


Abstract—The read/write performance asymmetry of Solid State

Disks (SSDs) remains a critical concern for read performance.
Under a concurrent workload with a mixture of read and write
requests, preceding write requests preempt available flash memory
resource so as to block read requests, which we call write-caused
interference. Hence, the read performance, which is often more
critical than the write performance, can be significantly degraded.
Unfortunately, state-of-the-art schedulers either are inefficient in
improving the read performance or suppress the write performance.
In this paper, we propose a novel scheduler at device level, called
AOS, to mitigate the write-caused interference and maximize the
read performance without sacrificing the write performance.
Specifically, AOS designs a conflict detection module, to efficiently
identify access conflicts among requests. Then, AOS adaptively
dispatches as many outstanding requests as possible to a re-ordering
set based on the detected conflicts to reduce the write-caused
interference and improve the flash-level parallelism (FLP). Finally,
AOS carefully re-orders the dispatched requests to reduce
channel-level access conflicts and improve the system-level
parallelism (SLP). Extensive experimental results show that AOS
reduces, an average of 51% read latency and 45% write latency,
compared to FIFO.

Index Terms—out-of-order scheduling, solid state disk,
write-caused interference, conflict detector

I. INTRODUCTION

AND flash-based Solid State Disks (SSDs) have been
widely deployed in data centers due to higher
throughput, lower latency, and lower energy than hard

disk drivers (HDDs) [1]. However, SSDs suffer from two
critical limitations: the read/write performance asymmetry
and the erase-before-write feature. Previous works [2, 3]

Manuscript received December 11, 2014; revised January 20, 2015. This

work is sponsored in part by the National Natural Science Foundation of
China No. 61300047 and the National Basic Research Program of China
(973 Program) under Grant No.2011CB302303。

Pingguo Li is with the Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan 430074, P.R.
China, and the Library, Hubei University of Science and Technology,
Xianning 437000, P.R.China (e-mail: pingguoli@hust.edu.cn)

Fei Wu is with the Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan 430074, P.R.
China (phone: 0086-27-87792405; fax: 0086-27-87792405; e-mail:
wufei@hust.edu.cn).

You Zhou is with the Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan 430074, P.R.
China (e-mail: zhouyou@hust.edu.cn).

Changsheng Xie is with the Wuhan National Laboratory for
Optoelectronics, Huazhong University of Science and Technology, Wuhan
430074, P.R. China (e-mail: cs_xie@hust.edu.cn)

Jiang Yu is with the IBM China System and Technology Group Lab，
Shanghai 200000，P.R.China (e-mail: jiangyu@cn.ibm.com)

show that, under a concurrent workload with a mixture of
read and write requests, the read performance can be
significantly degraded, since preceding writes requests
preempt available flash memory resource and block read
requests. Note that the write operation of flash memory is
much slower than the read operation. To make the matter
worse, if the block to be written is not free, an erase operation,
which is much slower than the write operation, must be
performed before serving the write request due to the
erase-before-write feature, further degrading the read
performance. We refer to the read performance degradation
as the write-caused interference. Unfortunately, the read
performance is often more critical than the write performance
[4], it is necessary to mitigate the write-caused interference.
 In order to achieve this, some studies on SSD I/O schedule
are proposed at operating system level. Wang et al. [5]
attempted to divide incoming read/write requests into
different sub-regions, and then served them in a round-robin
manner. Gao et al. [6] dispatched requests to different batches
based on an access conflict detection approach to avoid
access conflicts. Although these works achieve some
optimizations in reducing the write-caused interference, the
optimizations are purely based on the logical page addresses
(LPAs) required by the file system. Since the same LPA is
always redirected to different physical page addresses (PPAs)
due to the out-of-place write strategy of SSDs [2, 3], the
optimizations cannot be efficient and accurate. To avoid these
drawbacks, Wu et al. [7] proposed a P/E (program/erase)
suspension, a device-level scheduler, to reduce the
write-caused interference. However, frequently
suspending/resuming the on-going P/E operation introduces
system overhead and suppresses the write performance. In
addition, this method required hardware modification.
 In this paper, we propose AOS, a novel device-level

scheduler, to mitigate the write-caused interference and
maximize the read performance without sacrificing the write
performance. This paper makes the following contributions:
 We proposed a conflict detection module to identify access

conflicts among requests.
 We proposed an adaptive request dispatching policy to
dispatch as many outstanding requests as possible to a
re-ordering set to reduce the write-caused interference and
improve the flash-level parallelism (FLP). Our experiments
show that this policy reduces an average of 55%
write-caused interference and improves FLP by about 2
times over FIFO under enterprise workloads.

