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Abstract—The read/write performance asymmetry of Solid State 

Disks (SSDs) remains a critical concern for read performance. 
Under a concurrent workload with a mixture of read and write 
requests, preceding write requests preempt available flash memory 
resource so as to block read requests, which we call write-caused 
interference. Hence, the read performance, which is often more 
critical than the write performance, can be significantly degraded. 
Unfortunately, state-of-the-art schedulers either are inefficient in 
improving the read performance or suppress the write performance. 
In this paper, we propose a novel scheduler at device level, called 
AOS, to mitigate the write-caused interference and maximize the 
read performance without sacrificing the write performance. 
Specifically, AOS designs a conflict detection module, to efficiently 
identify access conflicts among requests. Then, AOS adaptively 
dispatches as many outstanding requests as possible to a re-ordering 
set based on the detected conflicts to reduce the write-caused 
interference and improve the flash-level parallelism (FLP). Finally, 
AOS carefully re-orders the dispatched requests to reduce 
channel-level access conflicts and improve the system-level 
parallelism (SLP). Extensive experimental results show that AOS 
reduces, an average of 51% read latency and 45% write latency, 
compared to FIFO. 
 

Index Terms—out-of-order scheduling, solid state disk, 
write-caused interference, conflict detector 
 

I. INTRODUCTION 

AND flash-based Solid State Disks (SSDs) have been 
widely deployed in data centers due to higher 
throughput, lower latency, and lower energy than hard 

disk drivers (HDDs) [1]. However, SSDs suffer from two 
critical limitations: the read/write performance asymmetry 
and the erase-before-write feature. Previous works [2, 3] 
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show that, under a concurrent workload with a mixture of 
read and write requests, the read performance can be 
significantly degraded, since preceding writes requests 
preempt available flash memory resource and block read 
requests. Note that the write operation of flash memory is 
much slower than the read operation. To make the matter 
worse, if the block to be written is not free, an erase operation, 
which is much slower than the write operation, must be 
performed before serving the write request due to the 
erase-before-write feature, further degrading the read 
performance. We refer to the read performance degradation 
as the write-caused interference. Unfortunately, the read 
performance is often more critical than the write performance 
[4], it is necessary to mitigate the write-caused interference. 
   In order to achieve this, some studies on SSD I/O schedule 
are proposed at operating system level. Wang et al. [5] 
attempted to divide incoming read/write requests into 
different sub-regions, and then served them in a round-robin 
manner. Gao et al. [6] dispatched requests to different batches 
based on an access conflict detection approach to avoid 
access conflicts. Although these works achieve some 
optimizations in reducing the write-caused interference, the 
optimizations are purely based on the logical page addresses 
(LPAs) required by the file system. Since the same LPA is 
always redirected to different physical page addresses (PPAs) 
due to the out-of-place write strategy of SSDs [2, 3], the 
optimizations cannot be efficient and accurate. To avoid these 
drawbacks, Wu et al. [7] proposed a P/E (program/erase) 
suspension, a device-level scheduler, to reduce the 
write-caused interference. However, frequently 
suspending/resuming the on-going P/E operation introduces 
system overhead and suppresses the write performance. In 
addition, this method required hardware modification. 
  In this paper, we propose AOS, a novel device-level 

scheduler, to mitigate the write-caused interference and 
maximize the read performance without sacrificing the write 
performance. This paper makes the following contributions: 
  We proposed a conflict detection module to identify access 

conflicts among requests. 
    We proposed an adaptive request dispatching policy to 
dispatch as many outstanding requests as possible to a 
re-ordering set to reduce the write-caused interference and 
improve the flash-level parallelism (FLP). Our experiments 
show that this policy reduces an average of 55% 
write-caused interference and improves FLP by about 2 
times over FIFO under enterprise workloads. 

    We proposed a re-ordering policy, which reorders the 
dispatched requests in a round-robin manner to reduce 
channel-level access conflicts and improve the system-level 
parallelism (SLP). Our experiments show that this policy 
reduces an average of 31% channel-level access conflicts and 
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improves SLP by about 1.3 times over FIFO under enterprise 
workloads. 
   We evaluate AOS with various enterprise workloads. AOS 
reduces an average of 51% read latency and 45% write 
latency compared to FIFO. In addition, we show that AOS 
provides better performance than two state-of-the-art 
schedulers [6, 7]. 

