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Abstract- We consider the problem of n-jobs
scheduling in an m-machine permutation flowshop
with exact time lags between consecutive operations
of each job. The exact time lag is defined as the time
elapsed between every couple of successive operations
of the same job which is equal to a prescribed value.
The aim is to find a feasible schedule that minimizes
the total tardiness and earliness. We propose a math-
ematical formulation, which is then solved by running
the commercial software CPLEX to provide an opti-
mal solution for small size problems. As the problem
is shown to be strongly NP-hard, we propose two
upper bounds and two lower bounds useful for large
size problems. We then evaluate their effectiveness
through an extensive computational experiment.

Keywords: Scheduling; Exact time lags; Tardiness
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I. INTRODUCTION

We consider the permutation flowshop scheduling
problem in which the elapsed time between each cou-
ple of operations of each job must be equal to a pre-
scribed value (θi,k). The permutation flowshop problem
with exact time lags is a particular case of the permuta-
tion flowshop with minimal and maximal time lags. It
corresponds to the case where the minimal and maxi-
mal time lags are equal. According to Fondrevelle et al.
[1], the exact time lag constraints generalize the classical
no-wait constraints, for which the waiting time between
successive operations equals 0. The no-wait requirement
can be found in industries where products must be pro-
cessed continuously through the stages in order to pre-
vent degradation. Then, the problem can be formulated
as follows: a set i ∈ {1, 2, .., n} of jobs have to be pro-
cessed on a set k ∈ {1, 2..,m} of machines. Each ma-
chine can process one job at a time and preemption is
not allowed. An exact time lag between each couple of
operations is added. For each job, we define pi,kthe pro-
cessing time of job i on machine k, θi,k the exact time lag
of job i between machine k and machine k+1, and di the
due date of job i. The aim is to find a feasible schedule
that minimizes the total tardiness and earliness.
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Tardiness of job i is defined as Ti = max (Ci,m−di, 0)
where Ci,mis the completion time of job i on the last
machine m. Earliness of job i is defined as Ei =
max (di − Ci,m, 0). Recently, many researches are in-
terested in analyzing the earliness on the manufactur-
ing costs. According to Chandra et al. [2], some rea-
sons for reducing earliness be limited storage space for
finished goods, and the limited shelf life of products as
in the case of chemicals and pharmaceuticals industries.
Our objective in this research is then to determine a
sequence of all jobs that insure minimum total tardi-
ness and earliness. Since Koulamas [3] has shown the
NP −hardness of F ||

∑
T problem for k ≥ 3, the prob-

lem Fπ|θi,k|
∑

(E + T ) is also NP − hard. A permuta-
tion flowshop scheduling problem with exact time lags
(Fπ|θi,k|L) is studied by Fondrevelle et al. [1], some spe-
cial cases are studied and a dominance relation is pro-
vide. Also lower and upper bounds are developed and
integrated in a branch and bound procedure.

Scheduling models with this criterion are compatible
especially with Just In Time production where jobs are
scheduled to complete as close as possible to their due
dates. Most of existing researches that deal with this
criterion are done for the single machine scheduling (see
Kanet and Sridharan [4], Valente [5], Abdul razaq and
Potts [6], Li [7], Valente and Alves [8], and Liaw [9]) who
consider the earliness/tardiness problem with equal re-
lease dates and no idle time where the main proposed
approach is the branch and bound. Also some heuristics
are developed, the performance of various heuristics, in-
cluding dispatching rules, a greedy procedure and a de-
cision theory algorithm, are analyzed in (Valente and
Alves [8]). Metaheuristic approaches are proposed by
Feldmann and Diskup [10].

