Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

Low-cost Bit Permutation Circuit with Concise
Configuration Rule

Tianyong Ao, Zhangqing He, Kui Dai, Xuecheng Zou

Abstract—Bit-level permutation is widely used in cryptogra-
phy systems. However, it is not well-supported in simple and
low-cost way. Here, a low-cost construction of n-bit permutation
circuit capability of n! permutations is proposed. This construc-
tion just needs one n-to-1 multiplexer and (2n + n * [logan])
bits registers. Its configuration rule is very concise. Users only
straightforward input the numbers that indicate which bit of
source data will go to i-th bit of destination data. The Synopsys’
DC synthesis results show that approximate 31% of the area can
be saved by this architecture compared with Benes networks
of identical size. This design provides a new perspective on
implementation of bit permutation and may be helpful for the
design of secure resource-constrained systems.

Index Terms—bit permutation, ASIC, low-cost,concise con-
figuration rule,block cipher.

I. INTRODUCTION

IT-level permutations are important primitives in cryp-
tography systems to achieve security. They are widely
used in block ciphers such as DES, TWOFISH, Sperent
and Present [1], and even in fully homomorphic encryption
[2]. Different ciphers usually use different bit permutations.
Therefore, the designs supporting arbitrary bit permutations
with low-cost and convenient operations are required for
implementing various ciphers in cryptography systems.
A bit permutation only moves the positions of data’s bits
without affecting their values. For a bit permutation function
which converts data S into data D, we have:

Dli] = S[r(i)] (1)

where 7(7) is a permutation over the index space and D][i]
indicating the value of i-th bit of D, S[n(i)] denoting the
value of 7(7)-th bit of S. S and D are called source data
and destination data, respectively.

Both software and hardware can be used to implement
bit permutations. Almost all the hardware designs are based
on the principle that a data path between the i-th bit of D

This work is supported by the National Natural Science Foundation of
China (No0.61376031) and Natural Science Foundation of Hubei Province
of China (No.ZRZ0051).

Tianyong Ao is with the School of Optical and Electronic Information,
Huazhong University of Science and Technology, Wuhan, China and is also
with the School of Physics and Electronics, Henan University, Kaifeng,
China (e-mail: tyaohust@gmail.com).

Zhangqing He is with the School of Optical and Electronic Informa-
tion, Huazhong University of Science and Technology and is also with
Hubei Collaborative Innovation Center for High-efficient Utilization of
Solar Energy, Hubei University of Technology, Wuhan, China (e-mail:
ivan_hee @ 126.com)*.

Kui Dai is with the School of Optical and Electronic Information,
Huazhong University of Science and Technology, Wuhan, China (e-
mail:daikui @mail.hust.edu.cn).

Xuecheng Zou is with the School of Optical and Electronic Informa-
tion, Huazhong University of Science and Technology, Wuhan, China (e-
mail:estxczou@gmail.com).

All the authors are also with Innovation Center for MicroNanoelectronics
and Integrated System, Wuhan, China.

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

and the 7(4)-th bit of S should be established. To support
arbitrary permutation, the networks with the capability of
nl-permutation such as Waksman and Benes networks [3]
are usually used. Those designs have the advantage of high
performance, however, when n is the larger, the cost is higher
and the configuration rules are more complex. The main
principle with software is based on choosing the aimed bits
from source data, moving into the aimed positions and then
placing them in the destination data. A n-bit permutation
usually needs 4 x n instructions by repeating Load, Mask,
Shift and Or operations. It is low performance, especially in
the processors without barrel shift instructions. To compute
arbitrary bit permutations efficiently on general purpose mi-
croprocessors, several fast bit permutation instructions have
been proposed based on permutation networks [4] [5] [6].

Previous designs are focused on the performance and their
configuration rules are usually complex. However, they may
be difficult to meet the cost of resource-constrained systems.
Here, we present an arbitrary n-bit permutation circuit with
very concise configuration rules and low cost. Its principle is
based on choosing and cyclic shift operations. This design is
inspirited by the fact that cyclic shift registers are widely used
in security systems such as hash functions and key scheduling
of Present cipher.

II. PROPOSED ARCHITECTURE

A n-bit sequence can be considered as an array. Each
element of the array is structure data which has two fields.
One is address field and the other is value field. Assuming
the elements from right to left are numbered 0, 1,--- ,n—1.
Considering the data D as such an array, where the address
field of the i-th element is used to store the number (i),
and its value field is used to receive the corresponding bit
from the source data. The source data S also can be seen
as the such array with variable value field and fixed address
field, where the value of the address field of the i-th element
is the number i. Then, the following process can implement
the bit permutation function.

Fori=0 to n—1
D[i] = S[r ()]
EndFor;

We present a bit permutation circuit which can perform
any one of n! permutations for n-bit data, as the structure is
shown in Fig.1. It only consists of n-bit source data registers,
n-bit destination data registers, n m-bit address registers
and one n-to-1 multiplexer. The ¢-th element of the array
consists of the i-th data register, denoted Db;, and the i-th
address register, denoted A;. The destination data registers
and address registers can work in a serial shift way. The

IMECS 2015

%
Sreg g ? ?
i Ty Data_in
Y Y vy -
4\\ Mux ~p
5 . — g‘ ata_out
reg J g !
g¢ - g_¢ g_ %3 cmd
* - | status
Aregs [,][]

Fig. 1. n-bit permutation circuit

inputs of the multiplexer are from the bits of source data
registers, and the channel control bits come from register
A,,_1. There are four operation steps to do an arbitrary n-
bit permutation.