The organization of this paper is as follows. In Section II 
the characteristics of SSDs and out-of-order execution are 
introduced. The design of our AOS scheduler is presented in 
Section III. Section IV presents our experimental 
methodology and results. Section V provides our 
conclusions.  

II. BACKGROUND  

A. NAND Flash Memory 

A NAND flash memory chip is the basic service unit and 
has independent chip enable (CE) and read/busy (R/B) 
singals. Each chip consists of several dies, which has an 
internal R/B signal and can work independently. Each die is 
composed of several planes sharing the same wordline and 
voltage driver. Each plane holds several blocks, and each 
block contains a number of pages, each of which includes 
several sectors.  

There are three basic operations in flash memory: read, 
program and erasure. Read and program are typically 
performed in a page unit, while the erasure is typically 
performed in a block unit. In general, a program operation is 
about 10 times slower than a read operation, but about 8 times 
faster than an erase operation [8]. 

  To exploit the parallelism inside chips, three advanced 
commands including interleave, multiplane and copyback, 
are supported by flash manufactures, additionally. They 
enable flash memory operations to be processed in parallel, 
which we refer to as the flash-level parallelism (FLP). 

B. Solid State Drives 

 
Fig.1. An illustration of SSD architecture 

Fig. 1 illustrates a general architecture of an SSD including 
a main controller, a set of NAND flash memory chips and a 
DRAM chip. The main controller is composed of a host 
interface controller, an embedded CPU with SRAM, a 
DRAM controller and flash controllers. The host interface 
controller receives I/O requests from the host and transfers 
data between the host and the SSD through a specific bus 
interface protocol such as SATA, SAS or PCI-E. The 
embedded CPU with SRAM provides computing power for 
running the software layer, called flash translation layer 
(FTL). The FTL translates I/O requests to flash requests, 
specifically, translates logical page addresses of I/O requests, 
which are used in host system, into physical page addresses, 
which are used to access flash memory. The FTL also 
performs garbage collection, and wear leveling operations. 
Each flash controller, which issues read, program, and 
erasure commands to NAND flash chips, works 

independently. Each flash chip, which connects with a flash 
controller via a channel bus, can execute read, program and 
erasure commands independently. The flash requests can be 
dispatched across multiple flash controllers and channels, 
which we refer to as channel striping. Further, the flash 
controller can pipeline the flash requests across multiple flash 
chips in the same channel, which we refer to as channel 
pipelining. With channel striping and channel pipelining, 
which we refer to as system-level parallelism (SLP), flash 
requests can be served in parallel. The DRAM buffers user 
data and FTL metadata. The dirty data must be written back 
to flash memory when it is evicted to make free space for 
incoming new data.  

C. Out-of-Order Execution 

Out-of-order execution, which originates in early work by 
Tomasulo [9], is widely employed in microprocessors [10]. 
The basic idea is to exploit parallelism of available function 
units to improve the performance of microprocessors by 
reordering instructions. Out-of-order execution also can be 
used in SSDs [11, 12]. Flash requests can be reordered to 
leverage the internal parallelism inside an SSD to improve 
the I/O performance. To this end, the data dependence in 
outstanding requests has to be analyzed first to avoid 
potential data hazards. 

Data hazards can be classified into two types, depending 
on the sequence of read, program and erasure requests in the 
queue.  

PAR (program-after-read)-A program request tries to 
program a destination flash page before it is read out by a 
previous read request. As a result, the read request would 
return a fault value. This hazard arises from an overwrite 
request. 

EAR (erase-after-read)-An erasure request tries to erase a 
destination block before all the valid data in the block is read 
out, leading to data loss. This hazard arises from a garbage 
collection operation. 

The two hazards will not occur in a first-in first-out (FIFO) 
scheduler, because all requests are executed in FIFO order. In 
contrast, an out-of-order scheduler must prevent any data 
fault caused by data hazards.  

III. AOS SCHEDULER  

 

 
Fig. 2. An overall architecture of an SSD with AOS 

  Fig. 2 illustrates the overall architecture of an SSD with our 
proposed AOS scheduler. AOS is designed below the FTL. A 
write buffer in the DRAM is divided into two regions: a 
working region, which works as a traditional write buffer, 
and a dispatching region, which stores the dirty data evicted 
from the working region. The data in both regions also serve 
read requests from the host system, which improves read 
performance. 