Common due dates is pioneered by many researches
e.g. Kanet [11], and Baker and Scudder [12] where two
kinds of due dates are defined: the unrestrictive one if its
optimal value has no influence on the optimal sequence
and according to Feldmann and Diskup [10] for a given
due date which is greater than or equal to the sum of pro-
cessing times of all jobs is always unrestrictive. However,
if the common due date may influence on the optimal
sequence of jobs, it is called restrictive one. Recently
Janiak et al. [13] introduce the common due window
concept, they present a survey of studies on schedul-
ing problems with a common due window assignment
and earliness/tardiness penalty functions. They turn to
analyze the classical models with job-independent and
job-dependent earliness/tardiness penalty functions and
some other more complicated models. Then, they de-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 28 February 2014) IMECS 2014



scribe the computational complexity of the problems and
the main features of the approaches developed to solve
them.

Focusing on the flowshop environment, some re-
searches are done while minimizing the total tardiness
and earliness. For 2-machines flowshop problem with
common due dates problems, we can mention the re-
search of Sung and Min [14]. For the m-machine flow-
shop problems; recently, Bulbul et al. [15] generalize the
tardiness/ earliness problem for the flowshop problem
with intermediate inventory holding costs, they formu-
late it as an integer problem. They develop heuristics to
minimize the total costs, then, they exploit the duality
between Dantzig-Wolfe reformulation and lagrangian re-
laxation to enhance these heuristics. Chandra et al. [2]
treat the permutation flowshop problem with earliness
and tardiness penalties, they provide a partial charac-
terisation of the optimal solution and develop a compre-
hensive approach for solving the problem over the entire
range of due dates.

Furthermore, variety of flowshop problems with tar-
diness earliness-based objective are adressed in the lit-
erature. The no-wait permutation flow shop scheduling
(F |NoWait|

∑
T + E) problem is studied by Ning et

al. [16]. They propose an heuristic, and then the NEH
algorithm is used to get the optimized solutions. Deb-
ora and Ernesto [17] consider no storage constraints and
with blocking inprocess. They present Mixed–Integer
models which are then evaluated and compared using
commercial software. Zhu and Heady [18] develop a
mixed integer programming in a multi-machine schedul-
ing problem that can easily provide the optimal solution
to problems involving about nine jobs and three ma-
chines. Arabameri and Salmasi [19] investigate the no-
wait flowshop sequence-dependent setup time schedul-
ing problem with minimization of weighted earliness and
tardiness penalties. They propose a mixed integer linear
programming model. Then, they develop several meta-
heuristic algorithms based on tabu search and particle
swarm optimization algorithms, and they generate a tim-
ing algorithm to find the optimal schedule and calculate
the objective function value of a given sequence.

In this paper, we consider the permutation flowshop
scheduling problem with exact time lags while minimiz-
ing the total earliness and tardiness. This problem is
not studied sufficiently over the literature. We propose a
mathematical formulation useful to generate an optimal
solution by running the software CPLEX. Then, two new
upper bounds are proposed. Also, two lower bounds are
developed where the first one is based on relaxing the
integrality constraints and the second one on summing
two derived tardiness lower bound and earliness lower
bound. The organization of the remainder of this pa-
per is as follows: In Section 2, we present the proposed
mathematical formulation. In Section 3, we present the
developed upper bounds. In section 4, the two derived
lower bounds are presented. Then, computational re-
sults are reported in Section 5, and finally in section 6
we discuss concluding remarks.

II. MATHEMATICAL FORMULATION

The considered problem is characterized by n jobs be-
ing processed on m machines always in the same order
while an exact time lag θi,k is defined between each cou-
ple of operations of each job i. Preemptions are not
allowed, that is, when a job starts to be processed on a
machine, it cannot be interrupted.

The used notations are described as follows:
A. Decision Variables

� Xi,j = 1 if job i is scheduled in position j, 0 other-
wise ∀i ∈ {1, 2, .., n}, ∀j ∈ {1, 2, .., n}

� Cj,k : completion time of job in position j on ma-
chine k, ∀j ∈ {1, 2, .., n}, ∀k ∈ {1, 2, ..,m}

B. Data

� pi,k: processing time of job i on machine k, ∀i ∈
{1, 2, .., n}, ∀k ∈ {1, 2, ..,m}

� θi,k: exact time lag between the stopping of the kth

operation and the starting of the (k+1)th operation
of the job i.

