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Abstract—Obstacle avoidance is an essential function for
the navigation of mobile robots. Noise filtering improves the
measurement accuracy of senors and plays an important role
for obstacle avoidance in the applications of mobile robots. This
study evaluates the performance of the extended Kalman fil-
tering (EKF) and Kalman filtering (KF) for obstacle avoidance
of a two-wheeled mobile robot. EKF is an advanced version
of traditional KF for signal processing. EKF is used to deal
with non-linear problems that KF can not process properly
and usually has better ability of noise tolerance than KF. Due
to the non-linearity and unstability of sensoring results, KF
has limited performance in the underlying problem. The robot
used in this study carries some sonar sensors that acquire
signals of obstacles periodically. EKF linearizes the estimation
around the current measure using the partial derivatives of the
process and measurement functions to obtain estimates of actual
measurements even when non-linear relationships exist in the
underlying problem. Several experiments of obstacle avoidance
are conducted on the two-wheeled mobile robot and the results
are analyzed. The results show that EKF provides reliable
navigation information better than that from traditional KF.

Index Terms—Kalman filtering, extended Kalman filtering,
sonar, obstacle avoidance, navigation, mobile robots.

I. INTRODUCTION

Mobile robots that cruise in unstructured environments
and perform their designated missions autonomously have
received more and more attention. Various types of sensors
are installed on mobile robots for environment recognition.
Infrared, sonar, gyroscope are sensors widely used for this
purpose. However, due to imperfection of sensors and in-
accuracy of signals, simple sensors unavoidably incorporate
various types of errors and provides noisy information to
mobile robots. Additionally, sensors work on a trembling
platform when mobile robots patrol that introduces addi-
tional vibration and noises to senor data and increases the
complexity of controllers. An effective noise filtering method
helps improve the sensing accuracy, reduces the complexity
of controllers, and increase the performance of mobile robots.
There are usually more than one senors installed on mobile
robots, each may incorporate various types/degrees of noise.
Noise filtering is essential and important in such multisensor
systems [1]. Many studies have developed methods of object
tracking and obstacle avoidance for mobile robots, such as
[2], [3], [4].
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Kalman filtering (KF) is filtering method that performs re-
cursively on streams of noisy signals to produce a statistically
optimal estimate of the underlying system state [5]. KF is
able to filter out temporary signal disturbance and commonly
used in many applications for signal pre-processing [6].
Some studies reveal that KF is effective for the navigation
of mobile robots [7], [8]. KF performs linear quadratic
estimation and can work fine when the underlying system
is linear. However, the patrol environments and the sensors
used by mobile robots may not be perfect linear systems;
hence the performance of mobile robots using KF may be
limited.

Extended Kalman filtering (EKF) [9] is an advanced
version of KF, which extends the observation models to
the non-linear domain. EKF has the same structure as the
traditional KF, thus preserves both the statistical optimality
and the recursive computational scheme of KF. In the oper-
ation of EKF, the state transition and observation models
are not necessarily to be represented as linear functions
of system states but may instead be non-linear functions.
EKF performs a similar recursive process but resolves the
non-linear functions by partial derivatives before they are
processed in the next recursions. With calculations of the
non-linear functions, EKF provides better noise tolerance and
performance than traditional KF. Several studies present the
effectiveness of EKF for engineering applications [10], [11],
[12], [13].

In the paper, we evaluate the performance of EKF and
KF for obstacle avoidance that are implemented on a two-
wheeled mobile robots. Simple sonar sensors are installed
on the robots for collecting data of distances between the
robot and obstacles. A simple controller is used to direct
the rotation of the wheels. Sensor data are processed by
EKF or KF before they are input to the controller. By
analyzing the trajectories of the robot, the experimental
results show that EKF is able to reduce the measurement
errors and results in precise and efficient obstacle avoidance.
The remaining part of this paper is organized as follows.
Section II presents the concepts of KF and EKF. Section III
presents the experimental results of obstacle avoidance using
EKF and KF. Finally, Section IV concludes our study and
presents the future work.

II. THE FILTERING METHODS

A. Kalman Filtering

First of all, some terms are defined for the presentation of
KF.

