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Abstract—The fast increase and update of big data brings a 

new challenge to quickly acquire the useful information with 
classical attribute reduction methods. In this paper, a parallel 
minimum attribute co-reduction accelerator (QSMFAC) based 
on quantum-inspired SFLA and MapReduce framework is 
presented. First, a novel framework of N-populations 
distributed co-evolutionary cloud model is designed to divide the 
entire population into N subpopulations and share the rewards 
of different subpopulations’ solutions under MapReduce 
mecha- nism. Second, the divided attribute subsets in 
subpopulations are coevolved by quantum-inspired SFLA in 
which evolutionary frogs are represented by quantum 
chromosome gene state, and the crossover co-evolutionary 
strategy between neighborhood subpopulations can adapt the 
consecutive sharing of better performance. Third, the 
MapReduce based approximation parallelism mechanism is 
adopted to conduct rules reduction to speed up the computation 
of attribute equivalence classes, so that it will be extended to 
high performance in both quality of solution and competitive 
computation complexity. Experimental results indicate the 
proposed accelerator has better on efficiency and accuracy of 
minimum attribute reduction than some representative 
algorithms. Moreover it is applied into MRI segmentation with 
intensity inhomogeneity, and the effective and robust 
segmentation results further indicate it has stronger superior 
for complex big data application.  

Index Terms—minimum attribute reduction, MapReduce 
framework, quantum-inspired SFLA, big data analysis, 
crossover co-evolutionary operator 
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I. INTRODUCTION 
n tackling a large number of critical real-world problems, 
big data analysis has become increasingly popular. 

Effective and efficient solutions for many grand challenges in 
big data require better and faster computational methods [1]. 
As an important part of Granular computing (GrC) [2], 
Rough set theory (RST) is an effective mathematical tool to 
deal with the uncertainty and imprecise problems, and it has 
been successfully applied into many data analysis tasks in the 
field of artificial intelligence [3][4]. Attribute reduction in 
RST offers a systematic theoretic framework for consistency-
based feature selection, which does not attempt to maximize 
the class separability, but rather aims to retain the 
discriminatory power of original features for objects from the 
universe [5]. It plays an important role in the fields of 
machine learning, data mining and knowledge discovery [6-8]. 
But this new challenge of big data analysis has posed some 
new research question that can stimulate the rapid growth of 
attribute reduction algorithm. 

In recent years, a novel parallel programming model 
(MapReduce) has received much attention from both 
scientific community and industry for its applicability in big 
data algorithm [9]. This also boosts a strong interesting and 
trend toward studying attribute reduction in big data analysis. 
Some last researches are described as follows: Zhang et al. 
[10-12] presented a parallel algorithm for computing the 
equivalence classes, decision classes based on the 
MapReduce model, and then designed two parallel 
incremental algorithms for updating rough set approximations 
in different incremental strategies to deal with big data. Qian 
et al. [13] designed the algorithm of computing equivalence 
classes for large-scale data set in cloud computing, and 
proposed the corresponding attribute reduction algorithms. 
Qian et al. [14] adopted the parallel computations of the 
equivalence classes and attribute significance for attribute 
reduction, and proposed the hierarchical attribute reduction 
algorithm for big data by using MapReduce. Zhang et al. [15] 
put up the parallel large-scale rough set based methods for 
knowledge acquisition, and then implemented them on 
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several representative MapReduce runtime systems: Hadoop, 
Phoenix and Twister to mine knowledge from big data. Qian 
et al. [16] designed a novel structure of <key, value> pair to 
speed up the computation of equivalence classes and attribute 
significance, and parallelized the traditional attribute 
reduction process based on MapReduce mechanism. 

Nevertheless, the attribute reduction results of most above-
mentioned algorithms are not usually guaranteed to be the 
same results as those achieved by implemented on the whole 
and non-separated big data set, because these subsystems on 
separated data sets by adopting MapReduce mechanism are 
independent, and they can not enough share the performance 
information with neighborhood and other subsystems. These 
will cause these methods to acquire the inexact results of 
attribute reduction from big data set in most cases. The 
current main obstacles are that most algorithms are often 
computationally time-consuming for big data sets, which will 
greatly restrict the development and practical application of 
the RST theory. Therefore it is necessary to investigate some 
novel and effective heuristic attribute reduction algorithms to 
speed up the knowledge discovery process, which can well 
adapt to the applications of real big data set.  