 We proposed a re-ordering policy, which reorders the
dispatched requests in a round-robin manner to reduce
channel-level access conflicts and improve the system-level
parallelism (SLP). Our experiments show that this policy
reduces an average of 31% channel-level access conflicts and

AOS: Adaptive Out-of-order Scheduling for
Write-caused Interference Reduction in Solid

State Disks

Pingguo Li, Fei Wu*, You Zhou, Changsheng Xie, Jiang Yu

N

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

improves SLP by about 1.3 times over FIFO under enterprise
workloads.
 We evaluate AOS with various enterprise workloads. AOS
reduces an average of 51% read latency and 45% write
latency compared to FIFO. In addition, we show that AOS
provides better performance than two state-of-the-art
schedulers [6, 7].

The organization of this paper is as follows. In Section II
the characteristics of SSDs and out-of-order execution are
introduced. The design of our AOS scheduler is presented in
Section III. Section IV presents our experimental
methodology and results. Section V provides our
conclusions.

II. BACKGROUND

A. NAND Flash Memory

A NAND flash memory chip is the basic service unit and
has independent chip enable (CE) and read/busy (R/B)
singals. Each chip consists of several dies, which has an
internal R/B signal and can work independently. Each die is
composed of several planes sharing the same wordline and
voltage driver. Each plane holds several blocks, and each
block contains a number of pages, each of which includes
several sectors.

There are three basic operations in flash memory: read,
program and erasure. Read and program are typically
performed in a page unit, while the erasure is typically
performed in a block unit. In general, a program operation is
about 10 times slower than a read operation, but about 8 times
faster than an erase operation [8].

 To exploit the parallelism inside chips, three advanced
commands including interleave, multiplane and copyback,
are supported by flash manufactures, additionally. They
enable flash memory operations to be processed in parallel,
which we refer to as the flash-level parallelism (FLP).

B. Solid State Drives

Fig.1. An illustration of SSD architecture

Fig. 1 illustrates a general architecture of an SSD including
a main controller, a set of NAND flash memory chips and a
DRAM chip. The main controller is composed of a host
interface controller, an embedded CPU with SRAM, a
DRAM controller and flash controllers. The host interface
controller receives I/O requests from the host and transfers
data between the host and the SSD through a specific bus
interface protocol such as SATA, SAS or PCI-E. The
embedded CPU with SRAM provides computing power for
running the software layer, called flash translation layer
(FTL). The FTL translates I/O requests to flash requests,
specifically, translates logical page addresses of I/O requests,
which are used in host system, into physical page addresses,
which are used to access flash memory. The FTL also
performs garbage collection, and wear leveling operations.
Each flash controller, which issues read, program, and
erasure commands to NAND flash chips, works

independently. Each flash chip, which connects with a flash
controller via a channel bus, can execute read, program and
erasure commands independently. The flash requests can be
dispatched across multiple flash controllers and channels,
which we refer to as channel striping. Further, the flash
controller can pipeline the flash requests across multiple flash
chips in the same channel, which we refer to as channel
pipelining. With channel striping and channel pipelining,
which we refer to as system-level parallelism (SLP), flash
requests can be served in parallel. The DRAM buffers user
data and FTL metadata. The dirty data must be written back
to flash memory when it is evicted to make free space for
incoming new data.

C. Out-of-Order Execution

Out-of-order execution, which originates in early work by
Tomasulo [9], is widely employed in microprocessors [10].
The basic idea is to exploit parallelism of available function
units to improve the performance of microprocessors by
reordering instructions. Out-of-order execution also can be
used in SSDs [11, 12]. Flash requests can be reordered to
leverage the internal parallelism inside an SSD to improve
the I/O performance. To this end, the data dependence in
outstanding requests has to be analyzed first to avoid
potential data hazards.

Data hazards can be classified into two types, depending
on the sequence of read, program and erasure requests in the
queue.

