
Remarks on Solving Algebraic Riccati Matrix
Equations using a Hopfield Neural Network and

Application to Optimal Control Problems
Kazuhiko Takahashi, Sakie Sakae, and Masafumi Hashimoto

Abstract—This paper discusses a method of solving algebraic
Riccati matrix equations using a Hopfield neural network and
presents its application to the optimal control of dynamic
systems with a quadratic cost function. To solve an algebraic
Riccati matrix equation using the optimization ability of a
Hopfield neural network, an energy function is defined using
the elements of the algebraic Riccati matrix equation and a
penalty function of incorporating the positive definite constraint
of the solution. The energy function is minimized through the
dynamics of the Hopfield neural network, and the converged
neuron states provide the solution of the algebraic Riccati
matrix equation. Computational experiments using a linear
second-order system confirm that the Hopfield neural network
can solve the algebraic Riccati matrix equation with sufficient
accuracy. The optimal control of an automotive vehicle is
demonstrated as a practical application of controlling dynamic
systems using the solution obtained by the Hopfield neural
network; the simulation results indicate the feasibility and
effectiveness of the proposed neural network–based optimal
control.

Index Terms—Hopfield neural network, Algebraic Riccati
matrix equation, Energy function, Optimal control, Dynamic
systems.

I. INTRODUCTION

DURING the past quarter century, artificial neural net-
works have been applied worldwide in many scientific

fields because of their flexibility and learning ability. In
control engineering, several types of neural network–based
control systems that take advantage of the neural network
characteristics, such as non–linear function approximation
ability, adaptive/learning ability, generalizability and opti-
mization ability, have been proposed, and many successful
control applications have been demonstrated [1], [2], [3], [4].
It is well known that Riccati matrix equations should be
solved to obtain state feedback gain parameters in linear–
quadratic optimal control problems and robust control prob-
lems with H2 and H∞ control. Many numerical methods
of solving algebraic Riccati matrix equations have been
investigated because the solutions of these equations in
continuous/discrete–time play an important role in control
problems. Accordingly, several studies have investigated the
use of neural networks to solve algebraic Riccati matrix
equations [5], [6], [7], [8].
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In this paper, a neural network–based optimal control
whose feedback gain parameters are calculated using the
solution of a Riccati matrix equation with parallel computing
by a Hopfield neural network is investigated. In the designed
optimal controller, the Hopfield neural network provides the
solution of the Riccati matrix equation through an energy
minimization process in its off-line training. Computational
experiments for controlling dynamic systems for a quadratic
cost function are conducted to evaluate the feasibility of the
proposed neural network–based optimal control.

II. SOLUTION OF ALGEBRAIC RICCATI MATRIX
EQUATION USING HOPFIELD NEURAL NETWORK

Let the following continuous-time linear system be con-
sidered as a target plant:{

ẋ(t) = Ax(t) + Bu(t)
x(0) = x0

, (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
input vector, A ∈ Rn×n and B ∈ Rn×m are coefficient
matrices and x0 is an initial state vector. When the system is
controllable and all state variables are measurable, an optimal
state feedback input can be obtained so as to minimize the
quadratic cost function I as follows:

u(t) = −1
2
H−1BTGx(t), (2)

I =
∫ ∞

0

{
xT(t)Qx(t) + uT(t)Hu(t)

}
dt (3)

where Q ∈ Rn×n and H ∈ Rm×m are symmetric and
positive definite matrices, and G ∈ Rn×n is the solution
of the following algebraic Riccati matrix equation:

ATG + GA − 1
2
GBH−1BTG + 2Q = 0. (4)

Describing the i–th row and j–th column element of the
left hand side of Eq. (4), ψij , the algebraic Riccati matrix
equation can be expressed using its element as follows:

ψij(ξ) = 0 (i, j = 1, 2, · · · , n) (5)

where ξ =
[
g11 g12 · · · g22 g23 · · · gnn

]T ∈
R

n(n+1)
2 is defined by the upper triangle elements of matrix

G.
The Hopfield neural network composes a pseudo–gradient

system that optimizes an energy function as follows:

ż = −µ∇zE(z) (6)
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where z is the state vector of the neuron, µ = diag(τ−1
i ) is

the learning factor matrix, E is the energy function given by

E(z) = −1
2

∑
i

∑
j

wijzizj −
∑

i

ziθi

+
∑

i

1
τi

∫ zi

0

F−1
i (z)dz,

wij is the weight, θi is the threshold, τi is the constant and Fi

is the activation function of the neuron. To solve the algebraic
Riccati matrix equation using the Hopfield neural network,
we define the energy function as follows [9]:

E(ξ, α) =
1
2

n∑
i=1

n∑
j=i

ψ2
ij(ξ) +

α

2

n∑
i=1

Pi[φi(ξ)] (7)

where φi is the i–th order leading principal minor of matrix
G, Pi is the penalty function and α � 0 is the penalty
parameter. Because of the positive definite matrix G, the
following inequality constraints should be considered:

φi(ξ) > 0 (i = 1, 2, · · · , n). (8)

The penalty function is used to transform an optimization
problem with inequality constraint conditions into an op-
timization problem without constraint conditions. Here the
second–order function is used as the penalty function as
follows:

Pi(s) =
{

0 (s ≥ 0)
[min(0, s)]2 (s < 0)

. (9)

As a result, the dynamics of the Hopfield neural network is
defined as follows:

ξ̇ = −µ∇ξE(ξ, α). (10)

III. COMPUTATIONAL EXPERIMENTS

Computational experiments were conducted to evaluate the
feasibility of using the Hopfield neural network to solve
the algebraic Riccati matrix equation. In the experiments,
we used MathematicaTM ver. 7 (Wolfram Research, Inc.) to
solve the simultaneous differential equations that represent
the dynamics of the Hopfield neural network.

First, the plant was assumed to be a linear second-order
system in which

A =
[

0 1
−2 −3

]
,B =

[
0
1

]
,Q =

[
5 0
0 5

]
,H = 1.

The energy function of the Hopfield neural network was
defined as follows:

E(ξ, α) =
1
2

{(
10 − 4ξ2 − 0.5ξ22

)2

+(ξ1 − 3ξ2 − 2ξ3 − 0.5ξ2ξ3)
2

+
(
10 + 2ξ2 − 6ξ3 − 0.5ξ23

)2
}

+
α

2
{
P1(ξ1) + P2(ξ1ξ3 − ξ22)

}
,

where ξ1 = g11, ξ2 = g12 and ξ3 = g22. Figure 1
shows the minimization process for the energy function
using the Hopfield neural network. Here the initial condition
was ξ(0) =

[
0.1 0.01 0.1

]T
, the learning factor was

µi = 104 (i = 1, 2, 3) and the penalty factor was α = 107.
After minimizing the energy function, the solution of the
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Fig. 1. Solving process of the algebraic Riccati matrix equation using the
Hopfield neural network.

algebraic Riccati matrix equation is defined by the neuron
state of the Hopfield neural network as follows:

G =
[

12 2
2 2

]
,

where the energy function E = 1.38813×10−17 at t = 0.004
s. Furthermore, we can obtain the analytical solutions of the
algebraic Riccati matrix equation as follows:

G =
[

0 −10
−10 −10

]
,

[
−24 −10
−10 −2

]
,[

−36 2
2 −14

]
,

[
12 2
2 2

]
.

Thus, the positive definite matrix is

G =
[

12 2
2 2

]
.

This result indicates that the Hopfield neural network can
solve the algebraic Riccati matrix equation with sufficient
accuracy.

Next, the optimal control of an automotive vehicle system
was considered as an example of a practical application.
Figure 2 shows the model of the automotive vehicle that
drives with a constant velocity v [10]. Here, η(t) is the angle
between the velocity vector of the vehicle and the X-axis,
ζ(t) is the yaw angle of the vehicle, σ(t) is the steering
angle of the front wheel, L is the wheel base and [x(t), y(t)]
is the position of the vehicle’s centre of gravity. If the vehicle
drives on a straight road and moves without sudden operation

X

Y

O

ζ(t)

ζ(t)
.