� di: due date of job i

Then the mathematical formulation is presented as fol-
lows

Minimize
∑
j

Ej + Tj (1)

n∑
i=1

Xi,j = 1 ∀j (2)

n∑
j=1

Xi,j = 1 ∀i (3)

Cj,k+1 = Cj,k +

n∑
i=1

Xi,j (pi,k+1 + θi,k) ∀j and∀k (4)

Cj,k +
n∑
i=1

(pi,kXi,j) ≤ Cj+1,k ∀j and∀k (5)

Tj ≥ Cj,m −
n∑
i=1

(diXi,j) ∀j and∀i (6)

Ej ≥
n∑
i=1

(diXi,j)− Cj,m ∀j and∀i (7)

Cj,k, Tj , andEj ≥ 0∀j and∀k (8)

Xi,j ∈ {0, 1} (9)

Constraints (2) and (3) are classical assignment con-
straints which ensure that each job can only be allo-
cated to a sequence position and that each sequence
position can only be filled by one job ∀i ∈ {1, 2, .., n}
and ∀j ∈ {1, 2, .., n}. Constraints (4) involved in obtain-
ing the completion time of each job with respect to the
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precedence constraint and the exact time lags between
operations ∀j ∈ {1, 2, .., n} and ∀k ∈ {1, 2, ..,m − 1}.
Constraints (5) state that the completion time of job in
position j plus its processing time on machine k have
to be smaller than or equal to the completion time of
the next job in the same machine ∀j ∈ {1, 2, .., n − 1}
and ∀k ∈ {1, 2, ..,m}. With constraints (6) and (7), we
define the tardiness and the earliness for each job ∀i ∈
{1, 2, .., n} and ∀j ∈ {1, 2, .., n}. Constraints (8) force
the tardiness, the earliness and the completion time to
be positive values ∀j ∈ {1, 2, .., n} and ∀k ∈ {1, 2, ..,m}.
Then, constraints (9) specify Xi,j as a binary variable
which is equal to 1 if the job i is assigned to position j
and 0 else ∀i ∈ {1, 2, .., n}and ∀j ∈ {1, 2, .., n}.

III. UPPER BOUNDS

In this section we propose two upper bounds which
are based on two different rules: the Earliset Due Date
(EDD) and the Shortest Sum Processing Time (SSPT)
rule.

� EDD rule: this rule is known and it states to ar-
range the jobs in nondeceasing order of the due
datesdi (dπ(1) ≤ dπ(2) ≤ .. ≤ dπ(n)). Then, by ob-
taining a sequence we calculate the total tardiness
by applying the algorithm described later.

� SSPT rule: This rule is similar to SPT , but instead
of using the individual job processing time on each
machine, we consider for each job the total process-
ing times of a job plus the exact time lags between
each consecutive couple of operations.

The first step in the proposed algorithm consists in ob-
taining the sequence of jobs by using the rule (EDD or
SSPT ). This sequence is scheduled in the second step.
In the third step, an exchange step between each two ad-
jacent jobs is done in the seek of enhancing the obtained
result. We begin by the two first adjacent jobs and so on.
Each time, we compare the new found value of the total
tardiness and earliness with the previous one. If there
is no enhancement, no exchange is done. Then, the first
sequence can be modified. The algothim is detailed as
follows:

Algorithm

Step 1. Determine the scheduling sequence (π) by us-
ing the rule (EDD or SSPT )

Step 2. Schedule the sequence of jobs (π) as follows:
2.1 The first job is scheduled as soon as possible
Cπ(1),1 = pπ(1),1
For k = 1 to m− 1, do
Cπ(1),k+1 = Cπ(1),k + θπ(1),k + pπ(1),k+1

end
2.2 Schedule the other jobs as soon as possible
For i = 2 to n, do
Cπ(i),1 = Cπ(i−1),1 + pπ(i),1
For k = 1 to m− 1, do

