
 

 
Abstract—Most of the inventory models under supply 

disruptions are based on the assumption that either the failure 
process is time-independent or the system is perfectly repaired 
after each failure. However, in the real situation, the failure 
process can be time-dependent and the supplier can also 
perform imperfect repairs. In this work, we study 
deterministic demand (Q, r) inventory models under time-
dependent disruption due to machine breakdowns at the 
supplier with the possibility that a repair after each failure is 
imperfect.  
 

Index Terms—Inventory model, imperfect repair 
 

I. INTRODUCTION 

Inventory problem under supply disruptions is widely 
studied in recent years. The reasons why this problem is 
important is because in reality the suppliers can be 
unavailable from time to time due to several disruptions 
such as natural disasters, machine breakdowns, labor strikes, 
terrorisms, etc. In these situations, the firm, the customer, 
need effective strategies to cope this problem in order that 
the business can run smoothly.  Most of the inventory 
models under supply disruptions are based on the 
assumption that the failure rate and the repair rate are 
constant and independent of time. Under this assumption, 
the time to 1st failure and the repair time are exponentially 
distributed random variables. This assumption is convenient 
for the model formulation and the computation, for the 
Markov property is conserved. By contrast, time dependent 
problems are often non-Markovian, which are more 
complicated than the Markovian counterparts. However, the 
assumption of time-independence is not practical for many 
situations. One of such situations is that when the 
disruptions occur due to machine breakdowns. There are 
three main reasons that make the exponential model 
impractical in generalization disruptions due to machine 
breakdowns. First, normally, machines deteriorate with 
time. Older machines incline to fail more often than newer 
machines. Second, the repair time are practically not 
exponentially distributed. Third, the exponential model is 
based on the assumption that the repair is perfect, that is, 
each repair brings a machine back to the brand-new 
condition. Generally, this assumption is seldom true, for the 
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general repair of machine is often imperfect. Namely, after 
each repair, a machine becomes younger, in terms of failure 
rate, but not brand-new. In our work, by applying the theory 
of non-homogeneous Markov chain, we propose a model for 
the inventory problem under time-dependent disruptions due 
to machine breakdowns that the Markov property is 
conserved. Moreover, we also consider the effect of 
imperfect repairs, which is overlooked by other 
publications, in our model as well. The results show that the 
assumptions about the failure rate functions, the repair rate 
functions, and the degree of imperfect repairs have 
significant impact on the optimal solutions of the model.  

II. MODEL FORMULATION 

In our work, we use the following notation: 

Q   = order quantity 

r    = reorder point 
t    = time to 1st occurrence of failure or repair 

 t  = failure rate function 

 t  = repair rate function 

c    = corrective maintenance coefficient 

D   = demand rate 
K   = fixed ordering cost per order 
h   = holding cost per unit per time 
   = backorder cost per unit backordered 

̂   = backorder cost per unit per time 
y   = repair time 

 yg  = probability density function of y  

 
A. Failure and Repair Rate Function 

 In our work, we define failures as non-homogeneous 
Poisson process (NHPP), which is a Markov process, with 
Weibull failure rate as the following. 

  0,0,0;
1











t
t

t 





       (1) 

  is called the shape parameter, and   is called the scale 

parameter respectively. Note that when 1 , the failure 

rate is constant as in the exponential case. When  >1, the 

model becomes an increasing failure rate case, generalizes 
the deterioration process of the machine. The repair rate 
function is defined as: 
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Similar to the failure rate function,   is the shape 

parameter, and   is the scale parameter respectively. When 

10  , the repair rate is an decreasing function, when 

1 , the repair rate is constant as in the exponential case, 

and when 1 , the repair rate function is decreasing. 

Note that even though the exponential repair is applied 
widely in many publications; however, in reality, the repair 
time is seldom exponentially distributed. In the next section, 
we develop the two-state non-homogeneous Markov chain 
of the problem. 

B. Two-State Non-Homogeneous Markov Chain of 
ON/OFF Period 
 The system is in ON period when the machine is 
operating and OFF when the machine is down. If a perfect 
repair at each failure is assumed, when the system is ON, it 

will move to OFF period with rate  t , and when the 

system is OFF, it will move to ON with rate  t . If at 

each failure a repair is perfect (as good as new) with 

probability p , and with probability p1  a repair is 

minimal (as bad as old), then the resulting failure rate due 
imperfect repairs is: 

   
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tλ
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Proof. 