PAR (program-after-read)-A program request tries to
program a destination flash page before it is read out by a
previous read request. As a result, the read request would
return a fault value. This hazard arises from an overwrite
request.

EAR (erase-after-read)-An erasure request tries to erase a
destination block before all the valid data in the block is read
out, leading to data loss. This hazard arises from a garbage
collection operation.

The two hazards will not occur in a first-in first-out (FIFO)
scheduler, because all requests are executed in FIFO order. In
contrast, an out-of-order scheduler must prevent any data
fault caused by data hazards.

III. AOS SCHEDULER

Fig. 2. An overall architecture of an SSD with AOS

 Fig. 2 illustrates the overall architecture of an SSD with our
proposed AOS scheduler. AOS is designed below the FTL. A
write buffer in the DRAM is divided into two regions: a
working region, which works as a traditional write buffer,
and a dispatching region, which stores the dirty data evicted
from the working region. The data in both regions also serve
read requests from the host system, which improves read
performance.

AOS consists of pending queues, a conflict detection
module, a request dispatching policy, and a re-ordering
policy, as shown in Fig. 2. The conflict detection module

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

identifies access conflicts among requests. When a request
arrives at AOS, it is inserted into one of the three pending
queues, a read queue, a program queue, and an erasure queue,
according to its operation type. When the re-ordering set
becomes empty, the request dispatching policy adaptively
selects a dispatching scheme based on the states of pending
queues, and moves as many requests as possible to the
re-order set according to the detected conflicts. Then, the
re-ordering policy re-orders the requests in the set and issues
them to flash controllers until the set becomes empty.

A. Conflict Detection Module

Access conflict depends on the locations of requests. If
requests go to the same chip at the same time, access conflicts
will occur, which we refer to as chip-level access conflicts.
To efficiently identify these conflicts, we design a conflict
detection module based on request addresses, which consists
of four parts: channel, chip, die and plane. A flash request is
denoted as follows:

Ri =Ti (channeli, chipi, diei, planei) (1)

 Where Ti represents the request type, such as read,
program, or erasure, and Channeli, chipi, diei, and planei
correspond to channel, chip, die, and plane addresses of flash
request Ri.
 The chip-level conflict detection module consists of a set of
chip classifiers: D0, D1, …, Dm-1, where m is the number of
chips inside an SSD. According to the chip classifiers, we
construct a set of corresponding chip-level request sets: d0,
d1, …, dm-1. To efficiently identify each chip-level request set,
we define a chip-location vector, denoted as vm-1 (dm-1,
channelm-1, valid m-1), where channel m-1 represents the
channel address of the requests belonging to dm-1, valid m-1

represents whether the chip-level request set is empty. For
example, 0 indicates the chip-level request set is empty, and 1
indicates it is not empty. Assume that RS denotes the
re-ordering set in the form of RS = {d0, d1, …, dm-1}. Note
that each chip classifier composes of two fields: channel and
chip addresses. As a result, the total number of chip
classifiers equals to the number of chips in an SSD. For
example, an SSD has 4 channels, each channel consists of 2
chips, and then the chip-level conflict detection module has 8
chip classifiers as shown in Table 1. According to the chip
classifiers, all the requests in the re-ordering set can be
distributed into 8 different chip-level request sets.

Table 1 An example with eight chip classifiers
Chip
classifier

Channel Chip
Chip-level
request set

Channel-level
request set

D0 0 0 d0 c0 D1 0 1 d1
D2 1 0 d2 c1 D3 1 1 d3
D4 2 0 d4 c2 D5 2 1 d5
D6 3 0 d6 c3 D7 3 1 d7

Formally we define a chip classifier as follows:

Dm-1 = (Channelm-1, chipm-1) (2)

 A flash request Ri, will be classified into a specific
chip-level request set Dm-1 when its channel and chip
addresses match the Dm-1’s field values. Specifically, the
classification is performed as follows:

Request_c = ((channeli== Channelm-1)&(chipi== chipm-1)) (3)

 If Request_c==0, Ri, belongs to Dm-1. AOS successively selects
chip classifiers and checks if formula (3) is equal to zero until
the chip-level request set is found.