Cπ(i),k+1 = max{Cπ(i),k + θπ(i),k, Cπ(i−1),k+1} +
pπ(i),k+1

end
end
2.3 Make sure that the exact time lag constraints are

satisfied
For k = m− 1 to 1
if Cπ(i),k+1 − Cπ(i),k > θπ(i),k + pπ(i)k+1

then, Cπ(i),k+1 = Cπ(i),k + θπ(i),k + pπ(i),k+1

end
2.4 Determine the absolute deviation of each job’s

completion time and its due date, then the total ear-
liness and tardiness (ET )

For i = 1 to n, do
Xi = |Ci,m − di|

then ET =
n∑
i=1

Xi

end
Step 3. An exchange operation between each two ad-

jacent jobs.
For i = 1 to n− 1, do
temp← π(i)
π(i) = π(i+ 1)
π(i+ 1) = temp
3.1 Determine the new value of the total earliness and

tardiness (ET1)
For i = 1 to n

ET1 =
n∑
i=1

|Ci,m − di|

end
3.2 We compare the new value (ET1) with the previ-

ous value (ET ). If the new value is enhanced (ET1 <
ET ), then we keep the permutation and the total tardi-
ness and earliness value will be equal to (ET1). Else, we
restart with the previous positions and the total earliness
and tardiness value still equal to (ET ).

If ET1 ≥ ET , then
temp← π(i)
π(i+ 1) = π(i)
π(i) = temp
Total tardiness and earliness = ET
end
end

IV. LOWER BOUNDS

The permutation flowshop scheduling problem with
exact time lags is not studied sufficiently over the lit-
erature. Fondrevelle et al. [1] derive lower and upper
bounds which are then integrated in a branch and bound
procedure to minimize the maximum lateness. Develop-
ing tight lower bounds seems to be crucial mainly when
with the branch and bound algorithm as they allow an
efficient pruning in the serach tree. Here, we are con-
cerned by minimizing the total earliness and tardiness,
which is an NP − hard problem in the strong sense.

In this section we develop two lower bounds. The first
one is a Linear Program (LP) relaxation which consist
in relaxing the integrality constraints. The second one is
based on developing a lower bound on the total tardiness
and a lower bound on the total earliness, and then by
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summing both of bounds we find the lower bound on the
total earliness and tardiness.

A. LP relaxation (LB1)

An Integer Linear Program (ILP) is a LP such that
the variables must take integer values. The ILP is an
eloquant to formulate optimization problems and they
can catch a large number of combinatorial optimization
problems. Obtaining an optimal solution for the ILP is
an NP-hard problem. A relaxation of the original prob-
lem by removing the integrality constraints seems to be
interesting.

The integrality constraints are easy to state but make
the problem much more difficult to solve. The LP re-
laxation consists in removing the integrality constraints,
that is allowing variables to take on non-integral val-
ues and replaced by appropriate continuous constraints.
Therefore, the NP-hard optimization problem can be re-
duced to a linear program which is solvable in polynomial
time.

B. The sum of tardiness lower bound and earliness
lower bound (LB2)

As it was described previously, this lower bound con-
sists in adding a lower bound on the total tardiness
(LBT ) and a lower bound on the total earliness (LBE).
Even when adding a lower bound on the total tardiness
and an estimated value of the total earliness, the sum
of both values will result in a lower bound on the total
tardiness and earliness. They are described as follows.

A lower bound on the total tardiness can be given

as : LBT =
n∑
i=1

[ max
1≤k≤m

{
i∑

s=1
ps,k +

k−1∑
l=1

min
i
{pi,l} +

k−1∑
l=1

min
i
{θi,l}}− di]+. Obviously it consists in determin-

ing a lower bound on the completion time of each job,
by substracting the due date and finding a positive value
we can derive the tardiness of each job.