Assume that a machine has been used for 1t , then it fails. If 

a repair is perfect, then the failure rate function after a 

perfect repair will be  t . If a repair is minimal, then the 

failure rate after a minimal repair will be  ttt  . Thus, 

the failure rate after an imperfect repair is defined as 

       11 ttptptI   . So,  tI  is on the 

line joining  t  and  1tt  . We can rewrite  tI  as 
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Proved. Note that if we relax the condition 10  c  by 

allowing 1c , then the repair will be perfect. In our work, 
we define the failure and the repair process as a two-state 
non-homogeneous Markov chain as in Fig. 1 

 
Fig. 1 Two-state non-homogeneous Markov chain for 
imperfect repair 

 

Let  tvp ,01  be the transition probability that the system is 

in state 0 (ON) at time v  and will move to state 1 (OFF) at 
time t . By applying Kolmogorov’s forward equation, 

 tvp ,01  can be found by solving the following differential 

equation. 
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Because t  = time to 1st failure, then we let 0v . Thus, by 
standard calculus methods, we have 
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Thus, we can find the probability that the system is in state 0 

at time 0 and in state 1 at time t  by calculating  tp ,001 . 

Note that when 1 , the failure rate is constant, that is 

   t . In this case the failure distribution reduces itself 

into the exponential case with 


 1
 . Likewise, when 

1 , the repair rate is constant, that is  


 1
t . 

Therefore, the transition probability,  tp ,001 , reduces 

itself into 

     000101 


  ,t,μ; λe
μλ

λ
tp tμλ  as in 

the case of the standard two-state homogeneous Markov 
chain. However, we can see that, in the non-homogeneous 

case, the calculation of  tp ,001  by solving Kolmogorov’s 

forward equation is burdensome. This obstacle can be 
overcome by using the approximation method  as described 
in [1]. In this method,  we define the reliability function 

    0Pr  ; ttTtR  which represents the probability 

that a machine will not fail before time t . Let  tf  be a 

probability density function of t , the we can define the 

failure rate function  t , for 1c , as the following: 
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Let  tF  be a cumulative distribution function of t , the 
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cumulative failure intensity function, then we have 

     0exp  ; ttΛtR . By definition,  tR  is the 

probability that starting from time 0 a machine will not fail 

at least t . Thus,  tR  is the probability that starting from 

ON state at time 0, the system is still ON at time t. Let 

 tp ,000  be the probability that at time 0 the system is ON 

and is still ON at time t . Then, 

      ttRtp  exp,000 . From Markov chain, we 

know that     1,0,0 0100  tptp . Thus, we can find the 

transition probability  tp ,001  from the following 

equation: 
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10  for imperfect repair. 

 C. The Objective Function 
 In this section, we continue to the formulating of the 
inventory model. The objective of this work is to find the 

order quantity Q  and the reorder point r  that minimize the 

objective function in, the average annual cost, which can be 
found by applying the renewal reward theorem as in the 
following equation. 

 
 length CycleE

cycleper  costs TotalE
 Cost  Annual Average  (7) 

 D. Cycle Length 
 Assuming that lead time is zero, the cycle starts when the 

system is ON and the inventory level is rQ  . When the 

inventory level hits the reorder point, r , at time DQ / , 

with probability  DQp /,001  the system will be OFF for 

the average duration of MTTR  where MTTR = mean 
time to repair which can be found from 
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1
1MTTR  where  x  is Gamma function 

of x , and   is the scale parameter of Weibull repair time. 

Therefore, we can calculate the expected cycle length, 

 CLE , by the following equation. 

   MTTRDQp
D

Q
/,0  CLE 01         (8) 

This means the cycle lasts at least DQ /  and with 

probability  DQp /,001  it will last for another MTTR . 

Fig. 2 illustrates the cycle length of the model. 

 
Fig. 2 Cycle length 

 
 D. Total Costs Per Cycle 
 The total costs in a cycle can be divided into two period 
(i) costs occurring in ON period (ii) costs occurring in OFF 
period. 
(i) Expected Costs in ON Period 
There are two costs in ON period, first fixed ordering cost 
and second holding cost. The expected costs in ON period 
can be calculated from the following equation. 

