
 

  
Abstract—The objective of this research is to construct a 

Thailand’s Para rubber production forecasting model. Three 

forecasting techniques used in this research are auto regressive 

integrated moving average (ARIMA), artificial neural network 

(ANN) and support vector machine (SVM). The mean absolute 

percentage error is used to identify the most appropriate model. 

The results of the research show that the artificial neural 

network model obtains the lowest mean absolute percentage 

error of 0.0037%, while the auto regressive integrated moving 

average and support vector machine have mean absolute 

percentage error of 0.0419% and 0.0434%, respectively.  

 
Index Terms—forecasting, Para rubber, auto regressive 

integrated moving average, artificial neural network, support 

vector machine 
 

I. INTRODUCTION 

orecasting is useful for providing an aid to decision 

making and in planning the future. For Thailand, which 

is an agricultural country, forecasting the agricultural 

production is extremely important since it benefits all parties 

involved in this business. The Office of Agricultural 

Economics of Thailand [1] releases yearly reports for all 

common agricultural products in each province of Thailand 

such as Para rubber, rice, sugar cane, and pineapples. In 

2012, total export value of Thailand was 7,091,162 million 

baht, increased from last year 383,311 million baht or 

increased by 5.71 percent. For agricultural products, the 

export value decreased from 1,447,716 million baht in 2011 

to 1,349,335 million baht in 2012, or decreased by 6.80 

percent. 

Major Thailand’s agricultural product exports for year 

2012 were natural rubber, rice and products, and sugar and 

products as shown in Table 1. It can be seen that rubber 

(Fig. 1.) is the number one in the agricultural export value of 

Thailand. Table 2 shows Para rubber data: area, production, 

yield, farm price and farm value during 2003-2013. 

Important export markets of Para rubber are China, Japan, 

United States of America, Malaysia, Indonesia, South 

Korea, United Kingdom, Vietnam, Cambodia and Australia, 

respectively. 
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This research focuses on the development of Para rubber 

production forecasting model by comparing between auto 

regressive integrated moving average (ARIMA), artificial 

neural network (ANN) and support vector machine (SVM). 

The structure of this paper is organized as follows. 

Section II reviews the relevant literature. The data and 

accuracy measurement are presented in Section III. In 

Section IV, the models are developed and the results of three 

methods are compared. Finally, the conclusions are drawn in 

Section V. 

 
TABLE I 

EXPORT VALUE OF MAJOR AGRICULTURAL PRODUCTS, 2010-2012 

Value: Million Baht 

Source: Centre for Agricultural Information, Office of Agricultural 

Economics, Thailand, http://www.oae.go.th 

 
TABLE II 

PARA RUBBER: AREA, PRODUCTION, YIELD, FARM PRICE AND FARM VALUE, 

2003-2013 

Year Planted 

area 
(1,000 rais) 

Harvested 

area 
(1,000 rais) 

Production 

(1,000 tons) 

Yield 

per 

rai 
(Kgs.) 

Farm 

price 
(Baht per 

kg.) 

Farm 

value 
(Million 

baht) 

2003 12,619  10,004  2,860  286  37.76  107,994 

2004 12,954  10,350  3,007  291  44.13  132,699 

2005 13,609  10,569  2,980  282  53.57  159,639 

2006 14,355  10,893  3,071  282  66.24  203,423 

2007 15,362  11,043  3,022  274  68.90  208,216 

2008 16,717  11,372  3,167  278  73.66  233,281 

2009 17,254  11,600  3,090  266  58.47  180,689 

2010 18,095  12,058  3,052  253  103.00  314,333 

2011 18,761  12,766  3,349  262  124.00  415,263 

2012 

2013(p) 

19,273 

20,334  

13,807 

15,130  

3,625 

3,863  

263 

255  

87.15 

75.09  

315,944 

290,072 

Source: Food and Agriculture Organization of the United Nations 

Updated by Office of Agricultural Economics, Thailand 

Remark:  Data as of January, 2013 

(p): Preliminary Data 

Thailand’s Para Rubber Production Forecasting 

Comparison 

Onuma Kosanan and Nantachai Kantanantha  

F

Item 2010 2011 2012 

Total export value 6,176,170  6,707,851  7,091,162 

Value of agricultural products 

Top ten of major agricultural 

products 

1,135,750  1,447,716  1,349,335 

Natural rubber 296,380  440,890  336,304 

Rice and products 180,727  210,527  158,434 

Sugar and products 76,327  116,949  132,137 

Fishes and products 99,039  112,150  131,562 

Shrimps and products 101,141  110,643  96,630 

Fruits and products 63,072  81,513  84,374 

Cassava and products from 

cassava 

66,889  77,689  84,322 

Product from chicken meat 52,223  60,293  67,849 

Vegetables and products 19,238  21,425  21,035 

Residues and waste, prepared 

animal fodder 

18,023  19,582  16,772 

Other agricultural products 162,691  196,055  219,916 
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Fig. 1. Para rubber production in Thailand 

