

Abstract—As the higher security per bit compared with

traditional symmetric-key cryptography, public-key
cryptography has always been attractive in security system. But
usually the cost is high and efficiency is low because of complex
algorithm. Unlike common hardware solution based on FPGA
or system on chip (SOC), an instruction set architecture (ISA)
extension of embedded processor has been proposed. Firstly the
extended function unit is introduced, and the structure is
scalable according to different applications. Then the extended
instruction set is proposed under a new architecture, to
overcome the weakness of traditional ISA extension, such as the
flexibility for multiple extended functions and the difficulty of
implementation. Opposite to original ISA, detail operation of
extended instruction has been treated as side effects of data
transfer, to keep the architecture of embedded processor and
compilation tools basically unchanged. Test results show that
point multiplication on GF(2160) can be done in 181 us, by the
cost of 124k gates.

Index Terms—dual-field, flexibility, ISA extension,
public-key, scalability

I. INTRODUCTION

ublic-key cryptography such as Rivest-Shamir-Adleman
(RSA) and Elliptic Curve Cryptography (ECC) has been

used in many areas like securing e-mail, wireless
communication and electronic commerce since the
introduction by Difffie and Hellman [1]. Lots of previous
work to implement RSA and ECC can be divided into
software solution running on general embedded processor
and hardware solution based on co-processors or FPGA.
They represent the extreme pursuit to cost or performance
respectively. But in practice the balance between
performance and cost, along with the flexibility to satisfy
various applications are mostly important. We have proposed
a scalable instruction set architecture (ISA) extension aimed
at public-key cryptography based on embedded processor.
Requirements of different applications focused either on
performance or cost can be met by reconfigurable basic
arithmetic units. Moreover, our work does not impact the
original architecture and compilation tools, to provide a
universal architecture of instruction extension for various
functions.

The paper is organized as follows. In Section II
background knowledge and some algorithm is discussed.

Wang Liao, Meilin Wan, Kui Dai and Xuecheng Zou are with the School

of Optical and Electronic Information, Huazhong University of Science and
Technology, Wuhan, CO 430074 P.R.China

Wang Liao (e-mail: liaowangww@163.com).
Meilin Wan: (email: D201277512@hust.edu.cn)
Kui Dai (email: josh.maxview@gmail.com)
Xuecheng Zou (email: estxczou@gmail.com)

Section III proposed the scalable function units that can meet
different requirement. Detail architecture of instruction
extension is shown in Section IV. Evaluation of performance
and cost of some typical circumstance is reported in Section
V. Finally, concluding remarks are presented in Section VI.

II. PRELIMINARIES

As we know, modular arithmetic which consists of
modular multiplication, addition/subtraction, power and
inverse is the basic operation of most public-key algorithm.
Power and inverse can be transformed to modular
multiplication by certain algorithm. To avoid division which
is expensive and inefficient in modular multiplication,
Montgomery algorithm based on words is introduced and
widely accepted [2], which is shown in Algorithm 1, m is the
digit of prime number p over finite field or the degree of
irreducible polynomial over binary field, r is the width of
arithmetic units, thus w = m/r is words.

Algorithm 1: Montgomery modular multiplication

Input: 122,,,, qpqpba mm

Output:)(mod2 pbac m

endfor

zc

endfor

ptczcz

zbaccz

dobywtojfor

ptczcz

qct

baccz

z

dobywtoifor

c

w

jjj

jijj

r

i

.12

.11

.10

},{},{.9

},{.8

111.7

},{},{.6

)2(mod.5

;},{.4

0.3

110.2

0.1

1

1

000

0

000

Modular addition/subtraction over finite field can be

replaced by normal addition/subtraction, as the modulo can
be handled by following modular multiplication. While for
binary field it simply equals XOR as there is no carry bit.
Therefore a specific instruction support modular
multiplication over dual-filed will be the main purpose of our
ISA extension.

