
 
 

 

 
Abstract— Currently, many control performance assessment 

methods of cascade control loops are developed based on the 
assumption that all the disturbances are subject to Gaussian 
distribution. However, in the practical condition, several 
disturbance sources occur in the manipulated variable or the 
upstream exhibits nonlinear behaviors. In this paper, a general 
and effective index of the performance assessment of the 
cascade control system subjected to the unknown disturbance 
distribution is proposed. Unlike the minimum variance control 
index, an innovative control performance index is given based 
on the information theory and the minimum entropy criterion. 
The index is informative and in agreement with the expected 
control knowledge. To elucidate wide applicability and 
effectiveness of the minimum entropy cascade control index, a 
simulation problem and a cascade control case of an oil refinery 
are applied. 

Index Terms — Cascade control; Minimum entropy; 
Non-Gaussian; Performance assessment 
 

I. INTRODUCTION 

Starting from the end of the 1980s, a lot of statistical tools 
for monitoring the process performance were introduced [1]. 
These tools formed a new field called statistical process 
control, which utilized statistical methods to monitor the 
process variability and detect the presence of disturbance. 
However, they cannot evaluate whether the current control 
action is taken in an adequate working condition.  

Like most of the controllers whose initial designs can meet 
its performance specifications, their performances can be 
deteriorated abruptly or gradually after long term operations. 
A study by Honeywell Process Solution indicated that almost 
63% of all the control loops have poor performance ratings. 
The research on the control system performance assessment 
can be traced back to the 1960s and 1970s. Astrom (1967) 
and DeVries and Wu (1978) carried out the fundamental 
research [2,3]. In the literature of control loop performance 
assessments, the minimum variance control (MVC) had been 
widely used as a reference bound on the achievable 
performance since Harris (1989) proposed it [4]. The 
groundbreaking research has received increasing attention in 
the process control field. Then several research efforts have 
been focused on the evaluation of the control performance. 
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The performance assessment of SISO feedback control was 
extended to that of MIMO feedback control [5]. A 
generalized minimum variance as the performance 
assessment benchmark for the single loop control system was 
proposed [6]. When it comes to the performance assessment, 
cascade control has a significant advantage in improving the 
dynamic response performance and the anti-disturbance 
ability, but most of the research work in the past focused on 
applying advanced control algorithms to designing good 
controllers to improve cascade control quality. Sadasivarao 
and Chidambaram (2006) applied the genetic algorithm for 
tuning PID controllers of cascade control systems [7]. 
Padhan and Majhi (2012) proposed an improved cascade 
control structure with a modified Smith predictor for 
controlling open-loop unstable time delay processes [8]. 
There is not much research work on the performance 
assessment of cascade control in both the theories and 
applications. Ko and Edgar (2000) first derived the 
performance assessment of the classic cascade control loops 
based on MVC [9]. Chen et al. (2007) used the performance 
analysis to diagnose cascade control loop status [10]. 

So far a lot of past research on control performance 
assessment (CPA) assumed that the disturbances or the 
noises are subject to Gaussian distributions. This means that 
controlling the mean and the variance of the random 
variables was established. In fact, most industrial processes 
have difficulty meeting these prerequisites because of the 
mixture of different courses with Gaussian disturbances or 
other factors, resulting in misreporting the evaluation 
performance of the controlled process. Examples include a 
great variety of man-made noise sources, such as electronic 
devices, neon lights, relay switching noise in telephone 
channels and automatic ignition systems. For a system with 
non-Gaussian noise, the lower order statistics cannot provide 
enough information. That is, minimum variance is not a good 
benchmark for the cascade control loops with non-Gaussian 
disturbances. In despite of this fact, the performance 
assessment of cascade control systems with non-Gaussian 
noise has seldom been discussed in the open literature. 

To extend MVC based CPA to the cascade control system 
with non-Gaussian disturbance, this paper presents a 
comprehensive minimum entropy methodology for the 
performance assessment of a cascade control loop. The paper 
is organized as follows: In Section 2, the conventional 
performance assessment for the cascade control system based 
on minimum variance control is reviewed. In Section 3, the 
cascade control performance assessment method based on 
minimum entropy control (MEC) criterion is proposed. In 
Section 4, case studies, including a simulation case and a 
cascade control loop from the industrial plant, are conducted 
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to show the advantages of the proposed method. Finally, in 
Section 5, conclusions are made. 