AOS consists of pending queues, a conflict detection 
module, a request dispatching policy, and a re-ordering 
policy, as shown in Fig. 2. The conflict detection module 
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identifies access conflicts among requests. When a request 
arrives at AOS, it is inserted into one of the three pending 
queues, a read queue, a program queue, and an erasure queue, 
according to its operation type. When the re-ordering set 
becomes empty, the request dispatching policy adaptively 
selects a dispatching scheme based on the states of pending 
queues, and moves as many requests as possible to the 
re-order set according to the detected conflicts. Then, the 
re-ordering policy re-orders the requests in the set and issues 
them to flash controllers until the set becomes empty. 

A. Conflict Detection Module 

Access conflict depends on the locations of requests. If 
requests go to the same chip at the same time, access conflicts 
will occur, which we refer to as chip-level access conflicts. 
To efficiently identify these conflicts, we design a conflict 
detection module based on request addresses, which consists 
of four parts: channel, chip, die and plane. A flash request is 
denoted as follows: 

Ri =Ti (channeli, chipi, diei, planei)       (1) 

 Where Ti represents the request type, such as read, 
program, or erasure, and Channeli, chipi, diei, and planei 
correspond to channel, chip, die, and plane addresses of flash 
request Ri. 
  The chip-level conflict detection module consists of a set of 
chip classifiers: D0, D1, …, Dm-1, where m is the number of 
chips inside an SSD. According to the chip classifiers, we 
construct a set of corresponding chip-level request sets: d0, 
d1, …, dm-1. To efficiently identify each chip-level request set, 
we define a chip-location vector, denoted as vm-1 (dm-1, 
channelm-1, valid m-1), where channel m-1 represents the 
channel address of the requests belonging to dm-1, valid m-1 

represents whether the chip-level request set is empty. For 
example, 0 indicates the chip-level request set is empty, and 1 
indicates it is not empty. Assume that RS denotes the 
re-ordering set in the form of RS = {d0, d1, …, dm-1}. Note 
that each chip classifier composes of two fields: channel and 
chip addresses. As a result, the total number of chip 
classifiers equals to the number of chips in an SSD. For 
example, an SSD has 4 channels, each channel consists of 2 
chips, and then the chip-level conflict detection module has 8 
chip classifiers as shown in Table 1. According to the chip 
classifiers, all the requests in the re-ordering set can be 
distributed into 8 different chip-level request sets. 
 
Table 1 An example with eight chip classifiers  
Chip 
classifier 

Channel Chip 
Chip-level 
request set 

Channel-level 
request set 

D0 0 0 d0 c0 D1 0 1 d1 
D2 1 0 d2 c1 D3 1 1 d3 
D4 2 0 d4 c2 D5 2 1 d5 
D6 3 0 d6 c3 D7 3 1 d7 

  
Formally we define a chip classifier as follows: 

Dm-1 = (Channelm-1, chipm-1)               (2) 

   A flash request Ri, will be classified into a specific 
chip-level request set Dm-1 when its channel and chip 
addresses match the Dm-1’s field values. Specifically, the 
classification is performed as follows: 

Request_c =  ((channeli== Channelm-1)&(chipi== chipm-1))   (3) 

   If  Request_c==0, Ri, belongs to Dm-1. AOS successively selects 
chip classifiers and checks if formula (3) is equal to zero until 
the chip-level request set is found.  

The process of conflict detection is as follows. When 
receiving a new request, the conflict detection module first 
identifies which chip-level request set it belongs to based on 
formula (3). If the valid field of the chip-level request set is 0, 
there is no access conflict, and then the request is moved 
directly to the chip-level request set. Otherwise, the 
chip-level conflict detector further checks whether access 
conflicts exist and if exist, whether they can be eliminated by 
die interleaving or multiplane sharing. For example, there are 
two requests, Ri and Rj, of the same type and they are checked 
as follows: 

Chip_c = ((channeli==channelj)&(chipi==chipj)&(diei==diej)&(planei==planej))   (4) 

If Chip_c == 0, there is no access conflict between the two 
requests. Otherwise, a conflict will occur, and the dispatching 
operation is cancelled. 

B. Adaptive Request Dispatching Policy 

To reduce the write-caused interference without sacrificing 
the write performance, we present an adaptive request 
dispatching policy, which includes three schemes: read 
preference dispatching scheme, program preference 
dispatching scheme and erasure preference dispatching 
scheme. When the re-ordering set becomes empty, the 
request dispatch policy adaptively selects one of them to 
dispatch requests based on the states of pending queue, such 
as the length of read/program pending queue. 

