
 

 

Abstract— In a previous study, we proposed a novel method 

for approximating multi-dimensional time-series, called 

multi-dimensional time-series Approximation with use of Local 

features at Thinned-out Keypoints (A-LTK), which was shown 

to obtain a sufficiently accurate value when reduced storage cost 

is a requirement. In this study, we propose a modified version of 

this method where two changes are made to address the problem 

of degraded accuracy caused by high dimensionality. Our 

evaluation indicates that the Modified A-LTK is capable of 

achieving similar or superior accuracy compared with A-LTK 

and other existing methods but with the added advantage of 

reduced processing costs. 

 
Index Terms—multi-dimensions, times series, classification, 

approximation, modified A-LTK 

 

I. INTRODUCTION 

APID progress in the development of sensor devices has 

resulted in sensors with the ability to continuously  

acquire multiple time series data. For example, motion 

capture systems can output multiple streams of observed 

stream data on each marker position [5]. The latest 

smartphones and tablets can measure geographical locations 

which means that data from multiple sensors equipped with 

mobile devices can be used for activity estimations. Sensors 

are also useful for predicting extreme weather, for example, 

some parts of the world are repeatedly struck and damaged by 

heavy storms such as hurricanes, typhoons, or cyclones. 

Because predicting the track of a storm is important for 

preventing damage, data of the characteristics for storms is 

measured on a continuous basis [6]. The data, which is 

generated as multi-dimensional time-series, includes the 

location, speed, direction, max-wind-velocity, 

low-atmospheric-pressure, force-win-radius of the storm.  

Many methods have been proposed for modeling and 

classifying multi-dimensional time-series data, but these 

methods lead to a problematic relationship between cost and 

accuracy. In our previous study, we proposed a novel method 

for approximating multi-dimensional time-series, called 

multi-dimensional time-series Approximation with use of  
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local features at thinned-out keypoints (A-LTK) [1], which 

obtains a sufficiently accurate value when reduced storage 

cost is a requirement. In this study, we propose a modified 

version of A-LTK in terms of which are similarity value 

normalization and a modification of the similarity definition, 

which address the crucial problem of degraded caused by high 

dimensionality. 

II. MULTI-DIMENSIONAL TIME SERIES CLASSIFICATIONS AND 

A-LTK [1] 

As is known, a multi-dimensional time-series is defined as a 

sequence of vectors, that is, TS = <v1, v2, ..., vn>, where vk is a 

d-dimensional vector at a time tk. When k=1, TS is a time 

series of scalar values, that is one dimensional time series. For 

our purpose, the assumption is made that the length of TS, n, 

is a variable. A query Q is also defined as a sequence of 

d-dimensional vectors qk. Q=<q1, q2, ..., qm>. 

Many methods that use multi-dimensional time-series for 

classifications, searching, and clustering, have been proposed 

to date. However these methods lead to a problematic 

relationship between cost and accuracy. We have proposed a 

novel method for approximating multi-dimensional 

time-series, named multi-dimensional time-series 

Approximation with use of Local features at Thinned-out 

Keypoints (A-LTK).  

There are two important concepts with A-LTK: 1) 

thinned-out keypoints and 2) local feature construction. The 

basic concepts are illustrated in Figure 1. First, only those 

time points which are necessary for representing 

multi-dimensional time-series are selected and used as 

time-series approximation. The remaining time points are 

those around which local features are constructed and named 

keypoints. No features are constructed at the removed time 

points what were removed.  

A. Thinned-out Keypoints 

The purpose of thinned-out keypoints is to represent an 

original multi-dimensional time series using vectors that are 

as small as possible. Extraction of a smaller number of 

keypoints can reduce the computational cost to calculate a 

dynamic programming scheme such as that used in DTW or 

LCS. 

Two types of thinned-out conditions are introduced to 

select keypoints, namely, a condition on difference with the 

average and a condition on the second difference. 

