup of our explicit parallelisation was 4.13
against the MKL’s multi-threading.

From the portfolio value change vector computed by the
explicit parallel implementation the 1 day 95% VaR was
-2.9253. The largest loss and gain was -7.99 and 5.18,
respectively. Between these two extreme values we created
150 equal-sized bins. We counted the number of times the
value change fell into each of these bins. The frequency
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Fig. 3: Density and cumulative distribution functions of the portfolio value
change.

graph is plotted in Fig. 3(a), and the cumulative distribution
function of the value change in Fig. 3(b).

VI. CONCLUSION

We have presented our work on computing the value at risk
using the delta-gamma Monte Carlo approach. The algorithm
consists of two stages – the preparation and the simulation.
In the preparation stage matrices and vectors needed by the
trials of the simulation are pre-computed. In each single trial
of the simulation quasi-random numbers are generated to
compute a portfolio value change. After all the trials are
completed, all the computed value changes are sorted. A
certain value of change is then chosen as the value at risk
for a given percentile.

To avoid repetitive matrix-matrix multiplications during
the trials, the gamma term matrix is diagonalised in such
a way that it is represented by the productions of its
eigenvectors and eigenvalues. Such representation enables
the matrix-matrix multiplication in the gamma term to be
replaced by less expensive matrix-vector multiplications.
Because the gamma term is evaluated in every single trial,
this diagonalisation saves much execution time.

We use Intel’s MKL functions to generate Sobol’ quasi-
random numbers and to perform all the matrix and vector
computations. On shared-memory multi-processor machines
these MKL functions are automatically multi-threaded. In
our implementation all the matrix and vector computations
in the preparation stage are implicitly parallelised by these

multi-threaded functions. However, for the simulation we
switched off the automatic multi-threading option. Instead,
we created POSIX threads to explicitly parallelise the trials
of the simulation. We bound each created thread onto a
distinct processor, working on an equal fraction of the total
number of the trials. Experiential results demonstrated that,
compared to MKL’s automatic multi-threading, our explicit
parallelisation was more than 4 times as fast as.

For future work, we will adapt this delta-gamma Monte
Carlo VaR algorithm for general purpose graphics processors
to further speedup the simulation.
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