 
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  (9) 

(ii) Expected Costs in OFF period 
There are two costs in OFF period, first holding cost and 
second backorder cost. The amount of costs in this period 
depends on two factors. The first factor is the reorder point. 
The second factor is the time used for repairing the machine. 
Let r  be the reorder point, and y be the Weibull repair 

time with pdf. 
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Let  yrC ,10  be the random variable representing the 

costs occurring in OFF period which is the function of r  
and y  and can be defined as: 
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Hence, we can calculate the expected costs in OFF period 
from the following equation. 
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This cost occurs with the probability  DQp /,001 , then 

by combining all costs, we obtain the expected total costs 

per cycle,  TCE , as follows. 

      yrCEDQp
D

hQr

D

hQ
KTE ,/,0

2
C 1001

2



                      (13) 
 E. Optimization Problem 
 By applying the renewal reward theorem, we obtain the 

objective function, the average annual costs,  rQAC , , as 

follows. 

   
  00  ,r; Q
CLE

TCE
Q,rAC         (14) 

Hence, the optimization problem in our research is: 

 
00  ,rQ

Q,rMin  AC
                (15) 

III. NUMERICAL EXAMPLE 

In this section, we provide the results of the problem and 
the sensitivity analyses. The software that we use is 
Mathematica 9. The test parameters are borrowed from [11] 
except we use D = 10 in our test. Other parameters are K = 
$10/order, h = $5/unit/year,  = $250/unit, ̂ = 

$25/unit/year, EOQ = 2KD/h  = 6.32456 units, REOQ = 

0. The test results are shown in the following tables. 
 

Table. 1 (a) Test results 1 
θ = 4, c = 1 
ψ = 1, φ = 0.4 

β = 1 β = 1.5 β = 2 

AC(Q*,r*) 95.3531 80.2664 59.303 
r* 9.61317 5.8488 0.546079 
Q* 6.57972 4.8404 3.54486 

AC(EOQ, 0) 249.072 126.933 71.1124 
AC(QEXP, rEXP) 95.3531 86.7072 86.6718 

 
Table. 1 (b) Test results 1 (cont.) 

θ = 4, c = 1 
φ = 0.4 

β = 2.5 β = 3 β = 4 

AC(Q*,r*) 42.993 36.4991 32.5219 
r* 0 0 0 
Q* 4.2252 4.94934 5.85912 

AC(EOQ, 0) 47.5907 38.0151 32.6373 
AC(QEXP, rEXP) 80.9344 80.2122 79.7958 
 
The results show that the shape parameter β has a significant 
impact on the optimal solution. Most publications in the 
literature assume that the failure rate is constant, that is β = 
1 in our model; however, we can see that this assumption 
leads to great error. For example, it the failure rate is not 
constant but increasing with β = 2, the assumption of 
constant failure rate incurs 46% cost error. Another 
observation is that when β increases, the reliability of the 
system improves. We can see that the optimal safety stock 
r* and the optimal annual costs reduce significantly. Also, 
when β is large the problem approaches EOQ case. The 
reason for this result is that for larger β, the failure rate 

function increases from zero slower than that of the smaller 
β as shown in Fig. 3. 

 
Fig. 3 Weibull Failure Rate 

(http://www.mathpages.com/home/kmath122/kmath122.htm) 
 

Table. 2 Test results 2 
β =1.5 
c = 1 

 ψ = 1 φ 
= 0.4 

θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 

AC 
(Q*,r*) 

96.3861 87.46 80.2664 74.3496 69.3547 

r* 9.74226 7.5 5.8488 4.5817 3.47682 
Q* 5.20167 4.94994 4.8404 4.78193 4.74654 

 
Table. 2 shows the effect of θ on the optimal solutions. We 
can see that as θ increases AC(Q*,r*) and r* decrease 
significantly while when θ decreases the effect is opposite. 
The reason for this phenomenon is that increasing of θ 
reduces mean time between failure (MTBF). Because the 
failure process in our work is based on time to first failure, 
so in this case MTBF = MTTF = Г(1+1/β)θ. Therefore, 
when θ increases, MTTF also increases leading to the 
increasing of the reliability of the system. 
 

Table. 3 Test result 3 
β = 1, θ = 4 
c = 1, φ = 
0.4 

AC(Q*,r*) r* Q* r*/Q* 

ψ = 0.5 171.598 5.53715 2.03447 2.7217 
ψ = 0.6 127.708 6.16996 2.92583 2.1088 
ψ = 0.7 106.442 6.26103 3.63021 1.7247 
ψ = 0.8 94.0086 6.16223 4.15774 1.4821 
ψ = 0.9 85.9175 6.00834 4.54824 1.3210 
ψ = 1.0 80.2664 5.8488 4.8404 1.2083 
  