• Ak: the state transition model.
• Hk: the observation model.
• vk: the process noise.
• wk: the observation noise.
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Fig. 1. The processing flow of KF

• Qk: the covariance of the process noise.
• Rk: the covariance of the observation noise.
• x̂−

k : the a priori state estimate at time k given observa-
tions up to and including at time k.

• x̂k: the a posteriori state estimate at time k given
observations up to and including at time k.

• P̂−
k : the a priori error covariance matrix.

• P̂k: the a posteriori error covariance matrix.
• zk: the true state observation (or measurement).
• Bk: the control-input covariance matrix.
• uk: the optional control input.

Among these terms, wk is assumed to be drawn from a
zero mean multivariate normal distribution with covariance
Qk. Also, vk is also assumed to be zero mean Gaussian
white noise with covariance Rk. KF can be considered as
two distinct phases, “predict” and “correct”, applying the
following steps recursively.

Step-1: x̂−
k = Akx̂k−1 +Bkuk−1 (1)

Step-2: P−
k = AkPk−1Ak

T +Qk (2)

Step-3: Kk = P−
k Hk(HkP

−
k Hk

T +Rk)
−1 (3)

Step-4: x̂k = x̂−
k +Kk(zk −Hkx̂

−
k ) (4)

Step-5: P̂k = (I −KkHk)P̂
−
k (5)

Step-1 and Step-2 are for the predict phase and Step-3∼Step-
5 are for the correct phase. KF is a recursive algorithm that
calculates the abovementioned equations to estimate the state
of a process that minimizes the mean squared error of the
estimation. Fig. 1 presents the processing flow of KF. KF
supports estimations of past, present, and even future states,
and it can do so even when the precise nature of the modeled
system is unknown. However, systems processed by KF are
assumed to be linear.

B. Extended Kalman Filtering

EKF is also a recursive algorithm that follows the process-
ing flow of KF. In EKF, the state transition and observation
models are not necessarily to be linear functions of the
state but are defined as non-linear ones. The non-linear
functions are linearized by partial derivatives before they are
processed in the next recursion of estimation. EKF has the
same structure as the traditional KF, thus preserves both the
statistical optimality and the recursive computational scheme
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Fig. 2. The processing flow of EKF

of KF. Let f be a non-linear function used to describe the
estimate of the underlying system states. The a priori state
estimate x̂−

k is described by f

x̂−
k = f(xk−1, uk−1, wk−1). (6)

Accordingly, ẑ−k is defined as a non-linear function h as

ẑ−k = h(x̂k, vk). (7)

The following terms are used for defining EKF.
• Ak: the Jacobian matrix of partial derivatives of with

respect f to x.
• Hk: the Jacobian matrix of partial derivatives of with

respect h to w.
• Vk: the Jacobian matrix of partial derivatives of with

respect f to v.
• Wk: the Jacobian matrix of partial derivatives of with

respect f to w.
Among these models, Wk is assumed to be drawn from a
zero mean multivariate normal distribution with covariance
Qk and Vk is also assumed to be zero mean Gaussian white
noise with covariance Rk. Similar to the KF process, EKF
can also be conceptualized as two distinct phases: “predict”
and “correct” that can be described as follows.

Step-1: x̂−
k = f(xk−1, uk−1, 0) (8)

Step-2: P−
k = AkPk−1Ak

T +WkQkWk
T (9)

Step-3: Kk = P−
k Hk(HkP

−
k Hk

T +VkRkVk
T )−1 (10)

Step-4: x̂k = x̂−
k +Kk(zk − h(x̂−

k , 0)) (11)

Step-5: Pk = (I −KkHk)P
−
k (12)

WkQkWk
T and VkRkVk

T represent new independent
random variables having zero mean and covariance matrices.
Fig. 2 presents the processing flow of EKF. For more detailed
information about KF and EKF, please refer to [6].