As we all know, the quantum-inspired evolutionary 
algorithm (QEA) utilizes the concepts of quantum bit (Q-bit), 
superposition of states and collapse of states. A Q-bit 
individual has the special advantage that it can represent a 
linear superposition of states by using search space 
probabilistically. Thus, it has a better characteristic of 
population diversity than any other representation. Recently, 
some scholars have presented a few of efficient QEAs for 
global optimization problems [17-19]. We also presented 
quantum-inspired SFLA and successfully applied it into 
attribute reduction in RST [20]. Although our proposed 
algorithm has shown a nicer performance in several aspects 
compared with the existing algorithms, a critical confronting 
challenge is that it is still not effective enough for big data 
sets due to its high time consumption and space complexity.  

In this paper, we propose a parallel minimum attribute co-
reduction accelerator (QSMFAC) based on quantum-inspired 
SFLA and MapReduce framework. Our work is based on 
QSFLAR as in [20] and the aim is to develop its fast and 
improved version to deal with big data. The proposed 
QSMFAC can still reserve the merits of QSFLAR, and 
meanwhile it can effectively avoid the shortcomings of its 
high time consumption in attribute reduction of big data. First, 
we design a novel framework of N-populations distributed co-
evolutionary cloud model (DCCM) to divide the entire 
population into N subpopulations and share all the rewards of 
different subpopulations’ solutions under MapReduce 
mechanism. Then, the MapReduce based approximation 
parallelism mechanism is adopted to implement rules 
reduction by speeding up the computation of attribute 
equivalence classes. In addition, the crossover co-
evolutionary strategy can adapt the consecutive sharing of 
better performance between the divided neighborhood 
quantum frog subpopulations so as to further improve better 
performance. Thus QSMFAC will become an integrated 
attribute co-reduction accelerator for big data analysis. 

The rest of this paper is organized as follows. Section II 
describes minimum attribute reduction model in brief. In 
section III, by designing new operators of quantum-inspired 
SFLA and  framework of N-populations DCCM Model, a 
new parallel minimum attribute co-reduction accelerator 
QSMFAC is proposed. Experimental studies are reported in 
Section IV, and some concluding remarks are given in the last 
section. 

II. MINIMUM ATTRIBUTE REDUCTION MODEL 

In RST, an information system, which is also called a 
decision table, is defined as ( , , , )S U A V f= , where U, 

called universe, is a nonempty set of finite objects; 
A C D= U  where C is the set of condition attributes and D 

is the set of decision attributes, V a set of values of attributes 
in A, and :f A V® a description function [3][4].  

Definition 1 For any concept X UÍ and attribute subset 
R CÍ , X can be approximated by the R-lower and R-upper 
approximation  

The R-lower approximation of X is the set of objects of U 
that are surely in X, defined as 

{ |[ ] }RRX x U x X= Î Í  (1) 

The R-upper approximation of X is the set of objects of 
U  that are possibly in X, defined as 

{ [ ] }| RX XR x U x= Î ¹ÆI  (2) 

Definition 2 Let P , Q AÍ , it is said that Q  depends on 

P  in a dependency degree (0 1)k k£ £ , denoted 

kP QÞ , if 

( )
( )

| |
P

P

POS Q
k Q

U
g= =  (3) 

where ·  represents the cardinality of a set. ( )PPOS Q , 

called positive region, is defined as  

/

( )P
X U Q

POS Q PX
Î

= U  (4) 

The positive region contains all the objects in U that can 

be uniquely classified to blocks of the partition /U Q  by 

means of the knowledge in the attribute P .  
Definition 3  Let R CÍ , R  is said to be a reduction if  

{ | ( ) ( ), ,

              ( ) ( )}
R C

B C

RED R C D D B R

D D

g g
g g

= Í = " Ì

¹
 (5) 

The intersection of all reductions is called as the attribute 

core of C , which is denoted as ( )Core C . 

Definition 4  Let {0,1}m  be the m-dimensional Boolean 

space and x  be a mapping from {0,1}m  to the power set 2C  
such as  

1 ( )      =1,2,..., , i i ix a x i m a Cx= Û Î Î  (6) 

Then minimum attribute reduction can be reformulated as the 
following constrained binary optimization model 
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( )( ) min ( )F x S x=  

 
 
 
   

(7) 

where mxxS
m

i i £=£ å =1
)(0 . 

