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Comparison of Magnetostatic Field Calculations
Associated with Thick Solenoids in the
Presence of Iron using a Power Series Approach
and the Euler-Maclaurin Summation Formula
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Abstract—The effect of iron on the uniformity of the field
produced by an axisymmetric thick solenoid is considered.
Here two solution to the vector potential and hence the
magnetic field components will be derived. The first solution
is obtained using a Power series and the other is obtained
using the Euler-Maclaurin summation formula, thus
converting the doubly infinite summation into an integral.
Numerical results for the vector potential and the field
components are given as well plots of the field distribution.

Index Terms— Time independent field, Power series, the
Euler-Maclaurin Summation formula

I. INTRODUCTION

n this paper magnetostatic field calculations associated
Iwith an axisymmetric conductor of rectangular cross
section situated equidistant from two semi-infinite regions
of iron of finite permeability are computed. The
magnetostatic field associated with iron-free axisymmetric
systems has been considered by Boom and Livingstone
[2], Garrett [3] and many others. Caldwell [4], Caldwell
and Zisserman [5] and [6] have carried out work which
takes account of the effects of the presence of iron on such
systems. The main advantages of introducing iron are:

i. Higher fields are provided for the same current,
producing substantial power savings over conventional
conductors.

ii. The field uniformity is improved even for
superconducting solenoids by placing the iron in a suitable
position.

The geometry considered is shown in figure 1, a toroidal
conductor V’ of rectangular cross section having inner
radius A, outer radius B and length L-2¢, is located
equidistant between two semi-infinite regions of iron of
finite permeability a distance L apart, the axis of the torus
being perpendicular to the iron boundaries. The region V
between the conductor and the iron is assumed insulating.
Cylindrical polar coordinates (r,¢,z) are used where r and z
are normalized in terms of L.

Prior to Caldwell [3] the presence of iron in
axisymmetric systems had been largely ignored see Loney
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[8] and Garrett [3] et al. In cylindrical polar coordinates
Maxwell’s equations give:

VAR 0inV
~ME7ce, in v

where e, is a unit vector in the direction of increasing ¢
and C is a constant with

VB=0invandV’ @)

Equation (1) suggests the introduction of a potential A

such that B=VAA, axial symmetry implies
oA o(rA
Br:——¢;B¢:O;BZ:1 (")
0z r or
So that Maxwell’s equation gives:
VAB=VA(VAA 0inV
VAB=VAVnf)= Ce, in V'
thus
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0z r or
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with boundary conditions
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Using the integral representation of the vector potential
this gives

A(r) = '[ 1) dv', hence for finite p,
elr=r|

In cylindrical coordinates

Ir—r'l=((z-2")* +r® +x* —2xrcos 9)"?

Which can be substituted below in:
A, (r, z)—ﬂOJ Z '”'j f”rg—dxcos‘g dgdz'
2

with g = 4-1
u+1

Noting that A, (r,z)is an odd function in r and an even

function in z then A¢ can be expanded as a power series
about the z axis giving:

A, (r2) = p, Y K2 (2) ®)
n=—o0 m=0

where expression (2) gives

A,(r,z) = p, z K'”'Zr2m+1| (2)
And -
1,(2) = 7 lwlog, | x+a L1

with w=z"-z-n and o = x’+w?. Substituting expression (3)
into expression (2) gives

ZK’" {Zmﬂmﬂ)rz””ll (z)+zr2"*182' (Z)}

N=o0

equating coefficients of I.,(z2) =

m(m+1)|m(z)+wzo,m:0,1,2,....
So that
@)= (1)m (@)
2" mi(m +1)!
and
_ |n| ( 1)m 2m(z) 2m+1
A(/,(r,z)—ﬂonzgo Zzzmml(m+1)l

To relate this to the work of Garrett [3] let

0= i[[axx, WL~

a(x,w)=wlog, | x+a =1

_A@)
2
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where a, (X, W) :%[[Wlog I x+a |1~ @)
and _

A, = lla, (WL ®
so that

n D7 M)A, zmd
Arnd) =t nz HZ( )Z(Zmrﬂ)m'(mflz))'r

m=0

m 1)" A2m+1 (Z)r 2mt

0z (=)™ (2m—D)!
:”On;,QKHmZZO 2m+ 2

where (2m-1)!1=1.3.5...(2m-1),
and (2m+2)!1=2.4.6...(2m+2), with

1 o
maz

Ania = (&) (6)

so for the field components

B 1)” A2m+l (Z)r amed

B, (r,2) = i, i K'n'i (-1)™(2m

(2m)!
and
c = (D" @Cm+DIA,  (2)r*™*
B r,z)=-— K\n\ ( 2m+2
(1:2) ”‘)HZ;O ;} (2m + 2)!!
Hence