1) Read Preference Dispatching Scheme 
    If the dispatching region, which dominates the size of 
program pending queue, is not full, reads are prioritized over 
programs. 
  
Algorithm 1. Read preference dispatching scheme 
input: read/program/erase requests; 
  number_read is the number of read requests; 
     number_program is the number of program requests; 
     number_erase is the number of erase requests. 
output: chip-level request sets 

1 dim i As Integer 
2 while RS is not full and read pending queue is not empty do 
3 Picks up a request from the head of this queue. 
4 Dispatches it to target dm-1. 
5 endwhile 
6 if program pending queue is not empty then 
7 for i=1 to number_program do 
8  if RS is not full then 
9   Picks up a new request.  
10   If access conflict/data hazard is found then 
11    Cancel the dispatching operation. 
12   else 
13    Dispatches it to target dm-1. 
14   endif 
15  endif 
16 endfor 
17 endif 
18 if erase pending queue is not empty then 
19 for i=1 to number_erase do 
20  if RS is not full then 
21   Picks up a new request. 
22   If access conflict is found then 
23    Cancel the dispatching operation. 
24   else 
25    Dispatches it to target dm-1. 
26   endif 
27  endif 
28 endfor 
29 endif 

 
Algorithm 1 shows the pseudocode of the read preference 

dispatching scheme. The algorithm first moves as many read 
requests as possible to the corresponding chip-level request 
sets in the re-ordering set. Then, program requests will be 
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dispatched if the program pending queue is not empty. 
During dispatching program requests, the chip-level conflict 
detector will check whether there exists an access conflict 
between a program request and any other request in the 
re-ordering set. At the same time, data hazard, such as PAR, 
must also be checked. Once a conflict/data hazard is found, 
the dispatching operation is canceled, and then the scheme 
picks up the next program request. Otherwise, the program 
request is moved to the corresponding chip-level request set. 
In this way, we can avoid the write-caused interference. 
Finally, erasure requests will be dispatched if the erasure 
pending queue is not empty. Similar to dispatching program 
requests, access conflicts are also checked. The erasure 
requests, which do not conflict with any other request in the 
re-order set, will be moved to the corresponding chip-level 
request sets. 

 
2)Program Preference Dispatching Scheme 

Program requests will be scheduled prior to read requests 
when the dispatching region is full. Compared to read 
requests, program requests are less concerned about the 
response times of individual requests, but they require the 
scheduler to sustain high throughput.  

 
Algorithm 2. Program preference dispatching scheme 

input: program/ read/erase requests; 
number_read is the number of read requests; 

     number_program is the number of program requests; 
     number_erase is the number of erase requests. 
output: chip-level request sets 

1: dim i As Integer 
2: Do line 7-16 in Algorithm 1. 
3: if read pending queue is not empty then 
4: for i=1 to number_read do 
5:  if RS is not full then 
6:   Picks up a new request.  
7:   If access conflict is found then 
8:    Cancel the dispatching operation. 
9:   else 
10:    Dispatches it to target dm-1. 
11:   endif 
12:  endif 
13: endfor 
14: endif 
15: Do line 18-29 in Algorithm 1. 

 
Algorithm 2 shows the pseudocode of the program 

preference dispatching scheme. When the dispatching region 
is full, the service of program requests prioritizes read service 
to avoid write pipeline stalls. During dispatching program 
requests, similar to read preference dispatching scheme, 
access conflicts/data hazards must be checked. Only the 
program requests without access conflicts/data hazards are 
dispatched to corresponding chip-level request sets. As a 
result, write parallelism is well leveraged, improving the 
write performance. After that there are still free rooms, and 
then all the read requests, which have no access conflicts with 
other requests in the re-ordering set, are moved to the 
corresponding chip-level request sets. During dispatching 
read requests, access conflicts will be checked to avoid 
resource competition with other program requests in the 
re-ordering set. In this way, we can process program requests 
as soon as possible to avoid write pipeline stalls. Lastly, the 
erase requests, which have no access conflicts with other 
requests in the re-ordering set, are moved to the 
corresponding chip-level request sets if they still have free 
spaces. 