II. CONVENTIONAL PERFORMANCE ASSESSMENT OF A 

CASCADE CONTROL SYSTEM 
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Fig. 1. Cascade control system 

   
Fig. 1 shows a discretized cascade control system with 

unity feedback. A cascade control loop consists of a primary 
loop and a secondary loop. These loops might also be 
referred to as the outer loop and the inner loop, respectively. 
The primary loop provides the secondary loop with a setpoint, 
or a target, for a process related to the primary control 
objective. The subscript, 1, in this figure refers to the primary 
control loop while the subscript, 2, refers to the secondary 
control loop. The subscript C of the transfer function denotes 
the controller and the subscript L of the transfer function 
denotes the disturbance filters. The unmeasured stochastic 
disturbances in the primary loop can equivalently be added at 
the output of the primary loop as well as of the secondary 
loop. 1( )y k  and 2 ( )y k  are the process outputs of the 

primary loop and of the secondary loop at the sampling time 
k . The outputs of the two loops are  

  
 1 1 2 1 1( ) ( ) ( )Ly k G y k G a k    

(1)

2 2 2 2 2( ) ( ) ( )Ly k G u k G a k   (2)

 

1( )y k  is the deviation variable from its set point and 2 ( )y k  

is the deviation of the secondary output from its steady-state 
value, which is required to keep the primary output at its set 
point. 1( )u k  and 2 ( )u k  are the manipulated variables which 

are the outputs of the primary controller and of the secondary 
controller, respectively. 1( )a k  and 2 ( )a k  represent the 

disturbance in the primary loop and in the secondary loop, 
respectively. The process transfer function in the primary 

loop is 1*
1 1( ) ( ) dG q G q q  with the time delay equal to 1d , 

and *
1 ( )G q  is the primary process model without any time 

delay. Similarly, for the secondary loop, 2*
2 2( ) ( ) dG q G q q  

is the process transfer function in the secondary loop with 

time delay equal to 2d  and *
2 ( )G q  is the secondary process 

model without any time delay. The effects of all the 
unmeasured disturbances to the two loops are represented as 
disturbance filters 1( )LG q  and 2 ( )LG q , both of which are 

assumed to be a rational function of the backward shift 1q , 

and they are driven by stochastic disturbances 1( )a k  and 

2 ( )a k , respectively. 

The minimum variance in a cascade control loop can be 
obtained by analyzing the system model and the estimated 
disturbance sequences. According to the transfer functions of 
the system, the primary output can be further decomposed as, 
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The MV cascade controller can be obtained by 
simultaneously solving 1 0M   and 2 0M  .  The 

polynomials 1( )Q q  and 2 ( )S q  are feedback-invariant and 

depend only on the disturbance characteristics. They can be 
represented by: 

 
 1 2 ( 1 2 1)

1 10 11 12 1( 1 2 1)
d d

d dQ Q Q q Q q Q q    
      (4)

1 2 ( 2 1)
2 20 21 22 2( 2 1)

d
dS S S q S q S q   

      (5)

 
Thus, the feedback invariant term  

1 1 1

1 1 2 2( ) ( ) ( ) ( )dQ q a k S q q a k    consists of the first 1 2d d  

terms of the moving-average model, and used as a benchmark 
measure of minimum variance control. When 1 2 0M M  , 

the primary output 1( )y k  can achieve minimum variance. 

And the value of the minimum variance is 
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(6)

 
where iN , 1 20,1, , 1i d d    are defined as the 

coefficient matrices of the matrix polynomial 
11 1

1 2( ) ( ) dQ q S q q    , and a  is the 

variance-covariance matrix of the white noise vector 

 1 2( ) ( )
T

a k a k . 

The performance index of the cascade control system is 
defined as: 
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(7)

 
where 2

1( )y mv  is the variance of the MVC output, and 2
1y  is 

the actual primary output variance of the system. Note that 
the performance index mv  in Eq.(7) is only valid for the 
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control process under the condition that both disturbances are 
subject to the Gaussian distribution. Here a simple example is 
used to show the weakness of the minimum variance index 
for a dynamic system whose disturbance does not follow the 
Gaussian distribution: 
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Fig. 2.  Output responses of two different disturbances. 

 
According to the engineering experience, the PI controller 
( 1cG ) and the P controller ( 2cG ) in the outer loop and in the 

inner loop are used:  
 

 

1

1 1

0.2848 0.2568

1c

q
G

q
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  

 

2 0.2cG   
 

 

1( )a k  and 2 ( )a k  are assumed to follow the  -distribution. 