Given a vector {0,1}mxÎ , if it is a feasible solution to (5), 

then its corresponding subset of attributes ( )xx  is a 
reduction. Furthermore, if it is an optimal solution to (7), then 

( )xx  is a minimum attribute reduction. 

Definition 5  Construct the fitness evaluation function of 
minimum attribute reduction as follows: 

( )

| ( ) | | ( ) | | ( ( )) |
( ) min

| ( ) | ( )

                        ( )                                             (8)

x

C x R x Core x
Fit x

C x D
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where | ( ) |C x  is the total number of attribute features, | ( ) |R x  

is the length of selected attribute subsets, ( )xx  is the attribute 

subsets, and ( ( ))Core xx  is the reduction core of attribute 

subsets. ( ) ( )x Dxg  is the reduction quality of attribute subsets 

( )xx  relative to decision attribute set D , 
1

1
i

N

Elitist
i

f
N

r
=
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represents the average fitness of elitists in N subpopulations 
where 

iElitistf  is the fitness of the ith elitist in subpopulation. 

Supposed that 
1

1
i

r

Subpopulation j
j

f f
r =

= å , where r  is the number 

of co-evolutionary individuals in the subpopulation, 

1

1
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N
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f
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represents the total average fitness of 

N subpopulations. The ( )xF  is the adaptive penalty function 

and it is formulated as follows: 

( ) ( )
( )

( )
x

i
C

D
x

D
xg
g

æ ö
F = G ´ç ÷

è ø
 (9) 

1

1
where    i

i

r
Elitist j

i
j Elitist

f f

r f=

-
G = å  

    
(10) 

This penalty function ( )xF  can adaptively control the 

fitness complexity of minimum attribute reduction and induce 
its desired consumption. 

 
III. MINIMUM ATTRIBUTE CO-REDUCTION ACCELERATOR 

BASED  ON QUANTUM-INSPIRED SFLA AND MAPREDUCE 

FRAMEWORK (QSMFAC) 

A.  New operators of quantum-inspired SFLA 

1) Quantum chromosome gene operator 
The quantum-inspired SFLA (QSFLA) use a new quantum 

bit (Q-bit) representation. The initial quantum frogs are 
randomly generated according to the binary coding method as 

1 2( ) { , ,..., }t t t
nP t p p p= , where n  is the number of quantum 

frogs. 
 

( 1,2,..., )t
jp j n=  is the quantum chromosome gene 

operator of the tth iteration which is defined as follows: 

1 2 1 211 12 21 22

11 12 1 21 22 2 1 2

... ... ... ...

... ... ... ...

t t t t tt t t t
l l m m mlt

j t t t t t t t t t
l l m m ml

p
a a a a aa a a a

b b b b b b b b b

æ ö
= ç ÷ç øè

                                             

 (11) 
where m  is the number of the chromosome genes of 
quantum frogs, and l  is the number of quantum bits of each 

gene. Both a  and b  are initialized as ( 1/ 2 ), 

representing the same probability for the linear superposition. 
Such operations as quantum rotation gate and quantum 
mutation in [20] for the subpopulation of quantum frogs will 
effect on all possible information. 

2) Updated operator of worst quantum frog  
The main steps of quantum-inspired SFLA are in 

accordance with steps as described in [20]. But at the kth 
iteration, the quantum frog with the worst fitness 

wP w1 w2 w( , ,..., )= Dp p p  in each subpopulation
 
is updated by 

new operator as following: 
1

w w 1 b w

2 B w

sgn( )

                (1 ) sgn( )

k k k k
d d d d

k k
d d

x x r p x

r p x

l

l

+ = + ´ ´ -

+ ´ - ´ -
  (12) 

iElitist ELITIST

ELITIST

f f

f
l

-
=      

(13) 

where 1 2,r r  are uniform random numbers which can be 

selected from the range of parameters( 1 2, [0,1]r r Î ), and 

their values express the relative important degree of Pb
 and 

BP  in the leaping process for quantum-inspired SFLA. That 

ELITISTf  represents the fitness of the global best quantum 

elitist frog. b
k
dp , B

k
dp  represent the each subpopulation’s best 

solution and all global best solution, respectively, in the dth 

dimension space and the kth iteration. 1k
wdx +  represents the 

position of the worst quantum frog in the d th dimension space 
and the (k+1)th iteration, and the function sgn( ) is a sign 
function and its value is from { 1,0,1}- . 