III. SCALABLE MODULAR MULTIPLIER

It can be concluded from Algorithm 1 that Montgomery
modular multiplication mainly consists of successive
multiplication and addition with long digits, which can be
divided into internal and external loops. A basic architecture

Scalable Instruction Set Extension for Dual-field
Public-key Cryptosystem

Wang Liao, Meilin Wan, Kui Dai and Xuecheng Zou

P

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

is proposed in Fig. 1, including memory block, operand fetch,
operation core (OC), temporary queue and writing back
control. Due to the massive data amount, an independent
memory block is needed, and usually SRAM is adopted
because of the compact capacity. The operand fetch is
divided into internal loops (Bj and Pj) and external loops (Ai).
Arithmetic units including multiplier and adder are in
operation core for most computing task. Temporary queue is
designed to store the intermediate results next loop needed
(Zi). There is also writing back path to control the final results
back to the specific address in memory block.

Ai Fetch
Bj Pj Zj
Fetch

Tmp Queue

Write Back

Operation Core
Memory

Block

Fig 1. Basic architecture of Montgomery multiplier

A. Optimization within internal loops

The possibility of parallelism among both internal loops
and external loops is investigated to optimize the
performance at most. Finite field is taken as example. The
maximum parallelism among internal loops is easy to
achieve. Firstly the operation of internal loops can be
classified into 6 types which are listed below.

jijijiij

ji

ji

i

ii

ii

ptbaZZD

ptD

baD

ptC

qctB

baZcA

13

12

11

0

000

:

:

:

:

:

:

The data dependence either among the first three operation

or between the first three and the last three is obvious and
inevitable, while the last three can be executed in parallel
provided there is sufficient computing resource, which means
two multipliers and one adder is needed in the operation core.

B. Optimization within internal loops

Then for the parallelism among external loops, firstly the
data structure of Algorithm 1 is expressed in Fig. 2. Having
sufficient arithmetic units, D1D2D3 have been merged into D.
From left to right the consecutive D make up internal loops,
while from top to bottom each row stands for one of the
external loops. The arrows between each row represent the
data dependence among external loops. Despite the data
dependence, partial overlap can be achieved given there are
multiple operation cores.

Fig 2. Data structure of Algorithm 1 with multiple OCs

It can be figured out that the number of rows needed is
decided by the length of each row, which means to achieve
maximum parallelism among external loops, the width of
arithmetic units (AU) and the parameter of specific
application need to be considered. If the length of operands
is n bits, and the width of operation core is w, it means the
words r=n/w. The length of each row can be represented as
l=3+n/w+1, as there is an additional external loop for carry
bit on binary field. So when the first row ends, which means
the first operation core can handle next external loop, the total
number of operation cores can be represented as
c=l/4=(4+r)/4=1+n/4w.

We have chosen w=8 and w=32 as two most typical
circumstance, and the relationship between operand length
and operation cores needed is shown in Fig.3. Considering
the length of critical path and exponential growth of cost, the
width of arithmetic units should better not exceed 32 bits.

Fig 3. Relationship between operand length and OC needed with different
width of arithmetic units

It should be reminded that the operands’ width and the
corresponding architecture means the maximum parallelism
will be achieved. Larger operands are also supported,
although the potential of parallelism will not be released to
most. For example, if for some application, the performance
over GF(256) is most important, 8 bits width with 9 OCs or
32 bits width with 3 OCs should be considered, further
decision can be made according to the detail requirements of
performance or cost.

C. Support for dual-field

To support the operation over binary field at the same time,
another two multipliers and one adder aimed for binary field
in each OC are needed. Since the algorithm of both field are
basically identical, the arithmetic units for different fields can
be combined under the same data path. Moreover, as there is
no carry bit over binary field, the adder can be simply
implemented by XORs, while the 4-2 compressors in typical
multiplier can be replaced by XORs with 4 inputs. Also there
will be one less external loop and the performance of operand
with same length will be better. Finally, architecture of the
multiplier with multiple OCs is shown in Fig. 4, where 3 OCs

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

are taken as example.