A, (rz) = u, Z |n|( Ai——As _As

Bz(r,z):yOZK'“'(Al—%Aa +%A5 )
and o
B.(r,2) = nz,lenl( A, —3; +51L6A6 £

The first five terms will be quoted, the remainder can be
obtained from the recurrence relations equations (4), (5)
and (6). So that

J X 2 u2\U2\ib e
A, = 2[[m—|09e(x+(w +X ) )LLZ
i —X
A= 2[[(W +X )”2 (W + X )3’2] i
[[ B 3XW
A= 127 (W2 +x )3’2 (W2 + x?)°'2
ot
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BXW
+
A:) 48[[(W +X )5/2 (W2+X2)3/2
15xw* X
o (WZ i X2)7/2 o (W2 n X2)3/2
3xw’ .,
+m]2]1m
and
] 9w
A= 240[[(w +X )5’2 (W +x2)*?
15xw? XwW*
(W2 N X2)7/2 - (WZ i X2)7/2

~105xw* T,

Il. CALCULATION OF THE FIELD COMPONENTS USING THE
EULER-MACLAURIN SUMMATION FORMULA

Here use of the Euler-Maclaurin summation will be used
to convert the doubly infinite sum corresponding to the
image coils to an integral. Much literature exists on the
derivation of the formula thus only the final formula will
be quoted. We have the vector potential given by
expression (2), so that considering the summation and
defining:

Klnl
Z((O! ny?+45)"
Where
y=Xxc089, fZ=r’+x*-2xrcosdand g =z—-z2'

so that
K" ¥

]/Klnl ©
S e S BT @R
which may be written as

S= Zf(n)+2f (n)—(a2 ﬂz)uz, say

=>f
Z (n) (0!2 ﬁZ)lIZ

where f(n)= f,(n)+ f,(n). So that the effect of the

image coils has been separated from the main coil. To
these images we apply the Euler-Maclaurin Summation
formula. Considering the term

> = fman +2[4,0)- (o)
[f (o) — £, (0)]- —[f "(0)= 1, ()] + ...

Lettlng

|, (a) = j f,(n)dn

S s
o (@-n)’+p )“2
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-

:Jm 2 7z dn
* ((a—n)"+p%)

Where & = 10g, | — and K = #4121
K u+1

So clearly the method will not cater for the case when
4 =1, but this is expected as that is the iron free

situation. In order to make any progress with this integral
the integrand will be expanded in a Maclaurin series in
o which will be a small parameter. Thus

|, () = 1,(0) + (0)+ a’ | L(0)+0(a®).
So that

-

1,(0) = ijdn
1 o (n2 +ﬂ2)1/2
_ %[s0 (5B) — 7E, (5B) — N ()]

Where S (z) = Schlafli’s polynomial of order
v, S,(z) =0Vz, watson [11].
E, (z) =Weber’s function of order v, Watson [11] and

N, (z) =Neumann’s function of order v, Watson [11].
So that

1,(0) =§[so<5ﬂ)—zon(5ﬂ>—ﬂNo<5ﬂ)]

4 wi( 7‘“:__0” : Uzj'“-‘) dn +0(a?)
0 e\ ((@—-n)’ + B°)

now

. ©  ne

0=k G
= 1,(a) =1[So<a“ﬁ) — 74 (68) — 7N o(56)]
+ ya .[O ﬂ )3/2 ——— - dn+0(a?)
Furthermore

- r %) —

L) = oy gy 0 () =0

oy (a2§—a+ﬂ25)a (o) =
f, (0)=—r. (a2+ﬁ2)3/2 nd f; () =0
So that

Zf(n)— [S4(5B) = 7E4 (5B) — 7N o(3B)]
7ajw#62mdn+l'{+zl/z}
o (n* + %) 2] (@ + %)

peoma il vow
2| (a”+p°)
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Now considering
> 0= f,(cn +1[f2<0) ~ £,()]
1[f )~ 1,211, O~ £ () .

With similar manipulation as just performed it can be
shown that

> £,(0) = [, (69) ~ 7, (58) ~ 2N o( )]
‘Wr#&;md“l-[%}
o (0T 2] @ )

l{azé—a+ﬂ2§}+o(0[2).
(aZ +,82)3/2

So that

5= %[30((%) — 754 (9B) = 7N 4(5p)]

+£.[%}+O(a2).
6| (a”+p°)

To proceed with this method these special functions must
be written in a form so that they can be integrated over the
volume of interest.

