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Abstract—In this paper, we proposed the notion of max
algebra of nonnegative interval matrices. The normalization of
nonnegative interval matrices in max algebra are established.
Some properties of max product of nonnegative interval matri-
ces are derived as well.

Index Terms—interval matrix; max algebra; maximum cir-
cuit geometric mean.

I. INTRODUCTION

IN the literature, the properties of interval matrix have
been extensive studied (see, [1],[5-8], [10]). We refer to

Alefeld and Herzberger [1] for the background materials of
interval matrices. Real numbers are denoted by lowercase
letters a, b. The a and a denote the upper and lower bounds
of a real closed interval [a, a], respectively. The set of all
these closed intervals is denoted by I(R). We may denote an
interval [a, a] by [a] = [a, a]. Let ∗ ∈ {+,−,×,÷} be one
of the usual binary operations on the set of real numbers.
For [a] = [a, a] [b] = [b, b] ∈ I(R) the binary operation
[a]∗ [b] = {a∗ b : a ∈ [a], b ∈ [b]}, is assumed that 0 ̸= [b] in
the case of division. For a nonnegative interval [a] = [a, a],
the width d([a, a]) and the absolute value |[a, a]| are defined
by

d([a, a]) = a− a,

|[a, a]| = max{|a|, |a|}, respectively.

We called [a] = [a, a] a point interval if a = a. In this case,
we say [a] = [a, a] is degenerated to a point interval.

A matrix with entries belonging to I(R) is called an
interval matrix. The set of all real n × n interval matrices
is denoted by I(Rn×n). We denote an interval matrix [A]
∈ (Rn×n) by [A] = [A,A] = ([a]ij) = [aij , aij ]. Two
interval matrices [A] and [B] are equal if and only if
([a]ij) = ([b]ij) for all i, j = 1, 2, . . . , n. That is aij = bij
and aij = bij for all i, j = 1, 2, . . . , n. For interval matrices
[A], [B] ∈ I(Rn×n) and an interval [x] = [x, x] ∈ I(R), the
matrix operations +,−,× are formally defined as

[A]± [B] = ([a]ij ± [b]ij),

[A]× [B] = (Σn
k=1[a]ik × [b]kj),

[x] · [A] = ([x]× [a]ij).

Let I be an n × n identity matrix. The powers of interval
matrix [A] are defined as

[A]0 = I,
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[A]k = [A]k−1 × [A], k = 1, 2, . . . .

As noted by Mayer [6], the product of the interval matrices
is not associative in general. Therefore, ([A]×[B])×[C] may
not be equal to [A]× ([B]× [C]). An interval [a] = [a, a] is
said to be nonnegative if a ≥ 0. The set of all nonnegative
interval is denoted by I(R+).

II. MAXIMUM CIRCUIT GEOMETRIC MEAN OF A
NONNEGATIVE REAL MATRIX

Let A be an n×n nonnegative matrix. A scalar λ is called
a max eigenvalue of A if A⊗ x = λx for some nonnegative
vector x ̸= 0, namely,

max
1≤j≤n

aijxj = λxi for all i = 1, 2, . . . , n.

The vector x is called a corresponding max eigenvector of
λ. The weighted directed graph D(A) associated with A
has vertex set {1, 2, . . . , n} and an edge (i, j) from vertex
i to vertex j with weight aij if and only if aij > 0. A
path L(i1, i2, . . . , ik, ik+1) of length k is a sequence of k
edges (i1, i2), (i2, i3), . . . , (ik, ik+1). The weight of a path
L(i1, i2, . . . , ik+1), as denoted by w(L(i1, i2, . . . , ik+1)) or
simply by w(L), is defined by

w(L(i1, i2, . . . , ik+1)) = ai1i2ai2i3 · · · aikik+1
.

A circuit C of length k ≥ 2 is a path L(i1, i2 . . . , ik+1)
with ik+1 = i1, and i1, i2, . . . , ik are distinct. The class of
circuits includes loops, ie., circuits of length 1. Associated
with this circuit C is the circuit geometric mean known
as ŵ(C) = (ai1i2ai2i3 · · · aiki1)1/k. The maximum circuit
geometric mean in D(A) is denoted by µ(A). Note that
we also consider empty circuits, namely, circuits that consist
of only one vertex and have length 0. For empty circuits,
the associated circuit geometric mean is zero. A circuit C
with W (C) = µ(A) is called a critical circuit. Vertices
on critical circuits are called critical vertices and edges on
critical circuits are called critical edges.