Fig 4. Architecture of Montgomery multiplier with 3 OCs

IV. ISA EXTENSION ARCHITECTURE

Solutions to implement public-key cryptography can be
classified according to the relationship between function unit
and the embedded processor. Fig. 5a represents traditional
ISA extension whose function unit has a direct connection
with the microprocessor core and is embedded into the
pipeline [3]. The typical hardware solution is shown in Fig.
5b, whose function unit together with other control logic is
treated as co-processor, and the connection to microprocessor
may be general IO or some general bus like AHB [4][5][6].
Fig. 5c can be regarded as a compromise of the previous two,
the function unit is implemented by some programmable
logic arrays like FPGA and the connection is similar to the
co-processor solution [7]. Besides, there is also the basic
software solution based on original ISA, which is a special
case as there is no extended function unit.

Fig 5. Typical solution for public-key cryptography

The comparison result is shown in Table I. Three aspects
including performance, flexibility and difficulty of
implementation are rated from A to C. Except basic software
solution, the premise is the computing resource of function
unit is identical, so the performance here mainly reflect the
efficiency of interface between microprocessor and function
unit.

TABLE I
COMPARISON BETWEEN SOLUTIONS

 Performance Flexibility Implementation

ISA extension A C C

Co-processor C B B

Programmable
logic

B A A

Basic software C A A

It can be figured that each solution has their advantages

and weakness. We have proposed a new ISA extension
architecture which can be regarded as an application of
Transport Triggered Architecture (TTA) [8], to improve the
flexibility and lower the difficulty of implementation while
keep the merit in performance at the same time.

A. Overall architecture

All the disadvantages of traditional ISA extension can be
concluded to the modification of original architecture and
compilation tools when new instruction is added. We have
noticed that all extended function can be treated as dataflow
among different module. If all data transfer is programmed
explicitly and all function units are addressed under a unified
space, only instructions for data access is needed no matter
what function to be extended.

The architecture of embedded processor extended for
public-key cryptography is shown in Fig. 6, where the
original architecture of ARM is taken as an example.

We can figure out that as an extended function unit, the
Montgomery multiplier along with its local memory is
connected to B bus and can be simply treated as the extension
of general register bank under a unified address space. The
address space Montgomery multiplier occupied can be
divided into three types, which consist of operand register,
trigger register and result register. The meaning of operand
and result register is obvious, for trigger register, writing into
it triggers the corresponding function unit.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Fig 6. Architecture of extended embedded processor based on ARM

B. Instruction definition

Still ARM is taken as example. As address space in
original LOAD/STOR only support 16 general registers, new
data access instruction namely LOADF/STORF need to be
defined for extra address space. The format and bits
allocation is shown in Fig. 7.

Fig 7. New data access instruction definition

LOADF and STORF share one operation code, and they
are distinguished by the L/S bit. Condition guard is used to
control conditional execution. The bits allocation of
addressing related content can be customized according to
the number of function units extended and the size of their
local memory, while in Fig.6 the address bits have been

extended to 5, so that 32 general registers are supported. The
value of offset can be either immediate data or another
register ID.

The pipeline diagram for LOADF/STORF is shown in Fig.
8, which is basically identical with original ARM pipeline
despite that Execute (EX) is replaced by Transport (TR). PO
means Possible Operation, which is treated as side effect of
TR and varies according to the specific function unit. As all
data access is explicit, programmers can arrange their
program according to the PO of specific applications to
maximize the potential of pipeline.

IF

ID

IF

POTRID

IF

ID TR

TR

time

instructions

i+2

i+1

i

Fig 8. Pipeline Diagram for LOADF/STORF

V. EVALUATION AND COMPARISON

Performance and cost of related works are listed in Table
II, and point multiplication on GF (2160) is taken as example.
8 bits with 6 OCs and 32 bits with 2 OCs of our work are
evaluated to meet different requirements focused on cost or
performance respectively. Firstly compared to traditional
ISA extension in [3], with little additional computing
resource, the promotion in performance is great. The
frequency is not mentioned and we assume it is the same as
ours since the processor is also ARM. Then co-processors
implemented by ASIC or FPGA is listed. The cost of [4][5][7]
is a little higher than the 32 bits version of our work, but our
performance is much better, and [7] only support the binary
field. The performance of [6] is slightly better than our work
but the cost of resource is ten times more. Moreover,
co-processors still need an embedded general processor to
form the entire system on chip (SOC), which has already
been included in our works. For the 8 bits version of our work,
although the performance is not very outstanding, the cost is
quite low. It is suitable for some application need extremely
low cost with an acceptable performance.