Step 1. Configure permutation rules. It is very simple
to configure permutation rules. It only needs to write the
number (i) to the address register A; according to the
permutation rules, indicating that which bit of the source
data will go to the i-th bit of destination data.

Step 2. Write source data to the source registers.

Step 3. cyclic shift operations. In each clock cycle, the
address registers do one step cyclic shift to the left. Each bit
value in destination register is shifted one position to the left.
The value of Dby is updated by the output of Mux. Here, n
clock cycles are needed.

Step 4. Read the result. After step 3, the data in destination
register is just permutation result. In addition, the values of
address registers are the same with what were configured in
the first step.

The bit permutation rules of a block cipher usually are
fit, therefore the first step for configuring permutation rules
is only needed to do one time in the initial state for this
scenario.

This construction is easily extended to sub-block permu-
tations when the data width of Sb;, Db; and the multiplexer
are a number greater than 1. Sub-block permutations are
widely used in generic Feistel ciphers, such as SM4. For
sub-block permutation, the number of address registers is
only the number of sub-blocks.

III. IMPLEMENT RESULTS AND COMPARISONS

We have implemented several bit permutation hardware
designs with n in different sizes in Verilog HDL, where n is
equal to 32, 64, or 128, since those sizes are usually used in
block ciphers. To implement arbitrary n-bit permutation with
this method, only (n*[logan]) bits registers for configuration
information, 2n bits registers for source and destination data,
and one n-to-1 multiplexer are required, where [x] denoted
the smallest integer which is greater than or equal to x. To
compare the cost, three Benes networks of the same size are
also implemented in RTL , since Benes network is one of the
most famous nonblocking networks which can perform any
of the n! permutations of n bits. For n-bit Benes networks,
there are (n*[logan]—n/2) bit registers for its configuration
information, and the identical number 2-2 switches which
either swap or pass through the bits based on whether their

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

TABLE 1
IMPLEMENTATION RESULTS AND COMPARISONS

n Area (GEs)
This | Benes GRP [6]
32 1372 1983
64 | 3552 | 5165 | 68.6K/19.7K
128 | 7756 | 11275

control bits are 1 or 0. The size of Benes networks should
be the power of 2, but that of this circuit can be any number.

The designs were synthesized by Synopsys’ DC with the
TSMC 0.13um CMOS standard cell library, and the results
are shown in table I. The saved areas by this method are
above 31% and 60% compared with Benes networks with
the identical size and the special bit permutation instruction
GRP [6],respectively. The design of [6] should be embedded
as a function units in a CPU. It is good for speedup bit
permutation in CPU, but not suitable for the low cost im-
plementations. Approximately 4*n instructions ROM spaces
have to be reserved to store program codes if n-bit arbitrary
permutations will be implemented by a CPU.The area of
those ROM may be greater than that of this method.

The total cycles for n-bit arbitrary permutation is the sum
of writing and reading data time (7j4:q), cyclic shift time
(T'yc), configuration time (1¢f4) in this designs. T, ., which
is the cycles spent on cyclic shift state, is always equal to n.
Tyata and T,y are the cycles spent on writing/reading data
and configuration information, respectively. They depend on
the data width. If the data width is m, Ty, is equal to
[n/m], and T,¢, is equal to (W] The throughput
of 128-bit permutation circuit is equal to 421 Mbps with
the maximum frequency of 500MHz. Since the data width
of each address register is less than eight, eight address
registers can be written with 64 bits data in parallel. When the
permutation rule is fixed and the permutation is performed
many times, for example, in SPN block ciphers, only one
time is asked to set the configuration data to the address
registers in the initial stage. In this case, Ty, will be equal
to zero in the following permutations.

This design has been used in our lightweight customized
encryption system which makes users customize a block
cipher quickly and easily.

IV. CONCLUSIONS

A bit permutation circuit which can perform any one of the
n! permutations for n bit data is proposed in this letter. The
proposed bit permutation circuit has the advantages of very
concise configuration rules and low cost. It does not need
any routing algorithm and its size n is no longer limited to
the power of 2 like Benes networks. This design method can
attain a balance between performance and cost, and could
give a chance that can share the shift registers with other
modules. This design provides a new view of implementation
of bit permutation and may be helpful for the design of secure
resource-constrained systems.

REFERENCES

[1] A.Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann,M.J.B.
Robshaw, Y. Seurin , and C. Vikkelsoe: PRESENT: An ultra-lightweight
block cipher, Cryptographic Hardware and Embedded Systems-CHES,
2007, pp. 450-466.

IMECS 2015

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,

IMECS 2015, March 18 - 20, 2015, Hong Kong

(2]

(3]
(4]
[3]

(6]

Gentry, Craig, Shai Halevi, and Nigel P. Smart,Fully homomorphic
encryption with polylog overhead, Advances in CryptologyCEURO-
CRYPT,2012. pp.465-482.

R. A. Spanke and V. E. Benes, N-stage planar optical permutation
network, Applied Optics,vol.26, pp.1226-1229,1987.

R.B. Lee, Z. Shi, and X. Yang, Efficient permutation instructions for
fast software cryptography, Micro, IEEE, vol.21, pp.56-69,2001.

X. Yang, M.Vachharajani, and R. B. Lee, Fast subword permutation
instructions based on butterfly network, International Society for Optics
and Photonicsin Electronic Imaging, vol.3,pp. 80-86, 1999.

Y. Hilewitz, Z. J. Shi and R. B. Lee, Comparing fast implementations
of bit permutation instructions, Conference Record of the Thirty-Eighth
Asilomar Conference on Signals, Systems and Computers, vol.2,pp.
1856-1863, 2004.

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

