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Abstract—In this paper, we shall introduce an itera-
tive algorithm by multi-step implicit hybrid steepest-
descent method for finding a common element of the
set of solutions of a finite family of generalized mixed
equilibrium problems, the set of solutions of a finite
family of variational inequalities for inverse strongly
monotone mappings and the set of fixed points of a
countable family of nonexpansive mappings in a real
Hilbert space. We also prove strong and weak conver-
gence theorems for the proposed iterative algorithm
under appropriate conditions. Our results improve
and extend the earlier and recent results in the liter-
ature.
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1 Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩
and norm ∥ · ∥, C be a nonempty closed convex subset
of H and PC be the metric projection of H onto C. Let
S : C → C be a self-mapping on C. We denote by Fix(S)
the set of fixed points of S and by R the set of all real
numbers. A mapping V is called strongly positive on H
if there exists a constant γ̄ > 0 such that

⟨V x, x⟩ ≥ γ̄∥x∥2, ∀x ∈ H.

A mapping A : C → H is called L-Lipschitz continuous
if there exists a constant L ≥ 0 such that

∥Ax−Ay∥ ≤ L∥x− y∥, ∀x, y ∈ C.

In particular, if L = 1 then A is called a nonexpansive
mapping; if L ∈ [0, 1) then A is called a contraction.

Let A : C → H be a nonlinear mapping on C. We con-
sider the following variational inequality problem (VIP):
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find a point x ∈ C such that

⟨Ax, y − x⟩ ≥ 0, ∀y ∈ C. (1.1)

The solution set of VIP (1.1) is denoted by VI(C,A).

The VIP (1.1) was first discussed by Lions [8] and now
is well known. The VIP (1.1) has many applications in
computational mathematics, mathematical physics, op-
erations research, mathematical economics, optimization
theory, and other fields; see, e.g., [2,3,5,24]. Not only
the existence and uniqueness of solutions are important
topics in the study of VIP (1.1), but also how to actu-
ally find a solution of VIP (1.1) is important. There are
a lot of different approaches towards solving VIP (1.1)
in finite-dimensional and infinite-dimensional spaces, and
the research is intensively continued.

In 1976, Korpelevich [1] proposed an iterative algorithm
for solving the VIP (1.1) in Euclidean space Rn:{

yn = PC(xn − τAxn),
xn+1 = PC(xn − τAyn), ∀n ≥ 0,

with τ > 0 a given number, which is known as the ex-
tragradient method (see also [13]). The literature on
the VIP is vast and Korpelevich’s extragradient method
has received great attention given by many authors, who
improved it in various ways; see e.g., [4,6-7,10-12,17-
19,22,27-28,29-33] and references therein, to name but
a few.

Let φ : C → R be a real-valued function, A : H → H be
a nonlinear mapping and Θ : C×C → R be a bifunction.
In 2008, Peng and Yao [17] introduced the following gen-
eralized mixed equilibrium problem (GMEP) of finding
x ∈ C such that

Θ(x, y)+φ(y)−φ(x)+ ⟨Ax, y−x⟩ ≥ 0, ∀y ∈ C. (1.2)

We denote the set of solutions of GMEP (1.2) by
GMEP(Θ , φ,A). The GMEP (1.2) is very general in the
sense that it includes, as special cases, optimization prob-
lems, variational inequalities, minimax problems, Nash
equilibrium problems in noncooperative games and oth-
ers. The GMEP is further considered and studied; see
e.g., [9,14,16,19-20,33].

We present some special cases of GMEP (1.2) as follows.
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If φ = 0, then GMEP (1.2) reduces to the generalized
equilibrium problem (GEP) which is to find x ∈ C such
that

Θ(x, y) + ⟨Ax, y − x⟩ ≥ 0, ∀y ∈ C.

It is introduced and studied by Takahashi and Taka-
hashi [21]. The set of solutions of GEP is denoted by
GEP(Θ , A).

If A = 0, then GMEP (1.2) reduces to the mixed equilib-
rium problem (MEP) which is to find x ∈ C such that

Θ(x, y) + φ(y)− φ(x) ≥ 0, ∀y ∈ C.

It is considered and studied in [15]. The set of solutions
of MEP is denoted by MEP(Θ , φ).

If φ = 0, A = 0, then GMEP (1.2) reduces to the equi-
librium problem (EP) which is to find x ∈ C such that

Θ(x, y) ≥ 0, ∀y ∈ C.

It is considered and studied in [25]. The set of solutions
of EP is denoted by EP(Θ). It is worth to mention that
the EP is an unified model of several problems, namely,
variational inequality problems, optimization problems,
saddle point problems, complementarity problems, fixed
point problems, Nash equilibrium problems, etc.