 In general, the repair rate of a repairable unit is a 
decreasing function of repair time, y [3]. Based on Weibull 
repair in our work, we investigate the effect of ψ, the repair 
rate, on the optimal solution. When 0 < ψ <1, the repair rate 
is decreasing while when ψ = 1 the failure rate is constant as 
in the exponential case. The results in Table. 3 show that 
AC(Q*,r*) decreases as ψ increases. Because normally the 
repair rate is not often constant as in the exponential case, 
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failure to consider time-dependent repair rate leads to 
suboptimal solution. For example, if we assume ψ = 1 when 
it is in fact 0.5, then AC(QEXP, rEXP) = 194.35 which is 
larger than the optimal solution of 171.598. Another 
observation is that when ψ increases, the r*/Q* ratio 
reduces. This implies that when ψ increases the firm tends 
to use running stocks instead of safety stocks to fulfill 
customer  demands. 
 

Table. 4 Test results 4 
β = 1.5,  
θ = 4,  
ψ = 0.5 
c = 1 

AC(Q*,r*) r* Q* r*/Q* 

φ = 0.1 68.3704 2.09849 4.43573 0.4731 
φ = 0.2 103.709 3.5781 3.24959 1.1011 
φ = 0.3 137.709 4.67139 2.51461 1.8577 
φ = 0.4 171.598 5.53715 2.03447 2.7217 
φ = 0.5 204.817 6.26318 1.70161 3.6807 
φ = 0.6 237.843 6.8987 1.45894 4.7286 
φ = 0.7 270.809 7.4731 1.27477 5.8623 
φ = 0.8 303.806 8.00509 1.13046 7.0813 
φ = 0.9 336.899 8.50723 1.01444 8.3861 
φ = 1.0 370.133 8.98834 0.919199 9.7784 
 
The results in Table. 4 show the effect of φ, the scale 
parameter of the repair time, on the optimal solutions. The 
conclusion we deduce from the test is that when φ increases, 
the optimal average annual costs, AC(Q*,r*), and the 
optimal safety stock, r*, also increase because mean time to 
repair (MTTR) increase. Also, the r*/Q* increases as φ 
increase. This implies that if the mean time to repair is long, 
the firm tends to fulfill the demand by using safety stock. 
 

Table. 5 Test results 5 
β = 1.5 
 θ = 4 
 ψ = 0.5 
φ = 0.4 

AC(Q*,r*) r* Q* 

c = 1.0 171.598 5.53715 2.03447 
c = 0.9 180.732 6.45996 1.97788 
c = 0.8 191.273 7.57848 1.91961 
c = 0.7 203.617 8.95754 1.85958 
c = 0.6 218.347 10.6958 1.79776 
c = 0.5 236.356 12.9524 1.7344 
 
From the results in Table. 5, we can see that as c, the 
corrective maintenance coefficient, decreases, the average 
annual costs increase. By contrast, the average annual costs 
decrease when c increases. Note that the repair at each 
failure is perfect when c = 1. The conclusion for these 
results is that not only the failure and repair rate that have a 
significant impact on the optimal solutions but also the 
corrective maintenance action performed at each failure as 
well. If the supplier inclines to perform perfect maintenance 
more often than minimal repair, c will be closer to 1. On the 
other hand, if the supplier inclines to perform minimal 
repair more often and perform perfect repair less often, the 
coefficient c will more divert from 1. Failure to consider the 

degree of corrective maintenance action at each failure leads 
to significant loss. For example, if the firm, the customer,  
assumes that a perfect repair is performed by the supplier at 
each failure when it is in fact that the supplier performs 
imperfect repair with c = 0.5 at each failure, AC(Q, r) will 
be 252.99 instead of 171.598 as the firm first expects. 
Another observation is that when c decreases, r* increases 
significantly. This implies that the firm tends to fulfill the 
demand by using safety stocks when repairs divert from 
perfect repairs. One the other hand, if repairs incline to be 
perfect, that is c increases, the firm tends to reduce the 
safety stock; thus, r* decreases. The effect of c on the 
optimal solution can be illustrated in Fig. 4 and Fig. 5. 
 

 
Fig. 4 c versus AC(Q*,r*) 

 

 
Fig. 5 c versus r* and Q* 

 

IV. CONCLUSION 

In this research, we develop an inventory model under 
disruptions due to machine breakdown. Instead of assuming 
that failure rate and repair rate are constant, we formulate a 
time-dependent model based on two-state non-
homogeneous Markov process. We also study the effect of 
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imperfect corrective maintenance on the optimal solutions. 
Numerical tests show that the assumptions about failure and 
repair rates as well as the degree of imperfect corrective 
maintenance at each failure have significant impacts on the 
optimal solutions. 
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