I1l. NEUMANN’S FUNCTION, BESSEL FUNCTION OF THE
SECOND KIND

Here the Bessel function of the second kind has been
obtained, taking the definition of the Neumann function as

cosvm ,(x)—-J_, (x)
sinvr

N,(x) =

Evaluating N, (X)by I’'Hopital’s rule for indeterminant

forms (i.e. for v = N (integer))
gives

N, (x) = ﬂa—i%(x) =y %Jv(x)} o

With

J N (X) = i&(%j

= mi(n+m+1)
i.e. The usual Bessel function of the first kind of order n.
Using

d VY _ YU
() =x"log, (1)

and

ISBN: 978-988-19253-3-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

di(r(z)) = ri(loge(l"(z)))
7z dz

giving
N, (%) =23, (9log, (5)
T 2

iy G ' [fjmr(F(r)H:(nH))

1
rgri(n+r)!
1
T

nl(n—r 1)|( Jn+2r
r=0 ! 2

Where F(r) and F(n+r) are the digamma functions
(Abramowitz and Stegun [1]) arising from the
differentiation of the gamma function when expressed as
an infinite limit. Using properties of the digamma function
gives:

N, () = {Iog (—)w—izi}n(x)

293P
1 - n+2r r
N O
rigri(n+r)! o\ P p+n
inl(n—r 1)][ jn+2l’
T -0 . 2

Where y" is the Euler-Mascheroni constant (Abramowitz
and Stegun [1]). So finally for n=0 the limiting value is:

No(4) =2 (1og, () + ' I0g, (2)) + O(x").

IV. THE WEBER FUNCTION AND ITS RELATION TO THE
STRUVE FUNCTION

By definition the Weber function may be expressed as

E, (x) = %jo”sin(us— zsin 9)d 9

The relationship between Weber’s function and the Struve
function is, for n being a positive integer or zero
(Abramowitz and Stegun [1])

n-2k-1
1/(1
(172 I'k+ 2)(2 ZJ

E.(9=— 3 :
T Tk

_Hn(z)

3P

Where H (z) is the Struve function defined by

H, () = (2)“”2 ol H
K0Tk + )F(k+u+ )

It follows that
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E,(2) =—H,(2)
z? z°

2
E ()= +555—

=& (@) 7z( 1237 ' 123752

This gives

S = 2y9B - 2[log, (38) + y'-log, (2))]

l{__?4@2rﬂg}+qu2)
6|(ax”+p%)

where to avoid confusion the Euler-Mascheroni constant
has been denoted by »' and ¥ =XC0S&. Thus
integration over the volume of interest can now be

performed. That is

A i

—2y[log, (58) + y'-log, (2))]

1 yo ' 2
+ 6{(0:2 Ny oNE }}dxd&dz +O(a”).

V. CONSIDERING THE ORDER 0 TERM IN THE
EXPRESSION FOR A (T, 2)

Considering the O(yd) term and denoting this as

_luoj5 b 27 pl-e y '
G_ELL J.g dedgdz @)

Performing the 4 integration first gives

1/2

®:—u°J5J'bJ.176xdxdz'r” - cosé
247 Ja’e 0 (A° —ncos9)

Where A° = (2—2")* +x* +r%and 17 = 2xr .

Slight manipulation leads to

LoJO (b e X ez 2sin®u-1
0= —dxdz
24 I I I (1-k?sin?u)"?

where 1> =A> +n=(2-12')" +(x+r)? and
2 axr

_ 2 Z,Withgzz—u.
(z—=2")" +(x+Tr) 2 2

It can be shown that (Gradsteyn and Ryzhik [7])

Imz sin?* xcos? ™ x
0 (1-kZsin®*x)”
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dX=%B(ﬂ,V)F(p,ﬂ,ﬂ+v,k2)

Where B(m,n) is the Beta function and F(a,b,c,z?)is
the Hypergeometric function, so that

J-zr/z 2sinu-1
0 (1-k?Zsin?u)?
So that

Uy JO 3 1, b ple X
@=telopg = .
67 (2 2 LL ((z-2)2 + (x+r1)?)"?

*F(%,%,Z,kz)dxdz'

:u015 1-¢
( II +(x+r) )2
*F—,—,l,kzdd', 8
(2 5 )dxdz ®)
with

B(m’ n) — M

, it can also be shown that
I'(h+m

31 =« 11
B_,_ = — d B—,— = .
G =BG =7

Pavlika [10] has shown that the integrals containing the
series of the hypergeometric function are uniformly
convergent in the interval of integration so that with some
algebraic manipulation it can be shown that Pavlika [10]

o= (1"

~7')? +(x+r) 2ye”

k2

*iE
n=0

Where E, =C_ —D, and

3 3 3 1
C _ (E! n)(E! n) D _ (5!”)(5! n) with
' 2n " @n)
(4,K)

(4.k) =

) =22 +D).(A+k 1),k >0.