II. LITERATURE REVIEW 

A. Auto Regressive Integrated Moving Average  

Auto regressive integrated moving average (ARIMA) 

model established by Box and Jenkins [2] has been widely 

used for the purpose of time series forecasting. An ARIMA 

model is linearly combined by several previous points 

random errors, and the forecast is a function of the past 

observations and the errors. The conventional ARMA ( ),p q  

formulation described as 

 

1 1

p q

t i t i j t j t

i j

y yδ φ θ ε ε− −
= =

= + + +∑ ∑                  (1) 

 

where δ  is a constant term, 
iφ  is the i th autoregressive 

coefficient, 
jθ  is the j th moving average coefficient, 

tε  is 

the error term at time t , 
t jε −  is the random error of a prior 

point at time t j− , p  and q  are the orders of 

autoregressive and moving average terms, respectively. If 

the time series data is not stationary, it should be differenced 

to become stationary. This results in an “integrated” ARMA 

(i.e. ARIMA) model, denoted by ARIMA ( ), ,p d q , where 

d  is the order of differencing. Building an ARIMA model 

includes three major steps: model identification, parameter 

estimation, and diagnostic checking. In model identification 

process, one or more model candidates could be found 

suitable for the time series. In such case, autocorrelation 

function (ACF) and partial autocorrelation function (PACF) 

can be applied to make the first guess about the orders of the 

ARIMA model. However, if the models show both 

autoregressive and moving average nature, such method 

cannot identify the orders since both ACF and PACF will 

show exponential decay and damped sinusoid. In this case, 

other criteria should be adopted to determine the order of the 

ARIMA model. The typical criteria are Akaike’s information 

criterion (AIC) and Bayesian information criterion (BIC). 

Once the model is identified, the parameters need to be 

estimated, and in principle the selected parameters should 

generate the lowest residual. This can be accomplished by 

using the Yule–Walker Estimation or Maximum Likelihood 

Estimation. A common method is to test the randomness of 

the residuals using Ljung–Box Statistics, and non-significant 

P-values indicate that the residuals are uncorrelated and the 

proposed model is suitable for fitting the historical data. 

B. Artificial Neural Network 

Artificial neural network (ANN) is a computer 

programming that mimic human nervous system. It can be 

used to model relationship between given inputs and their 

related outputs from examples; this learning process is 

similar to human learning system. ANN is made up of 

simple processing elements called neurons connected 

together. The neurons can be located in the input layer, 

hidden layer and output layer as shown in Fig. 2. ANN is 

used to model or ‘learn’ relationship by tuning a set of 

parameters called ‘weight’ (the strength of the connection 

between neurons). This weight alteration process is called 

training. In the training process, a set of examples of input-

output pairs is passed through the model and the weights 

adjust in order to minimize the error between the answer 

from the network and the desired output. The weight 

adjustment procedure is controlled by the learning 

algorithm. Once the error is minimal, the network is 

successfully trained. The trained network is able to predict 

output for unseen input. 

 

 
Fig. 2. The multi-layer feed-forward neural network [3] 

 

The back propagation (BP) algorithm is the most 

extensively adopted learning [4]. BP is the algorithm used in 

this study. The algorithm can be summarized as follows [5]. 

  

1. Forward pass  

Feed input through the network to attain output by 

calculate weighted sum ( )jS  for every neuron.  

 

j i ij

i

S a w= ∑                        (2) 

 

 where 
ia  is the activation level of unit i , and 

ijw  is the 

weight from unit i  to unit j  (unit i  is in one layer before 

unit j ).  

Transfer function, applied to the output in this research, is 

sigmoid transfer function. The equation for the sigmoid 

function is as follows. 

 

( ) 1

1 x
f x

e−
=

+
  (3) 
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The result becomes the output of unit j . The same 

procedure repeats for all neurons.  

 

2. Backward pass  

Calculate error δ and weight changes for all neurons as 

follows. 

 

For the output layer, ( ) ( )'

j j j jt a f Sδ = −         (4) 

 

For the hidden layer, ( )'

j k kj j

k

w f Sδ δ
 

=  
 
∑        (5) 

 

where 
jt  is the target value for unit j , 

ja  is the output 

value for unit j , ( )'f x  is the derivative of the sigmoid 

function f , 
jS  is weighted sum of inputs to j , weight 

adjustment is calculated as 
ji j iw aηδ∆ =  where η  is the 

learning rate.  