The process of conflict detection is as follows. When
receiving a new request, the conflict detection module first
identifies which chip-level request set it belongs to based on
formula (3). If the valid field of the chip-level request set is 0,
there is no access conflict, and then the request is moved
directly to the chip-level request set. Otherwise, the
chip-level conflict detector further checks whether access
conflicts exist and if exist, whether they can be eliminated by
die interleaving or multiplane sharing. For example, there are
two requests, Ri and Rj, of the same type and they are checked
as follows:

Chip_c = ((channeli==channelj)&(chipi==chipj)&(diei==diej)&(planei==planej)) (4)

If Chip_c == 0, there is no access conflict between the two
requests. Otherwise, a conflict will occur, and the dispatching
operation is cancelled.

B. Adaptive Request Dispatching Policy

To reduce the write-caused interference without sacrificing
the write performance, we present an adaptive request
dispatching policy, which includes three schemes: read
preference dispatching scheme, program preference
dispatching scheme and erasure preference dispatching
scheme. When the re-ordering set becomes empty, the
request dispatch policy adaptively selects one of them to
dispatch requests based on the states of pending queue, such
as the length of read/program pending queue.

1) Read Preference Dispatching Scheme
 If the dispatching region, which dominates the size of
program pending queue, is not full, reads are prioritized over
programs.

Algorithm 1. Read preference dispatching scheme
input: read/program/erase requests;
 number_read is the number of read requests;
 number_program is the number of program requests;
 number_erase is the number of erase requests.
output: chip-level request sets

1 dim i As Integer
2 while RS is not full and read pending queue is not empty do
3 Picks up a request from the head of this queue.
4 Dispatches it to target dm-1.
5 endwhile
6 if program pending queue is not empty then
7 for i=1 to number_program do
8 if RS is not full then
9 Picks up a new request.
10 If access conflict/data hazard is found then
11 Cancel the dispatching operation.
12 else
13 Dispatches it to target dm-1.
14 endif
15 endif
16 endfor
17 endif
18 if erase pending queue is not empty then
19 for i=1 to number_erase do
20 if RS is not full then
21 Picks up a new request.
22 If access conflict is found then
23 Cancel the dispatching operation.
24 else
25 Dispatches it to target dm-1.
26 endif
27 endif
28 endfor
29 endif

Algorithm 1 shows the pseudocode of the read preference

dispatching scheme. The algorithm first moves as many read
requests as possible to the corresponding chip-level request
sets in the re-ordering set. Then, program requests will be

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

dispatched if the program pending queue is not empty.
During dispatching program requests, the chip-level conflict
detector will check whether there exists an access conflict
between a program request and any other request in the
re-ordering set. At the same time, data hazard, such as PAR,
must also be checked. Once a conflict/data hazard is found,
the dispatching operation is canceled, and then the scheme
picks up the next program request. Otherwise, the program
request is moved to the corresponding chip-level request set.
In this way, we can avoid the write-caused interference.
Finally, erasure requests will be dispatched if the erasure
pending queue is not empty. Similar to dispatching program
requests, access conflicts are also checked. The erasure
requests, which do not conflict with any other request in the
re-order set, will be moved to the corresponding chip-level
request sets.

2)Program Preference Dispatching Scheme

Program requests will be scheduled prior to read requests
when the dispatching region is full. Compared to read
requests, program requests are less concerned about the
response times of individual requests, but they require the
scheduler to sustain high throughput.

Algorithm 2. Program preference dispatching scheme

input: program/ read/erase requests;
number_read is the number of read requests;

 number_program is the number of program requests;
 number_erase is the number of erase requests.
output: chip-level request sets

1: dim i As Integer
2: Do line 7-16 in Algorithm 1.
3: if read pending queue is not empty then
4: for i=1 to number_read do
5: if RS is not full then
6: Picks up a new request.
7: If access conflict is found then
8: Cancel the dispatching operation.
9: else
10: Dispatches it to target dm-1.
11: endif
12: endif
13: endfor
14: endif
15: Do line 18-29 in Algorithm 1.