VI. CONSIDERING THE ORDER k0 TERM IN THE
EXPRESSION FOR ® .
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Considering the term and denoting this integral as K, that
is:

Mo JEq (o e X |
K, = dxdz
° 12 L-L ((z=2")2 +(x+1)"?
thus
U JE, u’? 2 2
K, =—"""J[(—-ru)lo + +Uu
0 1 [[(2 )log, (o + (o )

+%(0'2 +u2)1/2

i

—rolog, (u+(c? +u?)

Whereu=x+rand o =2-12".

VII. CONSIDERING THE ORDER k2 TERM IN THE
EXPRESSION FOR ©® .

Considering the O(k?)term and denoting this term as

K, say where:

. y 3
K, = Ho IE, rJ‘:L — 2X 577 dxdz'
3 ((z=2") +(x+r)

Computing these integrals gives

1/2

K, = —“OTJEl rI[w(w? +u?)

+3rulog, (W+ (W? +u?)"?)

—3rwlog, (W+ (W? +u?)"?) +3r(w® +u?)"?

—3r®log, (W+ (W +u®)"?)

b -1
Nar 1=

3 2 2\1/2
r~(w-+u
LW +u?)

uw

Whereu=x+randw=z-2".

Therefore

_,U J b p27 pl-¢
A= 0] s
—2y[log, (38) + '~ log, (2) dxd dz' (©)
+K, +K, +0(a?).

VIIl. CONSIDERING THE ORDER

oB° TERM IN THE EXPRESSION FOR
A(r,z).
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Considering the O(J5B°)term in equation (9) and
denoting this term by A , say where

A, = _%(7'_ log, (2))J.: '[)2” Ll_g X cos Jdxd $dz'
=0
So that
3 ﬂoj b p27 pl-e ,
A (r,2) _EL [ [ “{2r98—2yIn 5Bydxd 90z
+K, +K, +0(a?).

IX. CONSIDERING THE ORDER Of3 AND ¥ TERMS IN THE
EXPRESSIONFOR A (I, ).

Considering the O(df)and O(y)terms and denoting
this integral as

A, = Hol g zg)jbJ'Zﬂ(éxcosS(x2 +12 —2xrcos 9)"'?2
272. a Jo
—I'xcos $)dxd 9

Where I" = log, | 54 | . With slight
manipulation it can be shown that

A, =47) 0 26)5[ x(x + rydx
Vs a
J'Oﬂlzsin2 u(l—A2sin?u)"?du
~28) 1 26)5 [ x(x+ r)dx
Vs a

Lm(l—/i2 sin?u)¥?du

Where

2 2k? 2 n 2 2 2

A :1+k2’ :?,,u =X"+r°,n=2Xr,
9

—=——U

2 2

It can be shown (see Gradsteyn and Ryzhik
[7]) that:

712 .
J‘O sin"ucos" u(l—k?sin?u)"?du =

EB(m+1,n+1)F(m+1,_£’m+n+2’k2)
2 2 2 2 2 2

For m>-1,n>-1|k*|<1, where B(p,q)is the

Beta function and F(a,b,c, Zz) is the hypergeometric
function whose convergence has already been discussed,
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thus A, can easily be evaluated. Now the term containing
the logarithm of £ must be considered, denoting this
integral as A, then

_ Uy ] b
A, = —E(l—Zg)L xdx

J.OZ” cos 9(x* +r? —2xr cos $)d 9

Once again this integral has be computed see Pavlika [10],
thus finally

A,(r,z) =K, +K +A +A, +0(a?)

Where K,,K,,A;and A, are now known.

X. CONCLUSIONS

The two methods of solution were found to be in
good agreement however more terms are required for
the method of solution based on the Euler-Maclaurin
summation formula. The summations were performed
from -200 to 200 with a change only in the fourth
decimal place occurring when the number of terms in
the summation was doubled. The effect of the
permeability of the iron is shown in figures 2, 3, 4
and 5.
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Table 1: Values of A (I, Z) using the Power series.

r Z p=10® | p=10> | u=10 u=1

0 |01 0 0 0 0
01 |01 0.8958 | 0.8808 | 0.7580 | 0.3496
02 101 1.7913 | 1.7614 | 1.5167 | 0.7022
03 |01 2.6862 | 2.6416 | 2.2767 | 1.0609
04 101 3.5802 | 3.5212 | 3.0386 | 1.4287
05 101 4.4730 | 4.4000 | 3.8031 | 1.8095
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01 0.2 0.8978 | 0.8825 | 0.7645 | 0.3747