These processes of forward and backward pass repeat 

with new input vector until stopping criteria are met. 

The multi-layer perceptron (MLP) learning with back 

propagation is the most widely used type of ANN reported 

in literature. According to [6], the advantage of using ANN 

in forecasting is that ANN is suitable to model system where 

rules for governing the system behavior are not very well 

understood. 

There have been reported comparing ANN with 

traditional forecasting techniques. For example, [7] 

compared the accuracy of ARIMA, regression and ANN to 

forecast aggregate retail sales. The results suggested that the 

nonlinear method is the preferred approach to model retail 

sales. The overall best model for retail sales forecasting is 

the ANN model with deseasonalized time series data. The 

results agreed well with [8] which employed exponential 

smoothing, ARIMA and ANN to forecast Thailand’s rice 

export. The results suggested that Holt-Winters and Box-

Jenkins models provided satisfactory result with seen data, 

but did not perform well with unseen data, while ANN 

produced better predictive accuracy. Similar result was also 

reported by [9] in which ARIMA, ANN, and combined 

methods were compared in forecasting Chinese food grain 

price. The results suggested that ANN outperformed other 

techniques. 

There have also been reported combining ANN with 

traditional forecasting techniques. For example, [10] 

integrated ARIMA with ANN in order to take advantage 

from both linear and nonlinear modeling and found that this 

integrated technique provided better forecasting accuracy. 

Reference [11] obtained the similar result. In their study, the 

hybrid forecasting model between ANN and ARIMA was 

developed to forecast the number of monthly tourist arrivals 

to Turkey. The results indicated that the hybrid model had a 

better performance.  

C. Support Vector Machine  

Support vector machine (SVM) is a type of function 

approximator based on the structured risk minimization 

principle. Recently, SVM has become more interested by 

researchers and has been increasingly applied in forecasting. 

For example, [12] used SVM to forecast production values 

of machinery industry. They also used the seasonal time 

series autoregressive integrated moving average (SARIMA) 

model and general regression neural network (GRNN). The 

results showed that SVM outperformed other techniques. 

Similar result was reported by [13], where advanced 

machine learning techniques, including neural network, 

recurrent neural network, and support vector machine, were 

used to forecast demand of simulated supply chain in 

comparison with more traditional techniques including naïve 

forecasting, trend, moving average, and linear regression. 

The results suggested that recurrent neural network and 

support vector machine delivered better forecasting accuracy 

but the results were not statistically significantly better than 

that of the regression model.  

Instead of comparing SVM against traditional forecasting 

technique, some researchers took different approach by 

combining the two together. For example, [14] suggested a 

hybrid model of ARIMA and SVM. A case study is to 

forecast Hebei province daily load power data. The results 

showed that the hybrid model can effectively improve the 

forecasting accuracy. 

SVM uses linear model to implement nonlinear class 

boundaries through some nonlinear mapping the input 

vectors x into the high-dimensional feature space [15]. A 

linear model constructed in the new space can represent a 

nonlinear decision boundary in the original space. In the new 

space, an optimal separating hyperplane is constructed. 

Thus, SVM is known as the algorithm that finds a special 

kind of linear model, the maximum margin hyperplane. The 

maximum margin hyperplane gives the maximum separation 

between the decision classes. The training examples that are 

closest to the maximum margin hyperplane are called 

support vectors. All other training examples are irrelevant 

for defining the binary class boundaries.  

For the linearly separable case, a hyperplane separating 

the binary decision classes in the three-attribute case can be 

represented as the following equation: 

 

0 1 1 2 2 3 3y w w x w x w x= + + +                   (6) 

 

where y is the outcome, 
ix  are the attribute values, and 

there are four weights 
iw  to be learned by the learning 

algorithm. In (6), the weights 
iw  are parameters that 

determine the hyperplane. The maximum margin hyperplane 

can be represented as the following equation in terms of the 

support vectors: 

 

( )i iy b y x i xα= + ⋅∑                  (7) 

 

where iy  is the class value of training example ( )x i  and 

· represents the dot product. The vector x  represents a test 

example and the vectors ( )x i  are the support vectors. In 

this equation, b  and 
iα  are parameters that determine the 

hyperplane. From the implementation point of view, finding 

the support vectors and determining the parameters b  and 

iα  are equivalent to solving a linearly constrained quadratic 
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programming (QP).  

As mentioned above, SVM constructs linear model to 

implement nonlinear class boundaries through the 

transforming the inputs into the high-dimensional feature 

space. For the nonlinearly separable case, a high-

dimensional version of (7) is simply represented as follows. 