The lower bound on the total earliness can be obtained
by relaxing the restriction on the starting time of the first
machine at time 0. We begin by determining an Esti-
mated Completion Time (ECT ) for each job for an EDD

sequence as : ECTi =
m−1∑
k=1

(pi,k + θi,k) + pi,m +
i−1∑
s=1

ps,1

(here i and s note the position in the sequence). Then
we can determine the Estimated Earliness Value (EEV )
for each early job as: EEVi = [di −ECTi]+. Let x note
the minimal earliness value among all the job’s earliness
values; then by translating the corresponding job to the
right, its earliness will be equal to 0 and the earliness val-
ues of the other will be minimized. By translating even
one job to the right, all the schedule have to be trans-
lated to respect the exact time lags between machines
which is possible in this case as we relax the restriction
of beginning processing time at time 0 for the first ma-
chine. Finally the lower bound on the earliness value is

calculated as: LBE =
n∑
i=1

[di − (ECTi + x)]+. Then, the

second lower bound on the total earliness and tardiness
is obtained as: LB2 = LBT + LBE

V. COMPUTATIONAL RESULTS

We conduct a computational anlysis to evaluate the
performance of the proposed bounds. The mathematical
formulation is tested by running CPLEX 11., and the al-
gorithms are implemented with MATLAB 7.6. The com-
putational experiments are run on a DELL PC/2.20GHz
with 4.00Go RAM.

Instances are generated as the same way in Fondrevelle
et al. [1] (for one of the tested classes): The processing
times are generated from a uniform distribution between
20 and 50 and the time lags in the interval [0, 100] .
For the due dates, we follow the method proposed by
Potts and Wassenhove [20], they are generated in a range
[Px, Py] where P is a lower bound on the makespan and
defined as

P = max
1≤k≤m−1

{
n∑
i=1

pi,k +
m−1∑
l=1

min
i

(pi,l + θi,l)}

Where x = 1− T − R/2 and y = 1− T + R/2. T is the
tardiness factor, which is set to 0.2 and 0.6; while R is the
due date range that assumed the values 0.25 and 0.75.
The different used combinations of (T, R) are: (1)=(0.2,
0.25); (2)=(0.2, 0.75); (3)= (0.6, 0.25); and (4)=(0.6,
0.75). We set four different configurations for number of
jobs n ∈ {5, 10, 15, 20}, and two different configurations
for number of machines m ∈ {5, 10}.

For each problem size, ten instances are generated for
each combination of T and R; then the average of the
total tardiness and earliness is determined. A total of
200 runs are executed. The results are summarized in
the following Table 1. To evaluate the proposed upper
and lower bounds, we determine the percentage deviation
from the optimal solution, which is calculated as % =
Op−LB
LB ×100 for the lower bounds and as % = UB−Op

Op ×
100 for the upper bounds.

Table 1: Computational results

(n,m) (T,R)
Op LB% UB%

ET CPU LB1 LB2 EDD SSPT

(5, 5)

(1) 277 0.07 17.62 1.51 0.08 2.22

(2) 323 0.09 13.50 0.67 1.01 1.61

(3) 611 0.18 7.32 0.82 1.25 1.15

(4) 623 0.09 10.0 0.21 0.20 0.91

(10, 5)

(1) 450 0.16 18.61 2.19 0.87 0.91

(2) 683 0.51 15.53 1.91 0.04 2.13

(3) 1489 1.45 12.01 0.56 0.26 1.14

(4) 1749 1.86 9.11 0.06 0.32 1.05

(15, 5)

(1) 841 0.39 13.52 2.01 0.72 2.78

(2) 833 3.44 12.11 1.34 0.45 1.24

(3) 2565 314.1 9.50 0.57 1.08 0.17

(4) 2703 197.3 10.33 0.41 0.03 0.29

(15, 10)

(1) 3390 644.4 18.42 0.04 0.12 1.25

(2) 2213 636.4 14.31 1.09 0.73 2.37

(3) 8555 813.1 8.25 2.76 0.01 1.63

(4) 9766 245.2 11.20 1.12 0.23 1.22

(20, 5)