σ(t)

v η(t)

LLr

Lf

[x(t), y(t)]

Fig. 2. Model of an automotive vehicle driving with a constant velocity v.
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of the steering angle, the equations of motion of the vehicle
can be derived with the conditions of |η(t)| � 1, |ζ(t)| � 1
and |σ(t)| � 1 as follows [11]:

Mÿ(t) +
2(cf + cr)

v
ẏ(t) +

2(Lfcf − Lrcr)
v

ζ̇(t)

−2(cf + cr)ζ(t) = 2cfσ(t)

2(Lfcf − Lrcr)
v

ẏ(t) + Jζ̈(t) +
2(L2

fcf + L2
rcr)

v
ζ̇(t)

−2(Lfcf − Lrcr)ζ(t) = 2Lfcfσ(t)

,

where M is the mass of the vehicle, J is the moment
of inertia of the yaw angle, cf is the cornering power
of the front wheel and cr is the cornering power of the
rear wheel. To describe the state space form of the above
equations of motion, the state vector is defined by x(t) =[
y(t) ζ(t) ẏ(t) ζ̇(t)

]T
, and the steering angle σ(t) is

selected as the control input u(t). The coefficient matrices
are

A =


0 0 1 0
0 0 0 1
0 a32 a33 a34

0 a42 a43 a44

 ,B =


0
0
b3
b4

 ,
where

a32 = 2(cf +cr)
M , a33 = −2(cf +cr)

Mv ,

a34 = −2(Lf cf−Lrcr)
Mv , a42 = 2(Lf cf +Lrcr)

J ,

a43 = −2(Lf cf−Lrcr)
Jv , a44 = −2(L2

f cf+L2
rcr)

Jv ,

b3 = 2cf

M and b4 = 2Lf cf

J .

In the computational experiment, the parameters were Lf =
1.733, Lr = 0.867, cf = cr = 17658, M = 1373.4, v =
11.1 and J = 1962. The energy function of the Hopfield
neural network was defined as follows:

E(ξ, α) =
1
2

[{
−0.5h−1(b3ξ3 + b4ξ4)2 + 2q11

}2

+
{
a32ξ3 + a42ξ4 − 0.5h−1(b3ξ6 + b4ξ7)

×(b3ξ3 + b4ξ4)}2

+
{
a33ξ3 + a43ξ4 − 0.5h−1(b3ξ8 + b4ξ9)

×(b3ξ3 + b4ξ4) + ξ1}2

+
{
a34ξ3 + a44ξ4 − 0.5h−1(b3ξ9 + b4ξ10)

×(b3ξ3 + b4ξ4) + ξ2}2

+
{
2a32ξ6 + 2a42ξ7 − 0.5h−1(b3ξ6 + b4ξ7)2

+2q22}2

+ {a32ξ8 + a33ξ6 + a42ξ9 + a43ξ7 + ξ2

−0.5h−1(b3ξ8 + b4ξ9)(b3ξ6 + b4ξ7)
}2

+ {a32ξ9 + a34ξ6 + a42ξ10 + a44ξ7 + ξ5

−0.5h−1(b3ξ9 + b4ξ10)(b3ξ6 + b4ξ7)
}2

+ {2a33ξ8 + 2a43ξ9 + 2ξ3
−0.5h−1(b3ξ8 + b4ξ9)2 + 2q33

}2

+ {a33ξ9 + a34ξ8 + a43ξ10 + a44ξ9 + ξ4

+ξ6 − 0.5h−1(b3ξ9 + b4ξ10)(b3ξ8 + b4ξ9)
}2

+ {2a34ξ9 + 2a44ξ10 + 2ξ7

−0.5h−1(b3ξ9 + b4ξ10)2 + 2q44
}2

]
+
α

2
{
P1(ξ1) + P2(ξ1ξ5 − ξ22)

+P3(ξ1ξ5ξ8 − ξ1ξ
2
6 − ξ22ξ8 + 2ξ2ξ3ξ6 − ξ23ξ5)

+P4(ξ1ξ5ξ8ξ10 + 2ξ1ξ6ξ7ξ9 − ξ1ξ5ξ
2
9 − ξ1ξ8ξ

2
7

−ξ1ξ10ξ26 + 2ξ2ξ3ξ6ξ10 − 2ξ2ξ3ξ7ξ9 − 2ξ2ξ4ξ6ξ9
+2ξ2ξ4ξ7ξ8 − ξ22ξ8ξ10 + ξ22ξ

2
9 + 2ξ3ξ4ξ5ξ9

−2ξ3ξ4ξ6ξ7 − ξ23ξ5ξ10 + ξ23ξ
2
7 − ξ24ξ5ξ8 + ξ24ξ

2
6)