 

( )( ), .i iy b y K x i xα= + ∑            (8) 

 

The function ( )( ),K x i x  is defined as the kernel 

function. There are some different kernels for generating the 

inner products to construct machines with different types of 

nonlinear decision surfaces in the input space. Choosing 

among different kernels the model that minimizes the 

estimate, one chooses the best model. Common examples of 

the kernel function are the polynomial kernel 

( ) ( ), 1
d

K x y xy= +  and the Gaussian radial basis function 

( ) ( )( )22, exp 1K x y x yδ= − −  where d  is the degree of 

the polynomial kernel and 
2δ  is the bandwidth of the 

Gaussian radial basis function kernel. 

For the separable case, there is a lower bound 0 on the 

coefficient 
iα  in (8). For the non-separable case, SVM can 

be generalized by placing an upper bound C  on the 

coefficient 
iα  in addition to the lower bound [16]. The 

analysis procedure applied in this study is illustrated in Fig. 

3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Procedure of SVM tuning [17]. 

III. APPLICATION 

A. Data  

The data used in this study are Para rubber production in 

Thailand between 1990 and 2013 as shown in Table 3. The 

data are divided into two parts. The first 18 years are for 

model fitting and the last 6 years are for model testing. 

B. Forecasting performance evaluation 

Both mean absolute error (MAE) and mean absolute 

percentage error (MAPE) are used as the measures of 

forecasting accuracy. The formulations of these measures are 

defined as [18]: 

 

1

1
,

N
true forecast

t t

t

MAE p p
N =

= −∑  (9) 

 

1

1
100%

true forecastN
t t

true
t t

p p
MAPE

N p=

−
= ×∑  (10) 

 

where N  is the number of forecasting periods, true
p  is 

the actual observation value for a time period t  and forecast
p  

is the forecast value for the same period. The MAE reveals 

the average variation between the forecasts and true values 

while the MAPE, as unit-free measure, has good sensitivity 

for small changes in data, does not display data asymmetry 

and has very low outlier protection. 

 
TABLE III  

PARA RUBBER PRODUCTION IN THAILAND BETWEEN 1990 AND 2013 

Year 
Planted 

area (Rais) 

Harvested 

area (rais) 

Yield per 

rai (Kgs.) 

Actual Data 

Production 

(tons) 

1990 8,181,825 6,520,494 162 1,058,183 

1991 8,600,617 6,861,470 169 1,162,242 

1992 8,920,736 7,205,458 192 1,380,988 

1993 9,279,829 7,571,124 199 1,505,832 

1994 9,630,300 7,809,177 209 1,629,512 

1995 9,921,084 7,977,245 212 1,693,078 

1996 10,142,523 8,190,023 220 1,802,338 

1997 10,544,840 8,403,162 225 1,890,072 

1998 11,024,346 8,665,068 224 1,943,124 

1999 11,457,921 8,950,522 229 2,048,156 

2000 11,650,733 9,137,973 249 2,278,653 

2001 12,144,471 9,399,647 268 2,522,508 

2002 12,429,594 9,711,027 271 2,633,124 

2003 12,619,350 10,004,112 286 2,860,093 

2004 12,953,573 10,349,941 291 3,006,720 

2005 13,608,757 10,569,366 282 2,979,722 

2006 14,355,378 10,893,098 282 3,070,520 

2007 15,362,346 11,042,811 274 3,022,324 

2008 16,716,945 11,371,889 278 3,166,910 

2009 17,254,317 11,600,447 266 3,090,280 

2010 18,095,028 12,058,237 253 3,051,781 

2011 18,461,231 12,765,636 262 3,348,897 

2012 19,273,000 13,806,821 263 3,625,295 

2013(p) 20,334,000 15,130,363 255 3,862,996 

Source: Food and Agriculture Organization of the United Nations 

Updated by Office of Agricultural Economics, Thailand 

Remark:  Data as of January, 2013 

(p): Preliminary Data 

Input Data 
(Thailand’s Para Rubber Production) 

Step 1: Data preprocessing 

Training Data Testing Data 

Step 2: SVM configuring 

Step 3: SVM training Step 4: SVM forecasting 

Forecasted 
 (Thailand’s Para Rubber Production) 

  

Step 5: Result analysis 

Input Data 
(Thailand’s Para Rubber Production) 

Step 1: Data preprocessing 

Training Data Testing Data 

Step 2: SVM configuring 

Step 3: SVM training Step 4: SVM forecasting 

Forecasted 
 (Thailand’s Para Rubber Production) 