(1) 2210 145.8 16.31 1.26 1.05 1.53

(2) 2894 914.5 10.28 2.03 0.42 2.23

(3) 3344 866.6 9.32 1.59 0.07 0.62

(4) 3788 1232.4 11.91 0.77 0.05 0.11
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For each problem size, it is obvious that the best re-
sults are found with the smallest values of tardiness pa-
rameters. The larger the values of the tardiness param-
eters, the smaller will be the range of due dates. This
result in larger optimal value for total tardiness and ear-
liness. The proposed lower bound (LB2) is shown to be
good as the percentage deviation doesn’t exceed 2.76 and
so better than (LB1) for which the percentage deviation
range between 7.3 and 18.4. Also the upper bounds are
shown to be very good, just the one based on the EDD
rule is better for almost all the problems. As the com-
pletion times are sorted in non decreasing order for any
sequence, then when sort the due dates also in non de-
creasing order will result in the minimal absolute devia-
tion between each job’s completion time and its due date.
On the other hand, we can conclude that the deviation
percentage from the optimal solution decreases with the
increasing values of the parameters. The lower bounds
are more better for problems with potentially high total
tardiness and earliness. We expect that they can provide
the optimal solution with larger size problems and with
increasing tardiness parameters values.

The problems with larger values of tardiness parame-
ters consume more CPU time (second), and the CPLEX
is shown to be unable to solve problems with up the size
(n =20, m =5) in one hour (3600 s). The upper bounds
and lower bound (LB2) are solved in less than 1 sec-
ond and we couldn’t distinguish a meaningful difference
between all problems in the CPU time.

An other experiment is done to distinguich the ef-
fect of the exact time lags on the deviation percentage
for large size problems. Here, we consider the devia-
tion of the second lower bound (LB2) from the upper
bound provided by the procedure based on the EDD rule
(% = UB−LB

LB × 100). For each problem size, we define
four classes of problems according to the time lags in-
terval. The first class is a classical permutation flowshop
problem without time time lags. For the other classes the
exact time lags are generated from the interval [0, θi,k]
where θi,k ∈ {25, 50, 100}. The parameters (T, R) are
fixed to (0.2, 0.25).

Table 2: Effect of the time lags on the deviation

(n, m) (50, 10) (100, 20) (200, 50) (500, 50)

(θ)

0 19.1 % 15.1 % 16.3 % 10.3 %

25 15.4 % 14.1 % 13.1 % 10.7 %

50 16.2 % 12.2 % 13.5 % 15.8 %

100 13.7 % 11.5 % 10.3 % 10.6 %

From Table 2, we can confirm that the exact time lags
have a significant effect on the deviation percentage. The
higher value is found with the classical case where the
exact time lags is equal to zero, then it decreases with
the increasing values of the time lags intervals and with
the increasing problem size. The developed lower bounds
are more performant with higher values of the time lags.

VI. CONCLUSION

The permutation flowshop problem with exact time

lags to minimize the total earliness and tardiness is con-
sidered in this paper. We propose a mathematical for-
mulation, two upper bounds and two lower bounds. An
extensive computational experiment is done to evaluate
the effictiveness of these bounds. It is measured by the
percentage deviation from the optimal solution. The re-
sults reveal that the proposed procedures are shown to
be very efficient to derive good results by using some
parameters. Also, the results show that the tardiness
parameters and the exact time lags intervals have an im-
portant effect on the objective values and the deviation
percentage. When the exact time lags and the param-
eters (T, R) increase, the objective value increases and
the deviation percentage decreases.

As we mentioned previously in this paper, few research
works deal with shop scheduling problems with exact
time lags. Several directions for further work can be of
major interest: It could be interesting to develop other
lower bounds which could be tight by using a decompo-
sition approach.
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Date of modification: 28-02-2014
Descrption of the changes: I did modifications in the

results of LB2 and the two upper bounds in Table 1 and
Table 2 as i did many experiments with different data
and i discover later that the data used to obtain these
bounds are different from the ones used to obtain the
optimal solution and LB1. So, i correct this mistake.
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