Algorithm 2 shows the pseudocode of the program

preference dispatching scheme. When the dispatching region
is full, the service of program requests prioritizes read service
to avoid write pipeline stalls. During dispatching program
requests, similar to read preference dispatching scheme,
access conflicts/data hazards must be checked. Only the
program requests without access conflicts/data hazards are
dispatched to corresponding chip-level request sets. As a
result, write parallelism is well leveraged, improving the
write performance. After that there are still free rooms, and
then all the read requests, which have no access conflicts with
other requests in the re-ordering set, are moved to the
corresponding chip-level request sets. During dispatching
read requests, access conflicts will be checked to avoid
resource competition with other program requests in the
re-ordering set. In this way, we can process program requests
as soon as possible to avoid write pipeline stalls. Lastly, the
erase requests, which have no access conflicts with other
requests in the re-ordering set, are moved to the
corresponding chip-level request sets if they still have free
spaces.

3) Erase Preference Dispatching Scheme
 In general, an erasure operation should be avoided until free
blocks are not enough or the read and program pending
queues are empty. However, it is feasible for an SSD to
perform an erasure operation ahead of time if it does not
block a read/program request. In this way, the scheduler can
efficiently utilize flash memory resources.

Algorithm 3 shows the pseudocode of the erase preference
dispatching scheme. When the read pending queue is empty
and the dispatching region is not full, erase preference
dispatch scheme is adopted. After all the erasure requests are
moved to the corresponding chip-level request sets in the
re-ordering set, program requests will be scheduled if the
program pending queue is not empty. During dispatching
program requests, similar to read preference dispatching
scheme, only the program requests without access
conflicts/data hazards can be dispatched to the corresponding
chip-level request sets.

Algorithm 3. Erase preference dispatching scheme

input: erase/program requests
 number_program is the number of program requests;
 number_erase is the number of erase requests.
output: chip-level request sets

1: dim i As Integer
2: Do line 19-28 in Algorithm 1.
3: Do line 7-16 in Algorithm 1.

C. Re-ordering Policy

With the chip-level conflict detection module and the
adaptive request dispatching policy, the requests are
distributed into the corresponding chip-level request sets,
according to their operation types, thus the write-caused
interference is eliminated. However, channel-level access
conflicts may still occur among the requests in different
chip-level request sets due to competing for the shared
channel resources. To reduce these conflicts, we present a
re-ordering policy, which includes constructs the
channel-level request set and re-order the requests in the set.

Based on channel addresses of flash requests, we construct
a set of channel-level request sets: c0, c1,…, cn-1, each of
which consists of a set of corresponding chip-level request
sets and is an element of the re-ordering set, which is denoted
as RS = {c0, c1, …, cn-1}. For example, an SSD has 4
channels, each channel consists of 2 chips, and then there are
4 channel-level request sets, each of which has 2 chip-level
request sets, as shown in Table 1. For two different chip-level
request sets, if their channel fields are the same, they will be
distributed into the same channel-level request set. For
example, the channel fields of v0 and v1 are 0, the
corresponding chip-level request set d0 and d1 are distributed
into the same channel-level request set c0, denoted as c0={d0 ,
d1}.

In order to fairly and efficiently reorder the requests in a
channel-level request set, the re-ordering policy sets a
priority level for each chip-level request set. All the
chip-level request sets are in the same priority level of 0 at the
beginning of reorder.

Once the re-ordering set becomes full, the re-ordering
policy schedules all the requests as follows: (1) constructing
channel-level request sets based on the chip-location vectors
until all the chip-level request sets are divided into the
corresponding channel-level request sets; (2) selecting a
channel-level request set from the re-ordering set in a

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

round-robin manner until the re-order set becomes empty; (3)
selecting a chip-level request set with the lowest priority level
in the channel-level request set, and dispatching the requests
to the corresponding flash controller. If they are
program/erase requests, AOS deletes the chip-level request
set after the dispatching is completed. If they are read
requests, requests without access conflicts will be issued to
the target flash controller. After that if there are still read
requests, the priority level of the chip-level request set is
increased by 1. Otherwise, AOS deletes the chip-level
request set; (4) continuing with step 2 and 3 until all the
requests have been dispatched to the corresponding flash
controllers.

IV. EVALUATION METHODOLOGY

A. Experiment Setup

1) Simulator
 We built an event-based trace-driven SSD simulator by
adding a scheduling layer into the SSDsim [13]. We
implemented the following schedulers in SSDsim simulator:
1) FIFO, 2) PIQ [6], 3) P/E Suspension [7], and 4) AOS.

2) Workloads

We use a set of traces for experimental evaluation, which
are collected from actual enterprise applications and are
available in [14] and [15]. They include corporate mail server
(EX), online transaction processing (FIN), and MSN file
server (MSN).