2) Crossover co-evolutionary operator   
A crossover co-evolutionary operator with competitive and 

cooperative mechanism is designed as a new boosted operator 
between neighborhood subpopulations as to implement 
consecutive sharing of better performance, described in Fig. 1. 
The individuals originally exist in the evolutionary tree, and 
elitist individuals in each subpopulation are dynamically 
created by the mechanism of self-adaptive competitive and 
cooperative co-evolution. When competitive co-evolution is 
performed, individuals on all levels of a sub-tree are mixed 
together, and two kinds of entities, the elitist and inferior, are 
selected by the fitness competition. When cooperative co-
evolution is implemented, two special individuals in each 
subpopulation will share the successful and failure 
performance experiences with its corresponding elitist and 
inferior of neighborhood subpopulation. This will strengthen 

{0,1}mxÎ  

( ) ( ) ( )x CD Dxg g=  

( )\{ } ( )( ), ( ) ( )x q xq x D Dx xx g g" Î =
s.t. 
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the sharing experience so as to further improve better 
performance among the divided quantum frog subpopulations.  

Subpopulationi

Cooperation

C
om

petition 

C
om

petition 

Subpopulationi+1

Elitisti Elitisti+1Inferiori Inferiori+1  
Fig. 1.  A crossover co-evolutionary strategy between neighborhood 

subpopulations in the evolutionary trees 

B.  Framework of N-populations DCCM Model 

Based on the MapReduce model in cloud computing [9], in 
order to improve the performance for attribute reduction in 
big data set, we design a N-Populations distributed co-
evolutionary cloud model (DCCM) to accelerate reduction 
implementation, which architecture is shown in Fig. 2. 

QSFLA QSFLA

E
xploration

Exploitation
  Psolu1   Psolu2

  Psolui

Balance  

Subpopulation1 Subpopulation2

Subpopulationi

QSFLA QSFLA

SubpopulationN

    PsoluN

MapReduce
PSOLU

 
Fig. 2.  Framework of parallel N-populations DCCM Model   

In order to exploit and explore the inherent parallelism of 
co-evolutionary populations for attribute reduction, the 
proposed DCCM model is constructed up by following steps: 
1) Using MapReduce framework, we divide the entire 

population into N subpopulations as 
 (Subpopulation1,…,Subpopulationi,…,SubpopulationN);  

2) Every subpopulation (Subpopulationi) will share the 
respective current best solution with neighborhood 
distributed co-evolutionary subpopulations in order to 
expedite the entire parallel computational speed.     

3)  The proposed QSFLA with new operators will be in 
charge of optimizing the respective assigned 
subpopulation (Subpopulationi). In the end of each 
iteration, each subpopulation focuses on resolution of 
Subpopulationi and will produce its best solution iPsolu  

with the self-adaptive probability ip , which stands for the 

probability ,i ikey value< > on the MapReduce. And the 

probability ip  is defined as follows: 

iELITIST i Elitist
i

ELITIST

f f
p

f

w+
=

,  
1

1
iElitist

i r

j
j

f

f
r

w

=

=

å               
(14) 

where jf  is the best fitness of the jth evolutionary 

individual, r  is the number of co-evolutionary 
individuals in Subpopulationi, 

iElitistf  is the local best 

fitness of elitist in Subpopulationi, and
ELITISTf  is the 

global best fitness of best elitist in entire population.   
4) The archiving strategy will record the best solution 

attained by each subpopulation. Then all solution sets 
are combined to form the complete solution, which is 
constructed as follows: 

...

...
i

N

= + + +

+ +
1 2PSOLU Psolu Psolu Psolu

Psolu             
 (15) 

1

2

i

i
i

NN

Psolu

Psolu

Psolu

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

Psolu M
     (16) 

As shown in Fig.1, the dash line indicates the execution 
sequence order, in which the black arrow contributes to the 
completed solution construction of distributed co-
evolutionary Subpopulationi, meanwhile white arrow is 
corresponding feedback states for Subpopulationi. These 
subpopulations will share all the rewards equally from all 
solution set PSOLU  by MapReduce architecture. As the 
result, the running processes of DCCM model will have 
superior performance in updating the co-adaptation of all 
subpopulations.  
    The proposed DCCM model can be good at exploring the 
search space and locating the global region, meanwhile two 
abilities of exploration and exploitation will be well balanced 
as to achieve better performance for attribute coevolutionary 
reduction, with the adequate information-sharing for all 
subpopulations. Moreover, as the coadaptation of different 
subpopulations can be attained, final reductions on divided 
data subsets are surely guaranteed to be the same result as 
those implemented on the whole independent big data set. 

