
 

 
Abstract—The effect of iron on the uniformity of the field 

produced by an axisymmetric thick solenoid is considered. 
Here two solution to the vector potential and hence the 
magnetic field components will be derived. The first solution 
is obtained using a Power series and the other is obtained 
using the Euler-Maclaurin summation formula, thus 
converting the doubly infinite summation into an integral. 
Numerical results for the vector potential and the field 
components are given as well plots of the field distribution. 
 

Index Terms— Time independent field, Power series, the 
Euler-Maclaurin Summation formula 

I. INTRODUCTION 

n this paper magnetostatic field calculations associated 
with an axisymmetric conductor of rectangular cross 
section situated equidistant from two semi-infinite regions 

of iron of finite permeability are computed. The 
magnetostatic field associated with iron-free axisymmetric 
systems has been considered by Boom and Livingstone 
[2], Garrett [3] and many others. Caldwell [4], Caldwell 
and Zisserman [5] and [6] have carried out work which 
takes account of the effects of the presence of iron on such 
systems. The main advantages of introducing iron are: 
 
i. Higher fields are provided for the same current, 
producing substantial power savings over conventional 
conductors. 
 
ii. The field uniformity is improved even for 
superconducting solenoids by placing the iron in a suitable 
position.  
 
The geometry considered is shown in figure 1, a toroidal 
conductor V’ of rectangular cross section having inner 
radius A, outer radius B and length L-2, is located 
equidistant between two semi-infinite regions of iron of 
finite permeability a distance L apart, the axis of the torus 
being perpendicular to the iron boundaries. The region V 
between the conductor and the iron is assumed insulating. 
Cylindrical polar coordinates (r,,z) are used where r and z 
are normalized in terms of L.  
    Prior to Caldwell [3] the presence of iron in 
axisymmetric systems had been largely ignored see Loney 
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[8] and Garrett [3] et al. In cylindrical polar coordinates 
Maxwell’s equations give: 
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where e is a unit vector in the direction of increasing  
and C is a constant with   
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Equation (1) suggests the introduction of a potential A 

such that B A  , axial symmetry implies 
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Using the integral representation of the vector potential 
this gives 
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, known as the image factor.  

Noting that ( , )A r z is an odd function in r and an even 

function in z then A  can be expanded as a power series 

about the z axis giving:  
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with w=z’-z-n and 2 = x2+w2. Substituting expression (3) 
into expression (2) gives 
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To relate this to the work of Garrett [3] let  
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where (2m-1)!!= 1.3.5…(2m-1), 
and (2m+2)!!= 2.4.6…(2m+2), with  
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 so for the field components 
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The first five terms will be quoted, the remainder can be 
obtained from the recurrence relations equations (4), (5) 
and (6). So that  
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II. CALCULATION OF THE FIELD COMPONENTS USING THE 

EULER-MACLAURIN SUMMATION FORMULA 

Here use of the Euler-Maclaurin summation will be used 
to convert the doubly infinite sum corresponding to the 
image coils to an integral. Much literature exists on the 
derivation of the formula thus only the final formula will 
be quoted. We have the vector potential given by 
expression (2), so that considering the summation and 
defining:   
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where 1 2( ) ( ) ( )f n f n f n  . So that the effect of the 

image coils has been separated from the main coil. To 
these images we apply the Euler-Maclaurin Summation 
formula. Considering the term  
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So clearly the method will not cater for the case when 

1 , but this is expected as that is the iron free 

situation. In order to make any progress with this integral 
the integrand will be expanded in a Maclaurin series in 
 which will be a small parameter. Thus 

)()0(
!2

)0()0()( 3''
1

2
'
111  OIIII  .  

So that 

 )()()(
2

)(
)0(

000

0 2/1221




 

NES

dn
n

e
I

n




 

 

 

Where )(zS  Schlafli’s polynomial of order 
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Now considering 
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With similar manipulation as just performed it can be 
shown that 
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To proceed with this method these special functions must 
be written in a form so that they can be integrated over the 
volume of interest. 