III. EXPERIMENT

The robot is 14cm×14cm×12cm in size and is imple-
mented with the following components. There are two wheels
and 3 simple sonar sensors installed on the left, front, and
right side, respectively, of the robot. The sonar sensors are
Sonar-A from Innovati Co. [14]. Each wheel is connected
with a servo motor that rotates forward or backward. Fig. 3
presents photos of the robot. If the robot needs to turn
in-situ, one of the wheels rotates forward and the other
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(a) Front view (b) Side view

(c) Top view (d) Servos and wheels

Fig. 3. Overview of the two-wheeled robot

Fig. 4. Control flow

rotates backward at the same time. The controller of the
servos connected with wheels is with the speed argument
(SA). SA is an integer, 100 ≤ SA ≤ 400, representing
the input signal requiring the motor to perform at a certain
angular speed. The motor stops when SA = 250, rotates
forward when 250 < SA ≤ 400, and rotates backward
when 100 ≤ SA < 250. When SA = 400, the wheel
rotates forward in full speed; conversely, the wheel rotates
backward in full speed when SA = 100. The rotation speed
of servo motors is not always constant when the controller
is actuated. The change of SA parameter is not always
linear; it depends on the burden on the robot and on the
ground friction that the wheels encounter. The robot cruises
around in a 1.8 × 1.8m2 environment where the ground
is black and the walls are white. The three sonar sensors
scan the environment periodically, measuring the distances
from the robot to obstacles. Three simple IF-THEN rules
are associated with each sonar sensor.

• IF d > 25 THEN do nothing
• IF 15 < d ≤ 25 THEN turn (right/left) 15 degree
• IF d ≤ 15 THEN turn (right/left) 30 degree

The symbol d denotes the distance input to the servo’s
controller; the actions of turning right or left depend on
the installation position of the sensor. We compare the
performance of obstacle avoidance when d is pre-processed
by KF/EKF or not. Fig. 4 depicts the control flow of the
robot.

A. Experiment-I

The first experiment is to compare the performance of KF
and EKF for measuring distances to obstacles when the robot
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Fig. 5. The test environment and the starting point

TABLE I
AVERAGE MSE

Method Front Right Left

none 0.0860 0.0524 0.0180
KF 0.0735 0.0240 0.0066
EKF 0.0102 0.0157 0.0043

is stationed at the starting point (see Fig. 5) with SA=250
of both wheels. The initial settings associated with KF and
EKF are the followings.

• Qk = 0.001
• Rk = 0.1
• P0 = 1
• Ak = 1
• Hk = 1
• x0 (front-size) = 135
• x0 (left-size) = 45
• x0 (right-size) = 135

The sensors collect distance data for more than 100 iterations.
The experimental results are presented in Fig. 6. Table I lists
the average mean squared error (MSE) of all measurement
iterations. Results show that both KF and EKF can filter out
temporary noise; however, EKF performs better than KF.

B. Experiment-II

Next, the robot moves forward from the starting point
with SA=400 of both wheels, collecting sensor data and
activating the controllers for obstacle avoidance accordingly.
The parameters used in Section III-A are also used in this
experiment. The trajectories of the robot for obstacle avoid-
ance by applying KF and EKF are presented in Fig. 7. Again,
both KF and EKF can filter out temporary noise even in a
moving robot. The trajectories show that EKF outperforms
KF. This may indicate that the system is non-linear and
EKF better processes non-linear signals and system states
than KF. Table II lists the numbers of collision warnings
when the robot are close to the obstacles less than 15cm.
It is also found that EKF gets fewer collision warnings than
KF. Though there are very few number of collision warnings
when none of KF/EKF are used, it is obvious that the robot
cruises in a bad trajectory.

IV. CONCLUSION

This paper evaluates the performance of EKF and KF
for obstacle avoidance of mobile robots. A two-wheeled
robot is implemented with 3 simple sonar sensors installed.
The robot cruises around in the test environment, collecting
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Fig. 6. Experiment-I: static filtering performance of KF and EKF

Fig. 7. Robot trajectory

TABLE II
COLLISION WARNINGS (≤ 15CM)

Method Left Right Front

none 12 0 2
KF 42 0 40
EKF 11 0 3

data and activation the controllers accordingly. Experiments
have shown that EKF outperforms KF even simple sensors
are used. The initial parameter settings may effects the
performance of KF and EKF. The performance of multiple
obstacle avoidance using EKF should be studied. Advanced
control rules should be designed. These will be included in
the future work.
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