Definition 1. Let [A] = [A,A] be an n × n nonnegative
interval matrix. The maximum circuit geometric mean of [A]
denoted by µ([A]), is µ([A]) = max{µ(A) : A ∈ [A]}.

As µ(A) ≥ µ(B) for all nonnegative matrices A ≥ B,
we see that µ([A]) = µ(A). Let [A] = [A,A] = ([a]ij) =
([aij , a]ij) be given. Recall that r · [A] = (r · [a]ij) =
([raij , raij ]), for all real number r. Suppose that µ([A]) ̸= 0.
Set k = 1

µ([A]) . It is easy to see that µ(k · [A]) = 1.
To prove Theorem 2, we need following theorem which

was proved by Ludwig Elsner and P. van den Driessche.
Theorem 1 [4]. Let A be an n×n irreducible nonnegative

real matrix with µ(A) ≤ 1. Let x ≥ 0, x ̸= 0 and z = A∗⊗x.
Then z > 0. If D = diag(zi), then D−1AD ≤ Jn, i.e., each
entry has magnitude less than or equal to 1.
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Lemma 1. Let A be an n×n nonnegative real matrix with
µ(A) ≤ 1. Then there exists a diagonal real matrix D such
that D−1AD ≤ Jn, i.e., each entry has magnitude less than
or equal to 1.

Theorem 2. Let [A] = [A,A] be an n × n nonnegative
interval matrix with µ([A]) ≤ 1. Then there exists a diagonal
real matrix D such that D−1 × [A] × D ≤ [Jn], i.e., each
entry has magnitude less than or equal to [0, 1].

III. NONNEGATIVE INTERVAL MATRICES IN MAX
ALGEBRA

We refer to [2-4] and [9] for the study of nonnegative
matrices in max algebra. In this section, we shall define
the max algebra of nonnegative interval matrices. Let [a] =
[a, a], [b] = [b, b] be two nonnegative intervals. Define the
maximum of [a] and [b] by

[a] ∨ [b] = {a ∨ b : a ∈ [a], b ∈ [b]},

here a ∨ b = max{a, b}.
Theorem 3. Let [a], [b] ∈ I(R). Then [a] ∨ [b] =

[max{a, b},max{a, b}] is also an interval.
Proof. Let a ∈ [a] = [a, a] and b ∈ [b] = [b, b] be given.

As a ≤ a ≤ a we have

[a] ∨ [b] ⊂ [max{a, b},max{a, b}]. (1)

On the other hand, let r ∈ [max{a, b},max{a, b}] be given.
Without loss of generality we may assume that a ≤ b. Then
b ≤ r ≤ b and a ≤ r. Hence a ∨ r = r ∈ [a] ∨ [b]. This and
(1) imply that [a]∨ [b] = [max{a, b},max{a, b}]. Therefore,
[a] ∨ [b] is also an interval. This completes the proof.

Define max{[a], [b]} = [a]∨ [b]. The max algebra interval
system is defined as follow: Let I(R+

max,×) = (I(R+),⊕,⊗)
be consisted of the set of nonnegative interval numbers with
sum [a]⊕ [b] = [a]∨ [b] and the product of [a]⊗ [b] is defined
by [a]⊗ [b] = [a]× [b]. The following theorem shows that the
max algebra on interval is a semiring with identity element
[0] = [0, 0]. Moreover, ⊕ is idempotent, ie., [a] ⊕ [a] =
[a]. Let {[a1], [a2], . . . , [ak]} be a finite set of nonnegative
intervals. Define

∨k
j=1[aj ] = [a1] ∨ [a2] ∨ · · · ∨ [ak].

Theorem 4. Let I(R+
max,×)=(I(R+),⊕,⊗) be the set of

n × n nonnegative interval numbers with sum [a] ⊕ [b] =
[a]∨ [b] and the product [a]⊗ [b] = [a]× [b]. Then I(R+

max,×)
is a semiring.