 

3) Erase Preference Dispatching Scheme 
   In general, an erasure operation should be avoided until free 
blocks are not enough or the read and program pending 
queues are empty. However, it is feasible for an SSD to 
perform an erasure operation ahead of time if it does not 
block a read/program request. In this way, the scheduler can 
efficiently utilize flash memory resources. 

Algorithm 3 shows the pseudocode of the erase preference 
dispatching scheme. When the read pending queue is empty 
and the dispatching region is not full, erase preference 
dispatch scheme is adopted. After all the erasure requests are 
moved to the corresponding chip-level request sets in the 
re-ordering set, program requests will be scheduled if the 
program pending queue is not empty. During dispatching 
program requests, similar to read preference dispatching 
scheme, only the program requests without access 
conflicts/data hazards can be dispatched to the corresponding 
chip-level request sets. 

 
Algorithm 3. Erase preference dispatching scheme 

input: erase/program requests 
     number_program is the number of program requests; 
     number_erase is the number of erase requests. 
output: chip-level request sets 

1: dim i As Integer 
2: Do line 19-28 in Algorithm 1. 
3: Do line 7-16 in Algorithm 1. 

 

C.  Re-ordering Policy 

With the chip-level conflict detection module and the 
adaptive request dispatching policy, the requests are 
distributed into the corresponding chip-level request sets, 
according to their operation types, thus the write-caused 
interference is eliminated. However, channel-level access 
conflicts may still occur among the requests in different 
chip-level request sets due to competing for the shared 
channel resources. To reduce these conflicts, we present a 
re-ordering policy, which includes constructs the 
channel-level request set and re-order the requests in the set. 

Based on channel addresses of flash requests, we construct 
a set of channel-level request sets: c0, c1,…, cn-1, each of 
which consists of a set of corresponding chip-level request 
sets and is an element of the re-ordering set, which is denoted 
as RS = {c0, c1, …, cn-1}. For example, an SSD has 4 
channels, each channel consists of 2 chips, and then there are 
4 channel-level request sets, each of which has 2 chip-level 
request sets, as shown in Table 1. For two different chip-level 
request sets, if their channel fields are the same, they will be 
distributed into the same channel-level request set. For 
example, the channel fields of v0 and v1 are 0, the 
corresponding chip-level request set d0 and d1 are distributed 
into the same channel-level request set c0, denoted as c0={d0 , 
d1}.  

In order to fairly and efficiently reorder the requests in a 
channel-level request set, the re-ordering policy sets a 
priority level for each chip-level request set. All the 
chip-level request sets are in the same priority level of 0 at the 
beginning of reorder. 

Once the re-ordering set becomes full, the re-ordering 
policy schedules all the requests as follows: (1) constructing 
channel-level request sets based on the chip-location vectors 
until all the chip-level request sets are divided into the 
corresponding channel-level request sets; (2) selecting a 
channel-level request set from the re-ordering set in a 
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round-robin manner until the re-order set becomes empty; (3) 
selecting a chip-level request set with the lowest priority level 
in the channel-level request set, and dispatching the requests 
to the corresponding flash controller. If they are 
program/erase requests, AOS deletes the chip-level request 
set after the dispatching is completed. If they are read 
requests, requests without access conflicts will be issued to 
the target flash controller. After that if there are still read 
requests, the priority level of the chip-level request set is 
increased by 1. Otherwise, AOS deletes the chip-level 
request set; (4) continuing with step 2 and 3 until all the 
requests have been dispatched to the corresponding flash 
controllers. 

IV. EVALUATION METHODOLOGY 

A. Experiment Setup 

1) Simulator 
   We built an event-based trace-driven SSD simulator by 
adding a scheduling layer into the SSDsim [13]. We 
implemented the following schedulers in SSDsim simulator: 
1) FIFO, 2) PIQ [6], 3) P/E Suspension [7], and 4) AOS. 
 
2) Workloads 

We use a set of traces for experimental evaluation, which 
are collected from actual enterprise applications and are 
available in [14] and [15]. They include corporate mail server 
(EX), online transaction processing (FIN), and MSN file 
server (MSN). 

 
B. Evaluation 
1)  Latency analysis 
  Fig. 3(a) shows the normalized read latencies of the four 

scheduling policies for all the workloads, compared to FIFO. 
On average, AOS reduces the read latency by 51%, compared 
to FIFO. Our best-case read performance comes from EX 
workload, where we reduce the read latency by 87%. Our 
worst-case read performance occurs when running FIN2 
workload.  