B. Evaluation
1) Latency analysis
 Fig. 3(a) shows the normalized read latencies of the four

scheduling policies for all the workloads, compared to FIFO.
On average, AOS reduces the read latency by 51%, compared
to FIFO. Our best-case read performance comes from EX
workload, where we reduce the read latency by 87%. Our
worst-case read performance occurs when running FIN2
workload.

(a) Read latency.

(b) Write latency.

Fig. 3. Read latency (Fig. 3(a)), Read latency (Fig. 3(b))
 We note that the reduction in read latency does not lead to
write performance degradation. Fig. 3(b) shows the write

latencies normalized to that of FIFO. On average, AOS
reduces 45% write latency over FIFO.

 We also note that the read performance of P/E Suspension
is lightly less than that of AOS, an average of 8%, under all
the workloads. While P/E Suspension gives read requests the
highest priority and serves them as soon as possible by
suspending P/E requests, read performance highly depends
on the frequency and cost of suspension P/E. Moreover, we
find that its write performance is worse, an average of 22%,
than AOS. One reason is that P/E Suspension simply
postpones write operations, increasing write latency. Another
reason is that P/E Suspension cannot efficiently exploit the
write parallelism, leading to further write performance loss.

2) Access Conflict Analysis
 As described in previous sections, access conflicts are
classified into two types: the chip-level access conflicts and
the channel-level access conflicts. For the chip-level access
conflicts, we only consider the read-blocked-by-write
situation. As a result, it refers to the write-caused
interference.

(a) Write-caused interference.

(b) Channel-level access conflict.

Fig. 4. Write-caused interference (Fig. 4(a)), channel-level access conflict
(Fig. 4(b)).

 Fig. 4(a) plots the result of write-caused interference
normalized to FIFO. On average, AOS reduces write-caused
interference by 55% compared to FIFO under all the
workloads.

Fig. 4(b) shows the normalized number of channel-level
access conflicts occurred in each scheduler, compared to
FIFO. We can see that AOS significantly reduces the
channel-level access conflicts, an average of 31%, compared
to FIFO.
 We note that P/E Suspension reduces the write-caused
interference under all the workloads, compared to FIFO;
however, it still suffers from more serious write-caused
interference than AOS. The reason is that P/E Suspension
processes requests based on incoming order of I/O requests
so that it cannot avoid access conflicts among requests and
efficiently exploit the parallelism inside SSDs. In contrast,
AOS only dispatches the requests without access conflicts to
target flash chips. As a result, the write-caused interference of
AOS is reduced more than that of P/E Suspension.
Nevertheless, there still exists write-caused interference in

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

AOS. This is because that the read/write request can be
blocked by another read/write request, which has been issued
previously.

3) Parallelism Analysis
 Fig. 5(a) shows the leveraged FLPs of the four schedulers,
normalized to that of FIFO. On average, AOS achieves 2
times of FLPs gains over FIFO under the four workloads.
 Fig. 5(b) shows the leveraged SLPs of the four schedulers,
normalized to that of FIFO. On average, AOS achieves 1.3
and 1.2 times of SLP gains over FIFO and P/E Suspension
under the four workloads, respectively, while only 1.08 times
over PIQ. This is because, compared to FIFO and P/E
Suspension, AOS can make use of channel striping and
channel pipelining to maximize the number of active
channels and chips. PIQ also deploys a similar re-ordering
policy; however, it employs a less efficient dispatching
policy. As a result, it degrades lightly in SLP gains over AOS.

(a) FLP (flash-level parallelism).

(b) SLP (system-level parallelism).

Fig.5. FLP (Fig. 5(a)), SLP (Fig. 5(b)).

4)Storage overhead

 Storage overhead can be categorized into three types:
dispatching region, pending queue request entry and re-order
set request entry.

Dispatching region: AOS keeps the dirty data evicted from
the working region, which adds significant cost. In this paper,
AOS requires 2MB of write buffer and the dispatching region
size is less 1% of the total DRAM capacity if the size of
DRAM is 256MB.

Pending queue request entry: AOS requires three types of
pending queues: read, program and erase. We assume there
are 512 requests per queue, each request entry has a 64-bit
partial physical address stored in it, it consumes 12kB of
DRAM capacity.