III. NEUMANN’S FUNCTION, BESSEL FUNCTION OF THE 

SECOND KIND 

Here the Bessel function of the second kind has been 
obtained, taking the definition of the Neumann function as  
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Where F(r) and F(n+r) are the digamma functions 
(Abramowitz and Stegun [1]) arising from the 
differentiation of the gamma function when expressed as 
an infinite limit. Using properties of the digamma function 
gives: 
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Where '  is the Euler-Mascheroni constant (Abramowitz 

and Stegun [1]). So finally for n=0 the limiting value is:  
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IV. THE WEBER FUNCTION AND ITS RELATION TO THE 

STRUVE FUNCTION 

By definition the Weber function may be expressed as  
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The relationship between Weber’s function and the Struve 
function is, for n being a positive integer or zero 
(Abramowitz and Stegun [1]) 
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Where )(zHn  is the Struve function defined by  
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It follows that  
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where to avoid confusion the Euler-Mascheroni constant 
has been denoted by '  and  cosx . Thus 

integration over the volume of interest can now be 
performed. That is  

 

).('}
)(

.
6

1

))2(log')(log2

2{

4
),(

2
2/122

2

0

1
0









  



Odzdxd

j
zrA

b

a
ee














   



 

V. CONSIDERING THE ORDER   TERM IN THE 

EXPRESSION FOR ),( zrA   

Considering the )(O term and denoting this as  
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Performing the  integration first gives 
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It can be shown that (Gradsteyn and Ryzhik [7]) 
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Where B(m,n) is the Beta function and ),,,( 2zcbaF is 

the Hypergeometric function, so that  
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Pavlika [10] has shown that the integrals containing the 
series of the hypergeometric function are uniformly 
convergent in the interval of integration so that with some 
algebraic manipulation it can be shown that Pavlika [10]  
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VI. CONSIDERING THE ORDER 
0k TERM IN THE 

EXPRESSION FOR  .  
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Considering the term and denoting this integral as 0K  that 

is:  
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VII.  CONSIDERING THE ORDER 
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Considering the )( 2kO term and denoting this term as 

2K , say where: 
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Where u = x + r and w = z - z’.  
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VIII.  CONSIDERING THE ORDER 

 0  TERM IN THE EXPRESSION FOR 
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Considering the )( 0O term in equation (9) and 

denoting this term by 0  , say where  
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IX. CONSIDERING THE ORDER   AND   TERMS IN THE 

EXPRESSION FOR ),( zrA . 

 
Considering the )(O and )(O terms and denoting 

this integral as  
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It can be shown (see Gradsteyn and Ryzhik  
[7]) that:  
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For 1||,1,1 2  knm , where ),( qpB is the 

Beta function and ),,,( 2zcbaF  is the hypergeometric 

function whose convergence has already been discussed, 
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thus 1 can easily be evaluated. Now the term containing 

the logarithm of   must be considered, denoting this 

integral as 2  then  
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Once again this integral has be computed see Pavlika [10], 
thus finally 
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Where 120 ,, KK and 2  are now known.  

X.  CONCLUSIONS 

The two methods of solution were found to be in 
good agreement however more terms are required for 
the method of solution based on the Euler-Maclaurin 
summation formula. The summations were performed 
from -200 to 200 with a change only in the fourth 
decimal place occurring when the number of terms in 
the summation was doubled. The effect of the 
permeability of the iron is shown in figures 2, 3, 4 
and 5.   
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Table 1: Values of ),( zrA using the Power series. 

r Z =103 =102 =10 =1 
   0 0.1 0 0 0 0 
0.1 0.1 0.8958 0.8808 0.7580 0.3496 
0.2 0.1 1.7913 1.7614 1.5167 0.7022 
0.3 0.1 2.6862 2.6416 2.2767 1.0609 
0.4 0.1 3.5802 3.5212 3.0386 1.4287 
0.5 0.1 4.4730 4.4000 3.8031 1.8095 

      
0.1 0.2 0.8978 0.8825 0.7645 0.3747 
0.1 0.3 0.8986 0.8838 0.7700 0.3954 
0.1 0.4 0.8993 0.8849 0.7734 0.4080 
0.1 0.5 0.8993 0.8850 0.7746 0.4123 