Table II
EVALUATION AND COMPARISON

Design Tech Area Logic gates Field Frequency Time

This work
(8 bits)

0.13 um CMOS 0.47 mm2 59k gates GF (2160) 233MHz 746 us

This work
(32 bits)

0.13 um CMOS 0.98 mm2 124k gates GF (2160) 233MHz 181 us

[3] ARM \ \ GF (2160) 233MHz 3519 us

[4] 0.13 um CMOS 1.35 mm2 179k gates GF (2160) 158MHz 272 us

[5] 0.18 um CMOS 1.64 mm2 * 175k gates GF (2160) 249MHz 220 us

[6] 0.18 um CMOS 18.6 mm2 1984k gates * GF (2160) 250MHz 169 us

[7] EP3SL340H1152C3 \ 97899 LUTs GF (2160) 143MHz 355 us

*: estimated

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

VI. CONCLUSION

A scalable ISA extension of embedded processor for
public-key cryptography is proposed, while the scalability
can be reflected in two aspects. Firstly, the scalable
Montgomery multiplier is adopted to achieve balance
between performance and cost. Different requirements of
various applications focused either on performance or cost
can be met by adjusting the parameter of basic arithmetic
units. Then the scalability at system level is achieved by a
new architecture for ISA extension. Opposite to traditional
ISA, detail operation is treated as the side effect of data
transfer, so the original architecture and compilation tool
need not to be modified when new instruction is added.
Furthermore, not only the public-key related instruction
discussed in this paper, but any new instruction can be
extended under this architecture simply after a definition in
address space. At last, performance and cost are compared
with previous works, where 8 bits with 5 OCs and 32 bits
with 2 OCs are taken as the two most representative versions.

REFERENCES
[1] W. Diffie, M.E. Hellman, “New Directions in Cryptography,” IEEE

Trans. Information Theory, vol. 22, pp. 644-654, 1976.
[2] A. F. Tenca and C¸ etin Kaya Koc¸“A scalable architecture for

modular multiplication based on montgomery’s algorithm”， IEEE
Trans. Computers, 52(9):1215–1221, 2003.

[3] Bartolini, S. ; Dipt. di Eng. dell''Inf., Univ. di Siena, Siena, Italy ;
Castagnini, G. ; Martinelli, E., “ Inclusion of a Montgomery Multiplier
Unit into an Embedded Processor's Datapath to Speed-up Elliptic
Curve Cryptography”, Information Assurance and Security, 2007. IAS
2007. Third International Symposium on

[4] J.-Y. Lai and C.-T. Huang, “Energy-Adaptive Dual-Field Processor for
High-Performance Elliptic Curve Cryptographic Applications” IEEE
Trans. on very large scale intergration (VLSI) systems.vol 56, no.
4,pp.356-360,March 2010.

[5] ZHONG Xian-hai, XU Jin-fu, YAN Ying-jian, “Parallel and
Reconfigurable ECC Application Specific Instruction-set
Coprocessor” Computer Engineering, vol 5, pp 153-155, March 2009.

[6] YANG Xiao-hui, DAI Zi-bin, LI Miao, ZHANG Yong-fu “Research
and design of parallel architecture processor for elliptic curve
cryptography,” Journal on Communications, vol. 5, pp 70-76, 2011

[7] ZHANG Jun, YANG Xiao-hui, ZHAO Qian-jin, YANG Tong-jie, DAI
Zi-bin, “Elliptic curve cryptography coprocessor based on specific
instruction set,” Computer Engineering, vol. 3, pp 111-113, 2011.

[8] H.Corporaal, “Microprocessor Architectures: From VLIW to TTA”,
Chichester,UK:John Wiley&Sons,1997

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