First, determining whether the condition on the difference 

with the average is met, given a time point ti, is composed of 

the following three steps: 1) the average vector avg(ti) is 

calculated, 2) the difference between vi and avg(ti) is checked, 
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3) if |vi-avg(ti)| is greater than a predefined threshold 1, then 

this time point  ti is regarded as a keypoint.  

Second, determining whether the condition on the second  

difference is met, given a time point ti, is composed of the 

following two steps: 1) the second difference 
2
(ti) is 

calculated, where 
2
(ti) is the difference of the first difference 


2
(ti)= (ti+1)- (ti) and (ti)=vi-vi-1, 2)  2) if |

2
(ti)| is less than 

a predefined threshold 2, then the time point ti is treated as a 

keypoint. 

Figure 2 and 3 show examples of the two conditions. 

As the setting that is selected for these two thresholds 

affects the number of keypoints, the thresholds should be 

determined by using the ratio of the number of keypoints to 

the total number of time points. The ratio parameter is defined 

as:  

     #_ _  /  #_ _ _ ,ratio of keypoints of time points    

And -ratio  has a value in the range of 0.0 to 1.0. 

B. Local Feature Constructions 

 The purpose of local feature extraction is to retain time 

series characteristics from locality viewpoints. It is certainly 

important to retain global characteristics in a time series. 

Using A-LTK, the global characteristics can be represented 

by combining the local features. 

Once a set of keypoints is selected, a feature vector is 

constructed for each keypoint. As many types of feature 

vectors can be defined, the description presented here is 

limited to those that are 1) basic, 2) difference, 3) 

combination of 1) and 2). 

In the basic type of the feature vectors, the original value 

vector around the keypoint is used as the feature vector. The 

simple feature vector fk at a keypoint Kj (=tk) is equal to the 

value vector vk. The adjacent value vectors can be added to 

the value vector vk. In general, the p-degree (basic) feature 

vector is defined as ( vk-p-1
 T

, .., vk-1
 T

, vk
 T

, vk+1
 T

, ..., vk+p-1
 T

)
 T 

 

with (2p+1)*d as its vector degree. This type of feature vector 

is named pB. 

The simple difference type of feature vectors is defined as 

follows:  fk, which is a feature vector at a keypoint Kj (=tk) is fk 

= (vk
 T

-vk-1
 T

, vk+1
 T

-vk
 T

)
T
. Therefore, in general, q-degree 

(difference) feature vector is defined by (vk-q-1
 T

-vk-q
 T

, vk
 T

-vk-1
 

T
, vk+1

 T
-vk

 T
, vk+q

 T
-vk+q-1

 T
)

 T
 with 2q*d as its vector degree. 

This type of feature vector is named q. 

The combination type of feature vectors is a combination of 

p-degree basic vector and q-degree difference vector, with a 

vector degree of 2p+2q-1. This type of feature vectors is 

named pB+q. 

C. Similarity Function 

A similarity function is introduced using our A-LTK. The 

function A LTKSim   (AS1, AS2), where AS1=<a1, ..., aN> and 

AS2=<b1, ..., bM> is defined as follows: 
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A-LTK can be used to classify a multi-dimensional time 

series using the above similarity function. The preliminary 

 

Figure 1. Basic concepts of A-LTK. 

 

Figure 2. A condition on the difference with the average. 

 

 

 

 

Figure 3. A condition on the second difference. 
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experiments, in which we focused on two-dimensional time 

series, supported to conclude that our method was capable of 

attaining similar or superior accuracy compared with other 

existing methods with the additional advantage of a smaller 

processing cost. 

D. Existing Problem  

When we conducted experiments with A-LTK using 

three-dimensional or higher dimensional time-series data, we 

found the results obtained were not as satisfactory as we 

expected. We found that this was attributable to the high 

length of the data when high dimensional time-series were 

used. The similarity function was defined as a loop that 

accumulated the value of the cosine, where the value of 

A LTKSim   became higher when the two time series were 

more similar. Thus, due to the high differences in the lengths 

of the data, the most similar data were the longest.  