Table 2: Values of ),( zrBr using the Power series 

R z =103 =102 =10 =1 
0.1 0.1 5.585E-3 0.0128 0.0719 0.2816 
0.2 0.1 1.132E-2 0.0273 0.1473 0.5777 
0.3 0.1 2.350E-2 0.0452 0.2298 0.9027 
0.4 0.1 3.827E-2 0.0681 0.3228 1.2711 
0.5 0.1 5.897E-2 0.0977 0.4298 1.6973 
      
0.1 0.2 8.728E-3 0.0142 0.0608 0.2317 
0.1 0.3 8.494E-3 0.0123 0.0444 0.1648 
0.1 0.4 5.154E-3 0.0071 0.0235 0.0856 
0.1 0.5 0 0 0 0 
 

Table 3: Values of ),( zrBz using the Power Series. 

r Z =103 =102 =1 
   0 0.1 17.9170 17.6164 6.9822 
0.1 0.1 17.0150 17.6151 7.0023 
0.2 0.1 17.9091 17.6112 7.0628 
0.3 0.1 17.8991 17.6047 7.1635 
0.4 0.1 17.8852 17.5965 7.3046 
0.5 0.1 17.8673 17.5839 7.4860 
     
0.1 0.2 17.9732 17.6546 7.5233 
0.1 0.3 17.9723 17.6771 7.9259 
0.1 0.4 17.9861 17.6996 8.1803 
0.1 0.5 17.9867 17.7015 8.2673 

 

Table 4: Values of ),( zrA using the Power series 

r Z =103 =102 =10 =1 
   0 0.1 0 0 0 0 
0.1 0.1 0.89172 0.881238 0.7576 0.3481 
0.2 0.1 1.79492 1.762867 1.5141 0.6902 
0.3 0.1 2.69390 2.645277 2.2679 1.0201 
0.4 0.1 3.59466 3.528858 3.0178 1.3319 
0.5 0.1 4.49780 4.414002 3.7625 1.6196 
      
0.1 0.2 0.89782 0.882508 0.7642 0.3733 
0.1 0.3 0.89596 0.883737 0.7693 0.3926 
0.1 0.4 0.89920 0.884629 0.7726 0.4049 
0.1 0.5 0.89943 0.884955 0.7738 0.4091 
 

Table 5: Values of ),( zrBr  using the Power series 

r z =103 =102 =10 =1 
0.1 0.1 5.832E-3 0.0163 0.1042 0.0362 
0.2 0.1 1.315E-2 0.0343 0.2120 0.0776 
0.3 0.1 2.344E-2 0.0556 0.3674 0.1426 
0.4 0.1 3.819E-2 0.0820 0.4521 0.1599 
0.5 0.1 5.887E-2 0.1151 0.5914 2.0972 
      
0.1 0.2 8.426E-3 0.0166 0.0852 0.2937 
0.1 0.3 8.083E-3 0.0136 0.0607 0.2072 
0.1 0.4 4.898E-3 0.0071 0.0316 0.0107 
0.1 0.5 0 0 0 0 
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Fig.  1.  A toroidal conductor V’ of rectangular cross 
section located midway between two semi infinite regions 
of iron of finite permeability. The region V is assumed to 
be insulating.  
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Fig.  2.  The variation of Bz(r,z) with r and z for two semi-
infinite regions of iron of unit permeability. :r=0.3, 
:r=0.2, •:r=0.1 
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Fig.  3.  The variation of Bz(r,z) with r and z for two semi-
infinite regions of iron of infinite permeability. :r=0.1, 
:r=0.2, •:r=0.3 
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Fig.  4.  The variation of Br(r,z) with r and z for two semi-
infinite regions of iron of unit permeability. :r=0.1, 
:r=0.2, •:r=0.3 
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Fig.  5.  The variation of Br(r,z) with r and z for two semi-
infinite regions of iron of infinite  permeability. :r=0.1, 
:r=0.2, •:r=0.3 
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