 
(a) Read latency. 

 
(b) Write latency. 

Fig. 3. Read latency (Fig. 3(a)), Read latency (Fig. 3(b)) 
   We note that the reduction in read latency does not lead to 
write performance degradation. Fig. 3(b) shows the write 

latencies normalized to that of FIFO. On average, AOS 
reduces 45% write latency over FIFO.  

 We also note that the read performance of P/E Suspension 
is lightly less than that of AOS, an average of 8%, under all 
the workloads. While P/E Suspension gives read requests the 
highest priority and serves them as soon as possible by 
suspending P/E requests, read performance highly depends 
on the frequency and cost of suspension P/E. Moreover, we 
find that its write performance is worse, an average of 22%, 
than AOS. One reason is that P/E Suspension simply 
postpones write operations, increasing write latency. Another 
reason is that P/E Suspension cannot efficiently exploit the 
write parallelism, leading to further write performance loss. 
 
2) Access Conflict Analysis 
   As described in previous sections, access conflicts are 
classified into two types: the chip-level access conflicts and 
the channel-level access conflicts. For the chip-level access 
conflicts, we only consider the read-blocked-by-write 
situation. As a result, it refers to the write-caused 
interference. 

 
(a) Write-caused interference. 

 
(b) Channel-level access conflict. 

Fig. 4. Write-caused interference (Fig. 4(a)), channel-level access conflict 
(Fig. 4(b)). 

    Fig. 4(a) plots the result of write-caused interference 
normalized to FIFO. On average, AOS reduces write-caused 
interference by 55% compared to FIFO under all the 
workloads.  

Fig. 4(b) shows the normalized number of channel-level 
access conflicts occurred in each scheduler, compared to 
FIFO. We can see that AOS significantly reduces the 
channel-level access conflicts, an average of 31%, compared 
to FIFO. 
   We note that P/E Suspension reduces the write-caused 
interference under all the workloads, compared to FIFO; 
however, it still suffers from more serious write-caused 
interference than AOS. The reason is that P/E Suspension 
processes requests based on incoming order of I/O requests 
so that it cannot avoid access conflicts among requests and 
efficiently exploit the parallelism inside SSDs. In contrast, 
AOS only dispatches the requests without access conflicts to 
target flash chips. As a result, the write-caused interference of 
AOS is reduced more than that of P/E Suspension. 
Nevertheless, there still exists write-caused interference in 
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AOS. This is because that the read/write request can be 
blocked by another read/write request, which has been issued 
previously. 
 
3) Parallelism Analysis 
   Fig. 5(a) shows the leveraged FLPs of the four schedulers, 
normalized to that of FIFO. On average, AOS achieves 2 
times of FLPs gains over FIFO under the four workloads. 
   Fig. 5(b) shows the leveraged SLPs of the four schedulers, 
normalized to that of FIFO. On average, AOS achieves 1.3 
and 1.2 times of SLP gains over FIFO and P/E Suspension 
under the four workloads, respectively, while only 1.08 times 
over PIQ. This is because, compared to FIFO and P/E 
Suspension, AOS can make use of channel striping and 
channel pipelining to maximize the number of active 
channels and chips. PIQ also deploys a similar re-ordering 
policy; however, it employs a less efficient dispatching 
policy. As a result, it degrades lightly in SLP gains over AOS. 

 
(a) FLP (flash-level parallelism). 

 
(b) SLP (system-level parallelism). 

Fig.5. FLP (Fig. 5(a)), SLP (Fig. 5(b)). 

 
4)Storage overhead 

   Storage overhead can be categorized into three types: 
dispatching region, pending queue request entry and re-order 
set request entry. 

Dispatching region: AOS keeps the dirty data evicted from 
the working region, which adds significant cost. In this paper, 
AOS requires 2MB of write buffer and the dispatching region 
size is less 1% of the total DRAM capacity if the size of 
DRAM is 256MB. 

Pending queue request entry: AOS requires three types of 
pending queues: read, program and erase. We assume there 
are 512 requests per queue, each request entry has a 64-bit 
partial physical address stored in it, it consumes 12kB of 
DRAM capacity. 