Proof. Let [a], [b], [c] ∈ I(R+) be given. Then

([a]∨[b])∨[c] = [max{a, b, c},max{a, b, c}] = [a]∨([b]∨[c]),

[a] ∨ [0] = [a] = [0] ∨ [a]

and
[a] ∨ [b] = [b] ∨ [a].

This shows that I(R+),⊕) is a commutative monoid with
identity element [0] = [0, 0]. As [a]⊗[b] = [a]×[b] = [ab, ab],
we see that

([a]⊗ [b])⊗ [c] = [a]⊗ ([b]⊗ [c]).

It is easy to see that [a] ⊗ [1] = [1] × [a] = [a]. Thus
(I(R+),⊗) is a monoid with identity element [1] = [1, 1].
Observe that [a]⊗ [0] = [0]⊗ [a] = [0]. Now we claim that

([a]⊕ [b])⊗ [c] = ([a]⊗ [c])⊕ ([b]⊗ [c])

and
[c]⊗ ([a]⊕ [b]) = ([c]⊗ [a])⊕ ([c]⊗ [b]).

To see this, observe that

([a]⊕ [b])⊗ [c] = [max{a, b},max{a, b}]⊗ [c, c]

= [max{ac, bc},max{ac, bc}]
= [ac, ac]⊕ [bc, bc]

= ([a]⊗ [c])⊕ ([b]⊗ [c]).

By the similarly argument, we have [c]⊗ ([a]⊕ [b]) = ([c]⊗
[a])⊕ ([c]⊗ [b]). This completes the proof.

It is easy to show the following result.
Theorem 5. Let I(R+

max,×)=(I(R+),⊕,⊗) be the set of
n × n nonnegative intervals. Then the order ≤ defined by
[a] ≤ [b] if a ≤ b and a ≤ b is a partial order.

Now we consider the max product of two nonnegative
interval matrices in the max algebra interval system. Let
[A] and [B] be two nonnegative interval matrices. The max-
product [A]⊗ [B] of [A] and [B] is defined by

([A]⊗ [B])ij =

n∨
k=1

[a]ik ⊗ [b]kj .

Let I be an n×n identity matrix. The powers of nonnegative
interval matrix [A] in the max algebra interval system are
defined as

[A]0⊗ = I,

[A]k⊗ = [A]k−1
⊗ × [A], k = 1, 2, . . . .

Note that [A]⊗ [B] may not be equal to [B]⊗ [A]. However,
([A]⊗ [B])⊗ [C] = [A]⊗ ([B]⊗ [C]).

Now we consider the max product of powers of a nonneg-
ative interval matrix.

Theorem 6. Let [A] = [A,A] be an n × n nonnegative
interval matrix. Then [A]k⊗ = [Ak

⊗, A
k

⊗], for all k ≥ 1.
For an n × n nonnegative interval matrix [A] = ([a]ij),

the two nonnegative matrices d([A]) = (d([a]ij)) and |[A]| =
(|[a]ij |)), which are called the width and absolute value of
[A], respectively.

Let A = (aij) and B = (bij) be two n × n nonnegative
matrices. Define A ≤ B by aij ≤ bij for all 1 ≤ i, j ≤ n.
Let [A] = ([a]ij) and [B] = ([b]ij) be two n×n nonnegative
interval matrices. Define [C] = ([c]ij) = [A]∨ [B] by [c]ij =
[a]ij ∨ b]ij for all 1 ≤ i, j ≤ n.

Theorem 7. Let [A], [B] be two n×n nonnegative interval
matrix. Then
(1). d([A] ∨ [B]) ≤ max{d([A]), d([B])}.
(2). |[A]⊗ [B]| = |[A]| ⊗ |[B]|.
(3). |([A] ∨ [B]| = max{|[A]|, |[B]|}.
(4). d([A])⊗|[B]|, |[A]|⊗d([B]) ≤ d([A]⊗ [B]) ≤ d([A])⊗
|[B]|+ |[A]| ⊗ d([B]).

IV. CONCLUSION

The max algebra system of nonnegative real numbers has
been studied extensively in the literature. In this paper, we
proposed the notion of max algebra system of nonnegative
interval matrices which can be thought of as a generalization
of the notion of the max algebra system of nonnegative ma-
trices. Some properties of max algebra system of nonnegative
interval matrices are established.
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