C.  Proposed QSMFAC accelerator 

Firstly, the QSMFAC can decompose the big data set into 
many data subsets by using DCCM model, and then set up the 

,key value< >  pairs on each data subset. Secondly, it 
implements Map/Reduce operations and computes reduction 
rule set based on the MapReduce parallelism until the global 
minimum attribute reduction can be achieved. The flowchart 
of QSMFAC accelerator is illustrated in Fig. 3. 
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1R 2R iR NR

 
Fig. 3.  Flowchart of QSMFAC accelerator 

IV. EXPERIMENTAL EVALUATIONS 
In order to illustrate the efficiency and effectiveness of 

QSMFAC accelerator in big data analysis, we carry out some 
experiments on various big data sets, compared with selected 
methods. Some parameters of QSFLA are in accordance with 
those as in [20]. Hadoop version 1.0.1 and Java 1.6.0.12 are 
employed as MapReduce system. We run algorithms on a 
cluster of 10 nodes, in which one is set as a master node and 
the rest nine are configured as slave nodes. Each node has 16 
GB main memory and AMD Opteron 2376 with Intel Core 2 
Quad CPUs (8 cores in all, each has a clock frequency of 2.3 
GHz), and connects via an Ethernet (100 Mbit/s). The 
operating system is Linux CentOS 4.7. 

A. Classification comparison on UCI datasets 

Five UCI machine learning datasets [21], which number 
have being magnified 105 times, are selected to verify the 
classification performance of QSMFAC accelerator. The 
accuracy comparisons are performed when the classifier 
Naive Bayes based on QSMFAC, ACOAR [5], PACCA [16] 
and QSFLAR [20] respectively, are employed to test the 
classified data sets.  In selected five UCI datasets, we use 
55% as training set, 15% for validation and 30% as testing set. 
We analyze the performance of different algorithms in 
dealing with datasets with different attribute-noises as 
described in Table I. These 5%, 8%, and 13% attribute-noises 
are incrementally added into the raw datasets, and then we 
apply the classifier Naive Bayes based on four algorithms on 
these datasets and compute the classification accuracies. The 
“Avg.” row records the average accuracies. 

TABLE I   
CLASSIFICATION ACCURACY OF NAÏVE BAYES CLASSIFICATION BASED ON 

FOUR ALGORITHMS    (%) 

As shown in Table I, the results indicate that four 
algorithms can all improve the classification accuracy by 
eliminating some irrelevant features in the original data set. 
Among four algorithms, one can observe that Naïve Bayes 
classifier based on QSMFAC achieves higher classification 
accuracy than three compared algorithms in most cases. It 
surpasses ACOAR, PACCA and QSFLAR by five, four and 
five out of five data sets respectively, and the average 
accuracy of QSMFAC surpasses all compared algorithms. 
Furthermore, on Musk Version2 dataset, the classification 
accuracy of the Naïve Bayes classifier based on QSMFAC is 
obviously enhanced from 80.56% to 88.38%, and 92.16% 
respectively, as noise level reduces from 13 to 8 and 5. 

It can be seen in Table I the accuracy performances of the 
Naïve Bayes classifier based on ACOAR, PACCA and 
QSFLAR algorithms sharply drop, but the classifier based on 
QSMFAC is more robust and its classification accuracy does 
not change especially much. 

B. Application comparison on the MRI 
A major difficulty in the MRI segmentation is the complex 

intensity inhomogeneity due to the radio-frequency coils or 
acquisition sequences. In the following experiment, we will 
evaluate the segmentation performance on large-scale 
complex cerebrum MRI [22] segmentation of QSMFAC 
accelerator, compared with by ACOAR [5], PACCA [16] and 
QSFLAR [20]. 