Re-order set request entry: when the adoptive dispatch 
policy move requests to the re-order set, corresponding 
request entries are stored temporarily in DRAM cache before 
they are dispatched to NAND flash chips, we assume the 
re-order set can hold 2*n requests, n indicate the number of 
chip in an SSD and then it consumes 1kB of DRAM capacity 
if n is equal to 64 and each request entry has a 64 bits partial 
physical address. 

According to the above analysis, the total storage is 2MB + 

12KB + 1KB = 2061KB, which is less than 1% of the 256MB 
DRAM. 

V.  CONCLUSION 

 
  In this paper, we propose AOS, a novel device-level 

scheduler, to mitigate the write-caused interference and 
maximize the read performance without sacrificing the write 
performance. AOS employs a conflict detection module to 
efficiently identify access conflicts among requests. Then, 
AOS quickly distinguishes between write requests that will 
interfere with read requests and those that will not, 
significantly reducing the write-caused interference. AOS 
also exploits the write parallelism by postponing the 
commitments of program requests to the target flash chips, 
improving the write performance. In addition, AOS further 
alleviates channel-level access conflicts and improves SSD 
I/O performance by reordering the dispatched requests. Our 
experiment results show that AOS reduces an average of 51% 
read latency and 45% write latency, compared to FIFO. 

REFERENCES 
[1]   N. Agrawal, V. Prabhakaran, T.Wobber, J. D. Davis, M. Manasse, and 

R. Panigrahy. Design tradeoffs for SSD performance. In Proceedings of 
the 2008 USENIX Annual Technical Conference, 2008. 

[2]  S. Park and K. Shen, FIOS: A fair, efficient Flash I/O scheduler,  in: 
Proceeding of the 10th USENIX Conference on File and Storage 
Technologies(FAST), 2012, pp. 1-15. 

[3] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, SDF: 
Software-Defined Flash for Web-Scale Internet Storage System, in: 
Proceedings of the Nineteenth International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), 2014, pp. 471-484. 

[4] S. khan, A. Alameldeen, and C. Wilkerson. Improving cache 
performance by exploiting read-write disparity. In Proceeding of 20th 
IEEE International Symposium On High Performance Computer 
Architecture, 2014 

[5]  H. Wang, P. Huang et al., A novel I/O scheduler for SSD with improved 
performance and lifetime, in: Proceeding of the 29th IEEE Symposium 
on Mass Storage Systems and Technologies (MSST), 2013. 

[6]  C. Gao, L. Shi et al., Exploiting parallelism in I/O scheduling for access 
conflict minimization in flash-based solid state drives, in: Proceeding of 
the 30th IEEE Symposium on  Mass Storage Systems and Technologies 
(MSST), 2014. 

[7]  G. Wu, P. Huang, X. He, Reducing SSD read latency via NAND flash 
program and erase suspension, in: Proceeding of the 10th USENIX 
Conference on File and Storage Technologies (FAST), 2012, pp. 
117-123. 

[8] K9XXG08UXA datasheet.  
http://www.samsung.com/products/semiconductor/flash/technicallinfo/
datasheets.htm, 2014. 

[9]  R.M. Tomasulo, An efficient algorithm for exploiting multiple 
arithmetic units, IBM Journal of Research and Development, 1967, 
Volume 11 Issue 1, pp. 25–33. 

[10] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,A. Kyker, and P. 
Roussel, The Microarchitecture of the Pentium 4 Processor, Intel 
Technology Journal, 2001. 

[11] S. S. Hahn, S. Lee, and J. Kim, SOS: Software-Based Out-of-Order 
Scheduling for High-Performance NAND Flash-Based SSDs, in: 
Proceeding of the 29th IEEE Symposium on  Mass Storage Systems and 
Technologies (MSST), 2013. 

[12] M. Jung and M. Kandemir, Sprinkler: Maximizing Resource Utilization 
in Many-Chip Solid State Disks, in: Proceeding of the 20th IEEE 
International Symposium On High Performance Computer Architecture 
(HPCA), 2014, pp. 524-535. 

[13] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, Performance 
Impact and Interplay of SSD Parallelism through Advanced 
Commands, Allocation Strategy and Data Granularity, in: Proceedings 
of the international conference on Supercomputing (ICS), 2011, pp. 
96-107. 

[14] UMass Trace Repository, http://traces.cs.umass.edu, 2014. 
[15] Microsoft Enterprise Traces, http://iotta.snia.org/traces/list/BlockIO, 

2014. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I, 
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015