We consider three time series, i.e., (1), (2), and (3), as 

shown in Figure 4. These are all two dimensional time series, 

i.e., sequences of two-dimensional vectors of X and Y. 

Intuitively, time series (2) is more similar to time series (3), 

rather than time series (1). However, it is possible that the 

value of A LTKSim  ((1), (2)) is greater than that of 

A LTKSim  ((2), (3)). For example, according to the definition 

used by A-LTK, the similarity value is a sum of the individual 

similarities of the most similar pairs. This similarity is defined 

using the cosine function. In this example, the vector 

directions may be close for a pair at a certain time-point in (1) 

and (2), where the similarity is maximized. Thus, series (2) 

may be considered to be more similar to (1) at this point. To 

solve this problem, we propose a modified method (Modified 

A-LTK), which is described in detail in the next section.  

 

 
 

III. MODIFIED A-LTK 

To address the problem of degraded accuracy, we propose 

a version of the A-LTK method with two modifications: 

similarity value normalization and modification of the 

similarity definition. 

A. Modified A-LTK (a) : similarity value normalization 

As the first modification, we introduce the normalization of 

similarity values by calculating A LTKSim  . The new 

similarity function A LTKSim   (AS1, AS2), where 

AS1=<a1, ..., aN> and AS2=<b1, ..., bM> is defined as follows:  
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where we divide A LTKSim  by (M+N-1).This modification 

make the influence on the results be less when the number of 

matched pairs is high, which occurs frequently in high 

dimensional time series.  

B. Modified A-LTK (b): modification of the similarity 

definition 

As the second modification, we calculate the Euclidean 

distance between feature vectors instead of the cosine 

similarity. The definition of A LTKSim   (AS1, AS2), where 

AS1=<a1, ..., aN> and AS2=<b1, ..., bM> is as follows: 
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Thus, two series are more similar when the value of 

A LTKSim   is smaller. Therefore, a pair of dissimilar data in 

two time-series will not be considered similar and they will 

not be matched. 

IV. Evaluations 

A. Test Data Sets 

We used two datasets in our experiment: the 

Mouse-Dataset and the Action-Data.  

The Mouse-Dataset comprises two-dimensional data, 

which are sketches of simple pictures, that belong to four 

categories: circles, squares, triangles, and waves. The number 

of data items in each category is 20. 

 The Action-Dataset comprises three-dimensional 

trajectory data, which were collected by obtaining trajectory 

data from four different actions performed by parts of 

people’s bodies. The trajectories were captured and outputted 

using a Kinect sensor. Each action comprises three or five 

trajectories of different lengths. 

 In these experiments, we focused on multi-dimensional 

time series, where we compared the Modified A-LTK with  

A-LTK and dynamic time warping (DTW). 

B. Experiments 

The following four experiments were conducted: Modified 

A-LTK(a) accuracy with two-dimensional data (EX1), 

Modified A-LTK (a) accuracy with three-dimensional data 

Figure 4. Image of Data Length Difference 
 

X 
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(EX2), Modified A-LTK(b) processing time (EX3T) and 

Modified A-LTK(b) accuracy (EX3A). The Mouse Dataset 

was used for EX1, while the Action- Dataset was used for 

EX2,EX3A and EX3T. The 1-NN classification task, which is 

a basic and simple application of time series for comparison, 

will be considered to evaluate the accuracy in this section. 

EX1: In this experiment, classification by the Modified 

A-LTK(a) was tested in terms of its accuracy using the 

Mouse-Dataset. The accuracy was defined as: (Number of 

successful classifications) / (Number of classification trials). 

The number of trials was equal to the number of the test data 

set, i.e., 80. The accuracy of the Modified A-LTK(a) was 

compared with that of A-LTK. 