Fig. 4(a) is the original cerebrum MRI corrupted by 8% 
intensity inhomogeneity, and Fig. 4 (b)-(e) show the 
segmentation results by using ACOAR, PACCA, QSFLAR, 
and QSMFAC, respectively. It can be noticeable that 
ACOAR and QSFLAR are much less fragmented than other 
two algorithms and have somewhat disadvantage of blurring 
of some details. Both PACCA and QSMFAC can achieve 
comparably satisfactory segmentation results for MRI with 
8% intensity inhomogeneity, but QSMFAC produces more 

Dataset 
Noise 
Level 

ACOAR PACCA QSFLAR QSMFAC 

5 87.23 93.54 90.17 94.80 

8 84.56 90.23 89.02 92.10 

 
Thyroid 

13 75.17 83.12 83.17 87.17 

5 84.32 89.96 87.32 92.03 

8 79.43 84.10 82.15 88.38 
Musk 

Version2 
13 68.16 75.19 74.32 80.56 

5 84.82 92.29 89.14 91.35 

8 75.48 88.98 83.18 87.36 Arrhythm
ia 

13 67.57 84.47 78.07 83.52 

5 80.73 89.14 89.23 91.47 

8 76.14 80.27 83.28 87.24 
Audiolo 

gy 
13 63.60 75.93 72.09 82.37 

5 83.98 86.40 88.78 90.23 

8 77.25 82.39 83.08 88.09 
Weka- 
3.2 G 

13 70.25 77.70 71.96 84.92 
Avg. 77.25 84.91 83.01 88.15 
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accurate region boundaries of cerebrum MRI, as shown in Fig. 
4(e). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.  Comparison of segmentation results on cerebrum MRI  
corrupted by 8% intensity inhomogeneity 

To quantitatively demonstrate segmentation accuracy, Fig. 
5 gives the distributions of segmentation accuracy metrics. It 
is apparent that the QSMFAC outperforms three compared 
algorithms for on cerebrum MRI with 8% intensity 
inhomogeneity, which demonstrates the stronger robustness 
of the QECMASCR. 
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Fig. 5.  Quantitative comparison of MRI segmentation accuracy 

According to the above results and analysis, we strongly 
recommend QSMFAC as the preferred algorithm for finding 
minimum attribute reduction and the segmentation of 
complex medical MRI. So QSMFAC has more excellent 
feasibility and effectiveness for minimum attribute reduction 
in big data analysis. 

V. CONCLUSIONS 
More and more researches and applications need to deal 

with big data, which leads to a hot of studying novel attribute 
reduction algorithms as the important preprocessing step of 
knowledge discovery. But most existing attribute reduction 
algorithms in RST deem to fail to deal with big data. In this 
paper, we have proposed a parallel minimum attribute co-
reduction accelerator based on quantum-inspired SFLA and 
MapReduce framework. The MapReduce parallelism 
mechanism and new operators of QSFLA are adopted to 
implement attribute reduction, which performs well and 
shows high accuracy for big data analysis. In the further work, 
we would extend this QSMFAC accelerator into 

electroencephalogram (EEG) data in order to achieve better 
performance in more complex big data with high attribute 
noises. 

REFERENCES 
[1] C. L. P. Chen and C.Y. Zhang, “Data-intensive applications, 

challenges, techniques and technologies: A survey on Big Data,” 
Information Sciences, vol. 275, pp. 314–347, Aug. 2014. 

[2] W. Pedrycz, “Granular Computing: analysis and design of intelligent 
systems,” CRC Press/Francis Taylor, Boca Raton, 2013. 

[3] Z. Pawlak, “Rough sets,” International Journal of Computer and 
Information Sciences, vol. 11, no. 5, pp. 341–356, Oct. 1982. 

[4] Z. Pawlak and A. Skowron, “Rough sets: Some extensions,” 
Information Sciences, vol. 177, pp. 28–40, Jan. 2007.  

[5]  L. J. Ke, Z. R. Feng, and Z. G. Ren, “An efficient ant colony 
optimization approach to attribute reduction in rough set theory,” 
Pattern Recognition Letters, vol. 29, no. 9, pp. 1351-1357, July, 2008. 

[6] Y. H. Qian, J. Y. Liang, W. Pedrycz, and C.Y. Dang, “Positive appr- 
oximation: an accelerator for attribute reduction in rough set theory,” 
Artificial Intelligence, vol. 174, no. (9-10), pp. 597–618, June. 2010. 