}
,

where ξ1 = g11, ξ2 = g12, ξ3 = g13, ξ4 = g14,
ξ5 = g22, ξ6 = g23, ξ7 = g24, ξ8 = g33, ξ9 = g34 and
ξ10 = g44. Assuming that the weights in the cost function
are Q = diag(1) and H = 0.1, the minimization process
of the energy function using the Hopfield neural network
is shown in Fig. 3 for the following initial conditions:
ξ(0) =

[
1 0.1 0.1 0.1 1 0.1 0.1 1 0.1 1

]T,
learning factor µi = 104 (i = 1, 2, · · · , 10) and penalty
factor α = 107. The solution of the algebraic Riccati matrix
equation is as follows:

G =

 2.459528 0.577600 0.270507 −0.202674
0.577600 3.977375 0.139925 −0.070456
0.270507 0.139924 0.199556 −0.149347

−0.202674 −0.070456 −0.149347 0.135941

,
where the energy function E = 1.63132×10−20 at t = 0.004
s. As a reference, the algebraic Riccati matrix equation was
solved in Scilab [12]. Using the command ‘riccati()’ yields
the following solution:

G =

 2.459528 0.577600 0.270507 −0.202674
0.577600 3.977375 0.139925 −0.070456
0.270507 0.139924 0.199556 −0.149347

−0.202674 −0.070456 −0.149347 0.135941

.
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Fig. 3. Solving process of the algebraic Riccati matrix equation using the
Hopfield neural network where the weight parameters of the cost function
are Q = diag(1) and H = 0.1.
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Fig. 4. Solving process of the algebraic Riccati matrix equation using the
Hopfield neural network where the weight parameters of the cost function
are Q = diag(10−3) and H = 0.1.
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Figure 4 shows the minimization process of the energy
function using the Hopfield neural network when the weight
parameters in the cost function are Q = diag(10−3) and
H = 0.1. The solution of the algebraic Riccati matrix
equation is as follows:

G =

 0.008254 0.003098 0.002160 −0.001139
0.003098 0.209896 −0.002588 0.020648
0.002160 −0.002588 0.000927 −0.000810

−0.001139 0.020648 −0.000810 0.002493

,
where the energy function E = 6.32672×10−14 at t = 0.004
s. The solution obtained by Scilab is as follows:

G =

 0.008254 0.003098 0.002160 −0.001139
0.003098 0.209896 −0.002588 0.020648
0.002160 −0.002588 0.000927 −0.000810

−0.001139 0.020648 −0.000810 0.002493

.
The solution obtained by the Hopfield neural network cor-
responds to that calculated using the Scilab function. These
results confirm the effectiveness of the proposed method to
obtain the solution of the algebraic Riccati matrix equation.

Figure 5 shows an example of system response
controlled by the optimal controller in which the
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Fig. 5. Example of optimal control for a moving automotive vehicle where
Q = diag(1) and H = 0.1 in the cost function.

feedback gain parameters are calculated with the solution
of the algebraic Riccati matrix equation shown in
Fig. 3. Here the optimal feedback input was u(t) =[
−3.162278 −6.999119 −2.359092 −2.005059

]
x(t)

and the initial condition was x(0) =
[

1 −π
9 0 0

]T.
As shown in Fig. 5, each state variable can be regulated to
the equilibrium point.

IV. CONCLUSIONS

In this study, we investigated the capability of a Hopfield
neural network for solving algebraic Riccati matrix equations
and explored its application to the optimal control of dynamic
systems. An energy function composed of the elements of
the algebraic Riccati matrix equation was considered, and
a penalty function was introduced into the energy function
because of the positive definite constraint of the solution.
The dynamics of the Hopfield neural network optimized
the energy function in an off–line process, and the con-
verged neuron states yielded the solution of the algebraic
Riccati matrix equation. Computational experiments were
conducted to evaluate the effectiveness of the proposed
method. Comparing the solution obtained using the Hopfield
neural network with either analytical or numerical solutions,
it was confirmed that the Hopfield neural network could solve
the algebraic Riccati matrix equation with sufficient accuracy.
As a practical application example of controlling dynamic
systems, the optimal control problem of an automotive ve-
hicle was considered; the simulation results confirmed the
feasibility and effectiveness of the proposed neural network–
based optimal control.
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