EX2: In this experiment, classification by the Modified 

A-LTK(a) was tested in terms of its accuracy using the 

Action-Dataset. The accuracy was defined in the same 

manner as EX1. The number of trials was equal to the number 

of test data set, i.e., 18. The classification accuracy rates of the 

five Modified A-LTK(a) variants were also compared with 

those of the DTW-CD and AMSS methods. The DTW-CD 

indicates that the cosine distance was used as the distance 

function to calculate the DTW. AMSS is the abbreviation for 

angular metric for shape similarity, and proposed by T. 

Nakamura et al. in 2008. 

 EX3T: In this experiment, the processing time required for 

the 1-NN test was determined using the Action-Dataset. The 

performance of the Modified A-LTK was compared with that 

of the DTW-ED methods, where DTW-ED means that the 

Euclidean distance was used as the distance function to 

calculate the DTW. In addition, the Modified A-LTK(b)(1B) 

was compared by changing the following -ratio values.  

EX3A: In this experiment, classification by the Modified 

A-LTK(b) was tested in terms of its accuracy using the 

Action-Dataset. The accuracy was defined in the same 

manner as EX1. The number of trials was equaled to the 

number of test data set, i.e., 18. The classification accuracy 

rate of the Modified A-LTK(b)(1B) was compared with that 

of the DTW-ED method. 

C. Environment 

Our experiment was performed in a Windows 7 (Pro) PC 

with the following specifications: Intel Core i5 3.0GHZ, 8GB 

Memory, 0.5TB Hard-disk. 

D. Results 

EX1: Table 1 shows the accurary of classification using 

A-LTK and Table 2 shows the classification accuracy with the 

Modified A-LTK (a) using the Mouse-Dataset. These results 

show that the accuracy of the Modified A-LTK (a) method 

was similar or superior to that obtained by A-LTK. The 

accuracy was about 100% using the Modified A-LTK (1Δ, 

2Δ) when the -ratio=58 or 22. 

 
Table 1 the A-LTK Classification Accuracy (%) 

 
-ratio (%) 

58 22 6.9 3.6 

1Δ 62.5 50.0 57.5 47.5 

2Δ 68.8 70.0 57.5 45.0 

1B 25.0 23.8 23.8 25.0 

5B 25.0 23.8 23.8 25.0 

5B+1Δ 25.0 23.8 23.8 25.0 

 

Table 2 the Modified A-LTK (a) Classification Accuracy (%) 

 
-ratio (%) 

58 22 6.9 3.6 

1Δ 100 98.8 86.3 71.3 

2Δ 100 100 85 73.8 

1B 41.3 28.8 21.3 23.8 

5B 46.3 32.5 22.5 23.8 

5B+1Δ 48.8 23.8 22.5 22.5 

 

EX2: Table 3 shows the classification accuracy with the 

Modified A-LTK (a) using the Action-Dataset. These results 

show that the accuracy of the Modified  A-LTK(a) method 

was superior to that obtained using the DTW-CD and AMSS 

methods, even with small -ratio-s, e.g., -ratio=0.066. The 

highest accuracy was obtained using the Modified 

A-LTK(1B,5B, 5B+1Δ) where the -ratio= 0.336. 

 
Table 3 the Modified A-LTK (a) Classification Accuracy (%) 

 
-ratio (%) 

48.6 33.6 12.5 6.6 

DTW-CD 27.8 

AMSS 27.8 

1Δ 61.1 61.1 66.7 66.7 

2Δ 55.6 61.1 61.1 66.7 

1B 77.8 83.3 72.2 61.1 

5B 77.8 83.3 72.2 61.1 

5B+1Δ 77.8 83.3 72.2 61.1 

 

EX3T: The processing times are shown in Table 4,  which 

demonstrate clearly that DTW-ED required much more 

processing time compared with the Modified A-LTK(b)(1B) 

when the -ratio was small. The longer processing time was 

attributable to the computational cost of dynamic 

programming, i.e., generally O(n
2
) . A shorter processing time 

is considered to be preferable provided that the accuracy is 

maintained. EX3A was designed to verify that this was the 

case. 