Re-order set request entry: when the adoptive dispatch
policy move requests to the re-order set, corresponding
request entries are stored temporarily in DRAM cache before
they are dispatched to NAND flash chips, we assume the
re-order set can hold 2*n requests, n indicate the number of
chip in an SSD and then it consumes 1kB of DRAM capacity
if n is equal to 64 and each request entry has a 64 bits partial
physical address.

According to the above analysis, the total storage is 2MB +

12KB + 1KB = 2061KB, which is less than 1% of the 256MB
DRAM.

V. CONCLUSION

 In this paper, we propose AOS, a novel device-level

scheduler, to mitigate the write-caused interference and
maximize the read performance without sacrificing the write
performance. AOS employs a conflict detection module to
efficiently identify access conflicts among requests. Then,
AOS quickly distinguishes between write requests that will
interfere with read requests and those that will not,
significantly reducing the write-caused interference. AOS
also exploits the write parallelism by postponing the
commitments of program requests to the target flash chips,
improving the write performance. In addition, AOS further
alleviates channel-level access conflicts and improves SSD
I/O performance by reordering the dispatched requests. Our
experiment results show that AOS reduces an average of 51%
read latency and 45% write latency, compared to FIFO.

REFERENCES
[1] N. Agrawal, V. Prabhakaran, T.Wobber, J. D. Davis, M. Manasse, and

R. Panigrahy. Design tradeoffs for SSD performance. In Proceedings of
the 2008 USENIX Annual Technical Conference, 2008.

[2] S. Park and K. Shen, FIOS: A fair, efficient Flash I/O scheduler, in:
Proceeding of the 10th USENIX Conference on File and Storage
Technologies(FAST), 2012, pp. 1-15.

[3] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, SDF:
Software-Defined Flash for Web-Scale Internet Storage System, in:
Proceedings of the Nineteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014, pp. 471-484.

[4] S. khan, A. Alameldeen, and C. Wilkerson. Improving cache
performance by exploiting read-write disparity. In Proceeding of 20th
IEEE International Symposium On High Performance Computer
Architecture, 2014

[5] H. Wang, P. Huang et al., A novel I/O scheduler for SSD with improved
performance and lifetime, in: Proceeding of the 29th IEEE Symposium
on Mass Storage Systems and Technologies (MSST), 2013.

[6] C. Gao, L. Shi et al., Exploiting parallelism in I/O scheduling for access
conflict minimization in flash-based solid state drives, in: Proceeding of
the 30th IEEE Symposium on Mass Storage Systems and Technologies
(MSST), 2014.

[7] G. Wu, P. Huang, X. He, Reducing SSD read latency via NAND flash
program and erase suspension, in: Proceeding of the 10th USENIX
Conference on File and Storage Technologies (FAST), 2012, pp.
117-123.

[8] K9XXG08UXA datasheet.
http://www.samsung.com/products/semiconductor/flash/technicallinfo/
datasheets.htm, 2014.

[9] R.M. Tomasulo, An efficient algorithm for exploiting multiple
arithmetic units, IBM Journal of Research and Development, 1967,
Volume 11 Issue 1, pp. 25–33.

[10] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,A. Kyker, and P.
Roussel, The Microarchitecture of the Pentium 4 Processor, Intel
Technology Journal, 2001.

[11] S. S. Hahn, S. Lee, and J. Kim, SOS: Software-Based Out-of-Order
Scheduling for High-Performance NAND Flash-Based SSDs, in:
Proceeding of the 29th IEEE Symposium on Mass Storage Systems and
Technologies (MSST), 2013.

[12] M. Jung and M. Kandemir, Sprinkler: Maximizing Resource Utilization
in Many-Chip Solid State Disks, in: Proceeding of the 20th IEEE
International Symposium On High Performance Computer Architecture
(HPCA), 2014, pp. 524-535.

[13] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, Performance
Impact and Interplay of SSD Parallelism through Advanced
Commands, Allocation Strategy and Data Granularity, in: Proceedings
of the international conference on Supercomputing (ICS), 2011, pp.
96-107.

[14] UMass Trace Repository, http://traces.cs.umass.edu, 2014.
[15] Microsoft Enterprise Traces, http://iotta.snia.org/traces/list/BlockIO,

2014.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