[7] W. P. Ding, J. D. Wang, and Z. J. Guan, “Cooperative extended rough 
attribute reduction algorithm based on improved PSO,” Journal of 
Systems Engineering and Electronics, vol. 23, no. 1, pp. 160-166, Feb., 
2012. 

[8] J. H. Dai, and Q. Xu, “Attribute selection based on information gain 
ratio in fuzzy rough set theory with application to tumor classifica- 
tion,” Applied Soft Computing, vol.13, no.1, pp. 211-221, Jan., 2013. 

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing 
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 
107–113, Jan., 2008. 

[10] J. B. Zhang, T. R. Li, Y. Pan, C. Luo, and F. Teng, “A parallel and 
incremental algorithm for updating knowledge based on rough sets in 
cloud computing platform,” Journal of Software, 2014 (in Chinese). 
http://www.cnki.net/kcms/doi/10.13328/j.cnki.jos.004590.html.  

[11] J. B. Zhang, T. R. Li, D. Ruan, Z. Z. Gao, and C. B. Zhao, “A parallel 
method for computing rough set approximations,” Information 
Sciences, vol. 194, pp. 209–223, July, 2012. 

[12] J. B. Zhang, T. R. Li, and Y. Pan, “Parallel rough set based knowledge 
acquisition using MapReduce from big data,” in Proc. the 1st 
Interational Workshop on Big Data, Streams and Heterogeneous 
Source Mining: Algorithms, Systems, Programming Models and 
Applications, BigMine’12, New York: ACM Press, pp. 20–27, 2012.  

[13] J. Qian, D. Q. Miao, and Z. H. Zhang, “Knowledge reduction 
algorithms in cloud computing,” Chinese Journal of Computers, vol. 
34, no. 12, pp. 2332–2343, Dec. 2011.   

[14] J. Qian, P. Lv, X. D. Yue, C. H. Liu, and Z. J. Jing, “Hierarchical 
attribute reduction algorithms for big data using MapReduce,”  
Knowledge-Based Systems, Jan, 2014. http://www.sciencedirect.com/ 
science/article/pii/S0950705114003311. 

[15] J. B. Zhang, J. S. Wong, T.R. Li, and Y. Pan, “A comparison of 
parallel large-scale knowledge acquisition using rough set theory on 
different MapReduce runtime systems,” International Journal of 
Approximate Reasoning, vol. 55, no. 3, pp. 896–907, March, 2014. 

[16] J. Qian, D. Q. Miao, Z. H. Zhang, and X.D. Yue, “Parallel attribute 
reduction algorithms using MapReduce,” Information Sciences, vol. 
279, pp. 671–690, Sep., 2014. 

[17] L. C. Jiao, Y. Y. Li, M. G. Gong, and X. R. Zhang, “Quantum-inspired 
immune clonal algorithm for global numerical optimization”, IEEE 
Transactions on System, Man, and Cybernetics, Part B, vol. 38, no. 5, 
pp. 1234-1253, Oct., 2008. 

[18] J. W. Gu, M. Z. Gu, C. W. Cao, and X. S. Gu, “A novel competitive 
co-evolutionary quantum genetic algorithm for stochastic job shop 
scheduling problem”, Computers & Operations Research, vol. 37, no. 
5, pp.927-937, May, 2010. 

[19] M. Ykhlef, “A quantum swarm evolutionary algorithm for mining 
association rules in large databases”, Journal of King Saud University 
Computer and Information Sciences, vol. 23, no. 1, pp.1-6, Jan., 2011. 

[20] W. P. Ding, J. D. Wang, Z. J. Guan, and Q. Shi, “Enhanced minimum 
attribute reduction based on quantum-inspired shuffled frog leaping 
algorithm,” Journal of Systems Engineering and Electronics, vol. 24, 
no. 3, pp. 426–434, June, 2013. 

[21] A. Asuncion and D. J. Newman. UCI Repository of Machine Learning 
Databases.Available: http://www.ics.uci.edu/~mlearn/mlrepository.htm. 

[22] Montreal Neurological Institute, McGill University, McConnell Brain 
Imaging Centre (McBIC). Available: http://www.bic.mni.mcgill.ca/ 
brainweb.

 

  
(b) ACOAR  (c) PACCA 

  

 
(a) Original 

cerebrum MRI   
 

   (d) QSFLAR     (e) QSMFAC 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I, 
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015