01 |03 0.8986 | 0.8838 | 0.7700 | 0.3954

0.1 |04 0.8993 | 0.8849 | 0.7734 | 0.4080

0.1 105 0.8993 | 0.8850 | 0.7746 | 0.4123

Table 2: Values of B, (I, ) using the Power series

R |z |[p=10° u=10° | p=10 | p=1

0.1 | 0.1 | 5.585E-3 | 0.0128 | 0.0719 | 0.2816

02 |01 |1132E-2 | 0.0273 | 0.1473 | 0.5777

03 | 0.1 | 2.350E-2 | 0.0452 | 0.2298 | 0.9027

04 |01 |3827E-2 |0.0681 | 0.3228 | 1.2711

0.5 | 0.1 | 5.897E-2 | 0.0977 | 0.4298 | 1.6973

01 | 0.2 |8.728E-3 | 0.0142 | 0.0608 | 0.2317

0.1 | 03 | 8.494E-3 | 0.0123 | 0.0444 | 0.1648

0.1 |04 | 5.154E-3 | 0.0071 | 0.0235 | 0.0856

01 |05]0 0 0 0

Table 3: Values of B, (I, Z) using the Power Series.

r Z p=10° p=10? u=1

0 [01 17.9170 | 17.6164 | 6.9822
01 |01 17.0150 | 17.6151 | 7.0023
02 [01 17.9091 [ 17.6112 | 7.0628
03 |01 17.8991 | 17.6047 | 7.1635
04 |01 17.8852 | 17.5965 | 7.3046
05 |01 17.8673 | 17.5839 | 7.4860
01 ]0.2 17.9732 | 17.6546 | 7.5233
01 |03 17.9723 | 17.6771 | 7.9259
0.1 |04 17.9861 | 17.6996 | 8.1803
01 [05 17.9867 | 17.7015 | 8.2673

Table 4: Values of A (I, Z) using the Power series

r Z | p=10° p=10? u=10 u=1
0]01]o0 0 0 0

0.1 |0.1 ]0.89172 [0.881238 | 0.7576 | 0.3481
0.2 |01 |1.79492 [1.762867 | 1.5141 | 0.6902
0.3 | 0.1 |2.69390 |[2.645277 | 2.2679 | 1.0201
0.4 |0.1 |3.59466 |[3.528858 |3.0178 | 1.3319
05 | 0.1 | 449780 | 4.414002 |3.7625 | 1.6196
0.1 |0.2 | 0.89782 [0.882508 | 0.7642 | 0.3733
0.1 | 0.3 |0.89596 |[0.883737 | 0.7693 | 0.3926
0.1 | 0.4 ]0.89920 [0.884629 | 0.7726 | 0.4049
0.1 |05 |0.89943 [0.884955 | 0.7738 | 0.4091

Table 5: Values of B, (I, z) using the Power series

r z u=10° p=10* | p=10 p=1
01 |01 5.832E-3 | 0.0163 | 0.1042 | 0.0362
02 |01 1.315E-2 | 0.0343 | 0.2120 [ 0.0776
03 |01 2.344E-2 | 0.0556 | 0.3674 | 0.1426
04 |01 3.819E-2 | 0.0820 | 0.4521 | 0.1599
05 |01 5.887E-2 | 0.1151 | 0.5914 | 2.0972
01 |02 8.426E-3 | 0.0166 | 0.0852 | 0.2937
01 |03 8.083E-3 | 0.0136 | 0.0607 | 0.2072
01 |04 [4.898E-3|0.0071 |0.0316 | 0.0107
01 |05 0 0 0 0
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Fig. 4. The variation of B,(r,z) with r and z for two semi-

v ' 4 infinite regions of iron of unit permeability. +r=0.1,
™r=0.2, ©r=0.3

Fig. 1. Atoroidal conductor V'’ of rectangular cross

section located midway between two semi infinite regions

of iron of finite permeability. The region V is assumed to

be insulating. Br I,z | -
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Fig. 5. The variation of B,(r,z) with r and z for two semi-
infinite regions of iron of infinite permeability. +r=0.1,
™r=0.2, «r=0.3

6.5

Fig. 2. The variation of B,(r,z) with r and z for two semi-
infinite regions of iron of unit permeability. +r=0.3,
™r=0.2, ©r=0.1
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Fig. 3. The variation of B,(r,z) with r and z for two semi-
infinite regions of iron of infinite permeability. +r=0.1,
™r=0.2, «r=0.3
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