Throughout this paper, it is assumed as in [17] that Θ :
C×C → R is a bifunction satisfying conditions (A1)-(A4)
and φ : C → R is a lower semicontinuous and convex
function with restriction (B1) or (B2), where

(A1) Θ(x, x) = 0 for all x ∈ C;

(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for any
x, y ∈ C;

(A3) Θ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0+

Θ(tz + (1− t)x, y) ≤ Θ(x, y);

(A4) Θ(x, ·) is convex and lower semicontinuous for each
x ∈ C;

(B1) for each x ∈ H and r > 0, there exists a bounded
subset Dx ⊂ C and yx ∈ C such that for any z ∈ C \Dx,

Θ(z, yx) + φ(yx)− φ(z) +
1

r
⟨yx − z, z − x⟩ < 0;

(B2) C is a bounded set.

Next we list some elementary conclusions for the MEP.

Proposition 1.1 (see [15]). Assume that Θ : C×C → R
satisfies (A1)-(A4) and let φ : C → R be a proper lower
semicontinuous and convex function. Assume that either

(B1) or (B2) holds. For r > 0 and x ∈ H, define a

mapping T
(Θ,φ)
r : H → C as follows:

T (Θ,φ)
r (x) = {z ∈ C : Θ(z, y) + φ(y)− φ(z) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C}

for all x ∈ H. Then the following hold:

(i) for each x ∈ H, T
(Θ,φ)
r (x) ̸= ∅;

(ii T
(Θ,φ)
r is single-valued;

(iii) T
(Θ,φ)
r is firmly nonexpansive, that is, for any x, y ∈

H,

∥T (Θ,φ)
r x− T (Θ,φ)

r y∥2 ≤ ⟨T (Θ,φ)
r x− T (Θ,φ)

r y, x− y⟩;

(iv) Fix(T
(Θ,φ)
r ) = MEP(Θ , φ);

(v) MEP(Θ , φ) is closed and convex.

Combining the hybrid steepest-descent method in [26]
and hybrid viscosity approximation method in [23],
Ceng et al. [20] proposed and analyzed an iterative
method for finding a common element of ∩N

i=1Fix(Si) ∩
GMEP(Θ , φ,A), the set of solutions of GMEP (1.2) and
the set of fixed points of a finite family of nonexpansive
mappings {Si}Ni=1.

In this paper, we shall introduce an iterative algorithm
by multi-step implicit hybrid steepest-descent method for
finding a common element of the set of solutions of a finite
family of generalized mixed equilibrium problems, the set
of solutions of a finite family of variational inequalities for
inverse strongly monotone mappings and the set of fixed
points of a countable family of nonexpansive mappings in
a real Hilbert space. We also prove strong and weak con-
vergence theorems for the proposed iterative algorithm
under appropriate conditions. Our results improve and
extend the corresponding results announced in Ceng et
al. [20].

2 Main Results

For the remainder of this paper, we let C be a nonempty
closed convex subset of a real Hilbert space H. Recall
that a mapping A : C → H is called

(i) monotone if

⟨Ax−Ay, x− y⟩ ≥ 0, ∀x, y ∈ C;

(ii) η-strongly monotone if there exists a constant η > 0
such that

⟨Ax−Ay, x− y⟩ ≥ η∥x− y∥2, ∀x, y ∈ C;
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(iii) α-inverse-strongly monotone if there exists a con-
stant α > 0 such that

⟨Ax−Ay, x− y⟩ ≥ α∥Ax−Ay∥2, ∀x, y ∈ C.

Let {Tn}∞n=1 be an infinite family of nonexpansive self-
mappings on H and {λn}∞n=1 be a sequence of nonneg-
ative numbers in [0, 1]. For any n ≥ 1, define a self-
mapping Wn on H as follows:

Un,n+1 = I,
Un,n = λnTnUn,n+1 + (1− λn)I,
Un,n−1 = λn−1Tn−1Un,n + (1− λn−1)I,
· · ·
Un,k = λkTkUn,k+1 + (1− λk)I,
Un,k−1 = λk−1Tk−1Un,k + (1− λk−1)I,
· · ·
Un,2 = λ2T2Un,3 + (1− λ2)I,
Wn = Un,1 = λ1T1Un,2 + (1− λ1)I.

Such a mapping Wn is called the W -mapping generated
by Tn, Tn−1, ..., T1 and λn, λn−1, ..., λ1.

Let M, N be two positive integers. We also adopt the
following notations:

• For k ∈ {1, 2, ...,M}, Θk is a bifunction from C ×C
to R satisfying (A1)-(A4).

• For k ∈ {1, 2, ...,M}, φk : C → R∪{+∞} is a proper
lower semicontinuous and convex function.