  

Step 5: Result analysis 
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IV. RESULTS AND DISCUSSION 

The comparisons of forecasting models for the Para 

rubber production are made between ARIMA(0,1,0), ANN 

and SVM models. The forecasting results of those models 

are presented in Table 4 and the forecasting performances 

are shown in Table 5. Through model comparisons, the 

ANN model performs the best. As seen from Table 5 and 

Fig. 4-9, it is clear that the ANN model performs much 

better than ARIMA(0,1,0) model and SVM model. The 

MAPE is used to identify the most appropriate model. The 

results of the research shows that the ANN model has the 

lowest MAPE of 0.0037%, while ARIMA(0,1,0) and SVM 

models have MAPE of 0.0419% and 0.0434%, respectively. 

However, the forecasts from these models are not 

statistically significant difference according to the Tukey 

simultaneous tests as shown in Table 6. 

 

 
TABLE IV  

COMPARISON OF PARA RUBBER PRODUCTION FORECASTS FROM THREE 

FORECASTING MODELS, 2008-2013 

Year 

Actual Data 

Production 

(tons): 

Production Forecasting (tons) 

ARIMA 

(0,1,0) 

ANN 

 

SVM 

 

2008 3,166,910 3,137,862 3,180,777 2,977,756 

2009 3,090,280 3,253,399 3,090,634 3,315,124 

2010 3,051,781 3,368,937 3,052,783 3,017,278 

2011 3,348,897 3,484,475 3,338,297 3,016,910 

2012 3,625,295 3,600,013 3,659,116 3,649,641 

2013 3,862,996 3,715,550 3,882,996 3,905,321 

 

 
TABLE V 

FORECASTING PERFORMANCE EVALUATION 

Forecasting Model 
Forecasting Performance Evaluation 

MAE (Tons) MAPE (%) 

ARIMA(0,1,0) 136,271.65 0.0419 

ANN 13,274.06 0.0037 

SVM 141,193.17 0.0434 

 

 

 

 
Fig. 4. Comparison of actual and forecast values from ARIMA(0,1,0) 

model for testing data, 2008-2013 

 

 
Fig. 5. Comparison of actual and forecast values from ANN model for 

testing data, 2008-2013 

 

 

 
Fig. 6. Comparison of actual and forecast values from SVM model for 

testing data, 2008-2013 

 

 

 
Fig. 7. Comparison of actual and forecast values from all models for testing 

data, 2008-2013 

 

 

 

 
Fig. 8. Comparison of forecasting performance evaluation; MAE 
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Fig. 9. Comparison of forecasting performance evaluation; MAPE 

 
TABLE VI 

TUKEY SIMULTANEOUS TESTS 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of Method 

 

Individual confidence level = 98.89% 

 

Method = Actual subtracted from: 

 
Method               Lower     Center   Upper  --------+---------+---------+---------+- 

ARIMA (0,1,0)  -451843   69013  589869        (--------------*--------------) 

ANN                  -511115     9741  530597      (--------------*--------------) 

SVM                  -564877  -44022  476834    (--------------*--------------) 

                                                                  --------+---------+---------+---------+- 

                                                               -350000             0    350000    700000 

 

Method = ARIMA(0,1,0) subtracted from: 

 
Method               Lower    Center    Upper  --------+---------+---------+---------+- 

ANN                -580128   -59272   461584   (--------------*--------------) 

SVM                -633890  -113034   407822  (--------------*--------------) 

                                                                  --------+---------+---------+---------+- 

                                                                   -350000         0    350000    700000 

 

Method = MLP subtracted from: 

 
Method               Lower   Center    Upper  --------+---------+---------+---------+- 

SVM                -574618  -53762   467094    (-------------*--------------) 

                                                                  --------+---------+---------+---------+- 

                                                                   -350000         0    350000    700000 

 

V. CONCLUSIONS 

This research examines the application of two 

computational intelligence techniques namely artificial 

neural network (ANN) and support vector machine (SVM) 

in Thailand’s Para rubber production forecasting in 

comparison with auto regressive integrated moving average 

(ARIMA). 

The ANN model provides better accuracy than ARIMA 

and SVM models because it is a non-linear mapping 

between input and output. However, when the results of 

forecasting are tested by Tukey Simultaneous tests, the 

results show that the forecasts of the three models are not 

statistically significant difference. Furthermore, ANN has no 

statistical assumption about the data distribution, hence 

made it more versatile. Nevertheless, ANN suffers from 

overtraining problem and also another major drawback of 

ANN is its black-box like ability. SVM has recently been 

compared with ANN as it solve overtraining problem of 

ANN. 
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