 
Table 4 Computation time (seconds) 

 
-ratio (%) 

48.6 33.6 25.7 22.5 12.5 

DTW-ED 12500 

1B 2949 1444 660 535 214 

 

EX3A: Table 5 shows the accuracy of the results obtained 

using the Modified A-LTK (b) (1B) and DTW-ED. The 

Modified A-LTK (b) (1B) obtained the same results as 

DTW-ED when the -ratio ≥ 0.257. 

 
Table 5 the Modified A-LTK (b) Classification Accuracy (%) 

 
-ratio (%) 

48.6 33.6 25.7 22.5 12.5 

DTW-ED 83.3 

1B 83.3 83.3 83.3 77.8 77.8 

 

E. Discussion 

Based on these experiments, it can be concluded that: 1) the 

accuracy of the Modified A-LTK (a) method was similar or 

superior to that of the A-LTK method; 2) the Modified 

A-LTK (a) was capable of obtaining superior accuracy 
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compared with other existing methods; and 3) the Modified 

A-LTK (b) achieved similar accuracy to the DTW-ED, but 

with the added advantage of reduced processing costs. 

V. RELATED WORK 

There are currently two kinds of multi-dimensional time 

series approximation: point-based methods and 

contour-based methods. Methods in the first category include 

multi-dimensional regression [7] and DWT/DFT/LCS for 

multi-dimensional data [8]. The only existing method for the 

second category is Symbolic ApproXimation (SAX) [9] that 

is used to approximate each time series composing 

multi-dimensional data [10]. 

Lots of methods, such as DTW[2], LCS[11], EDR[12] and 

AMSS[13,14], are processed for all the vectors of a sequence.  

In other words, vectors at all time-points are used to calculate 

time series similarities. In addition, all of these methods are 

calculated by using a certain kind of dynamic programming 

scheme. Therefore, the cost of )( 2nO  is necessary to obtain a 

distance value where n is the number of time-points in the 

time series. 

There are several methods, such as APCA [15] and SAX 

[9], could be used to reduce the cost in the single dimension 

time series, although a cost reduction method has not yet been 

developed for multi-dimensional time series. Therefore, in 

our previous paper, a novel method for approximating a 

multi-dimensional time series, called A-LTK[1], is proposed 

together with a technique that introduces thinned-out 

keypoints. This technique is capable of reducing the storage 

cost in A-LTK in addition to the computational cost.  

Previous studies have also considered multi-dimensional 

time series. For example, an algorithm was proposed for 

DTW on multi-dimensional time series (MD-DTW) [16]. The 

benefits of MD-DTW could be seen when multidimensional 

series were considered that have synchronization information 

distributed over different dimensions. 

Another algorithm called CMP-Miner [17] was proposed 

to mine closed patterns in a time-series database where each 

record in the database, which is also called a transaction, 

contains multiple time-series sequences. The CMP-Miner 

algorithm can efficiently mine the closed patterns from a 

time-series database.  

An external memory indexing technique was also proposed 

for the rapid discovery of similar trajectories, which can 

support multiple distance measures [18]. The most novel 

feature of this approach is the use of an indexing scheme that 

accommodates multiple distance measures. 

VI. CONCLUSION AND FUTURE WORK 

 In this study, we proposed a modified version of the 

A-LTK method that we proposed previously. We modified 

A-LTK in two respects: similarity value normalization and a 

modification of the similarity definition. Our experimental 

evaluations demonstrated that the Modified A-LTK can 

obtain similar or superior accuracy compared with A-LTK 

and other existing methods, as well as providing the added 

advantage of reduced processing costs.  

Our future work include more detailed experiments using 

time series with more than three dimensions, as well as a 

dataset from a real application. 
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