• Ak : H → H and Bi : C → H are µk-inverse strongly
monotone and ηi-inverse strongly monotone, respec-
tively, where k ∈ {1, 2, ...,M}, i ∈ {1, 2, ..., N}.

• F : H → H is a κ-Lipschitzian and η-strongly mono-
tone operator with positive constants κ, η > 0.

• µ and τ are two constants such that 0 < µ < 2η
κ2 and

τ = 1−
√
1− µ(2η − µκ2).

• f : H → H is an l-Lipschitzian mapping with 0 ≤
γl < τ .

• V is a γ̄-strongly positive bounded linear operator
with γl < γ̄.

Let {Tn}∞n=1 be a sequence of nonexpansive self-mappings
on H and {λn} be a sequence in (0, b] for some b ∈ (0, 1).
Let Wn be the W -mapping generated by Tn, Tn−1, ..., T1

and λn, λn−1, ..., λ1. For arbitrarily given x1 ∈ H, let

{xn} be a sequence generated by the following algorithm:

un = T
(ΘM ,φM )
rM,n (I − rM,nAM )·

T
(ΘM−1,φM−1)
rM−1,n (I − rM−1,nAM−1) · · ·

T
(Θ1,φ1)
r1,n (I − r1,nA1)xn,

zn = PC(I − λN,nBN )PC(I − λN−1,nBN−1) · · ·
PC(I − λ2,nB2)PC(I − λ1,nB1)un,

yn = αnγf(yn) + βnzn+
((1− βn)I − αnV )Wnyn,

xn+1 = σnγf(yn) + (I − σnµF )Wnyn, ∀n ≥ 1,
(2.1)

where {λi,n} ⊂ [ai, bi] ⊂ (0, 2ηi), {rk,n} ⊂ [ek, fk] ⊂
(0, 2µk), i ∈ {1, 2, ..., N}, k ∈ {1, 2, ...,M}, and
{αn}, {βn} and {σn} are three sequences in (0, 1). Then
we have the following results.

Theorem 2.1. Assume that Ω := ∩∞
n=1Fix(Tn) ∩

∩M
k=1GMEP(Θk, φk, Ak)∩∩N

i=1VI(C,Bi) is nonempty and
that either (B1) or (B2) holds. Let {xn} be the sequence
generated by the algorithm defined in (2.1).

(I) If limn→∞ ∥xn − xn+1∥ = 0, and the sequences
{αn}, {βn} and {σn} satisfy the following conditions:

(1) limn→∞ σn = 0 and
∑∞

n=1 σn = ∞;

(2) limn→∞
αn

σn
= 0 and 0 < lim infn→∞ βn ≤

lim supn→∞ βn < 1.

Then the sequence {xn} converges strongly to x∗ ∈
Ω , where x∗ = PΩ (I − (µF − γf))x∗ is a unique
solution of the VIP:

⟨(γf − µF )x∗, y − x∗⟩ ≤ 0, ∀y ∈ Ω .

(II) If the sequences {αn}, {βn} and {σn} satisfy the
following conditions:

(1)
∑∞

n=1 αn < ∞ and
∑∞

n=1 σn < ∞;

(2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} converges weakly to some
w ∈ Ω .

3 Concluding Remarks

In this paper, we have developed an iterative algorithm
by multi-step implicit hybrid steepest-descent method for
finding a common element of the set of solutions of a finite
family of generalized mixed equilibrium problems, the set
of solutions of a finite family of variational inequalities for
inverse strongly monotone mappings and the set of fixed
points of a countable family of nonexpansive mappings in
a real Hilbert space. Our Theorem 2.1 extends, improves
and supplements Ceng et al. [20] in the following aspects:

(i) The problem of finding a point

x∗ ∈ ∩∞
n=1Fix(Tn)∩∩M

k=1GMEP(Θk, φk, Bk)∩∩N
i=1VI(C,Ai)
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in our Theorem 2.1 is very different from the problem of
finding a point

x∗ ∈ ∩N
n=1Fix(Tn) ∩GMEP(Θ , φ,A)

in Ceng et al. [20, Theorem 3.1]. There is no doubt that
our problem is more general and more subtle than the
problem proposed in Ceng et al. [20].

(ii)The iterative scheme in our Theorem 2.1 is more ad-
vantageous and more flexible than the iterative scheme in
Ceng et al. [20, Theorem 3.1] because it involves solving
three problems: a finite family of GMEPs, a finite fam-
ily of VIPs, and the fixed point problem of a countable
family of nonexpansive mappings.

(iii) The iterative scheme in our Theorem 2.1 is very dif-
ferent from the iterative scheme in [20, Theorem 3.1] be-
cause the iterative scheme in our Theorem 2.1 involves
Korpelevich’s extragradient method and hybrid steepest-
descent method.
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