The PDF of the  -distribution can be represented by 
 

 1 1
( 1,1)

1
( , ) (1 ) ( )

( , )
a bf x a b x x I x

B a b
 

   
(9)

 

where ( )B   is the Beta function. The indicator function 

( 1,1) ( )I x  ensures that only the values of x  in the range (-1, 1) 

have nonzero probabilities.  
If the models are completely given and the two different 

unmeasured disturbances with non-Gaussian disturbances 
are applied to the inner and the outer loops respectively, the 
output responses under the same controller parameters are 
shown in Fig. 2. For easy visual comparisons, the 
corresponding distributions are shown in Fig. 3, and both 
variances are very close to the value of 5.5. From the 
observations in Fig. 3, Fig. 3(b) is sharper and narrower than 
Fig. 3(a); it seems that Fig.3(b) has better control 
performance. However, the MVC performance assessment 
indexes for Fig. 7(a) and Fig. 7(b) are 0.8072 and 0.7039 
respectively, yielding the opposite conclusions. Due to the 
non-Gaussian disturbances, the conventional MVC 
performance assessment index would not provide correct 
information and may lead to wrong detection. 
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Fig. 3.  Output distributions of two different disturbances. 

 

III. MINIMUM ENTROPY BASED ASSESSMENTS OF CASCADE 

CONTROL SYSTEMS 

A. Entropy information analysis 

In the information theory, entropy is a measure of 
uncertainty in a random variable. It is an idea inherited from 
thermodynamics and previously proposed by Hartley (1928) 
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as a measure of the information in a random signal [11]. 
Entropy is really a notion of self information provided by a 
random process about itself. Entropy has some great features. 
It has the property of convex, making it available to be the 
objective function of the optimization problem. 

To characterize quantitatively a finite and discrete random 
set 1 2{ , ,..., }nx x xX , Shannon (information) entropy 

( ( )H X ) can be defined. The Shannon entropy is 

distinguished by several unique properties [12], but it is often 
convenient to introduce generalized Rényi entropies 
parametrized by a continuous parameter  [13], 
 

 
1

1
( ) ln

1

M

i
i

H p
  


 X  

 
(10)

 
where each element ix X  has probability ip , 1, 2,...,i n . 

This means that ip , 1, 2,...,i n , constructs a discrete 

probability distribution  1 2 Mp p p  which consists 

of non–negative numbers summing to unity. 
1

1
M

i
i

p


 . 

Rényi entropy is a generalization of Shannon entropy. 
 

B. Minimum entropy index for cascade control loop 

In the real operation, the actual disturbance behavior is not 
known in advance. The results of the minimum variance 
based on the Gaussian disturbance would not be reasonable 
when the minimum variance index is applied to control 
processes with non-Gaussian disturbance distribution. 
Therefore, to assess a cascade control process with 
non-Gaussian disturbance, a minimum entropy based 
performance assessment is proposed. Entropy, as a general 
measure of uncertainty, has more physical relevance than the 
lower order statistics, such as the mean and variance of the 
arbitrary random variables. The variance of the output can 
merely measure the deviated degree from the mean, but it 
cannot comprehensively characterize the non-Gaussian 
disturbances. In this section, entropy, an alternative measure 
of uncertainty and dispersion, is used as an index to evaluate 
the control performance of the controller in cascade control 
systems. 

For a cascade control process shown in Eqs.(1) and (2) 
with the unmeasured non-Gaussian disturbance 1( )a k  and 

2 ( )a k , the entropy of the output 1( )y k  can be written as 

 
 

1 1 2
1 1 1 2 2 1 1 2 2( ) ( ( ) )d d dH y H Q a S q a M a M a q     

 
(11)

 
Because the non-Gaussian disturbance 1( )a k  and 2 ( )a k  

are finite, stationary and mutually independent, the entropy 
of the output 1( )y k  in Eq.(1) can be further decomposed into 
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Lemma:  Given two discrete random variables X  and Y , 
defined on a common probability space, there is 
 

 0 ( )H X  (13)

 
and 
 

 ( , ) max( ( ), ( ))H H H  X Y X Y  (14)

 
On the basis of Lemma, 
 

1 2
1 1 1 1 1 1( , ) ( )d dH Q a M a q H Q a    (13)

1 1 2 1
2 2 2 2 2 2( , ) ( )d d d dH S q a M a q H S q a     (14)

 
The lower bound of 1( )H y  can be obtained, 

 1
1 1 1 2 2( ) ( ) ( )dH y H Q a H S q a   (15)

 

The terms 1 1Q a  and 1

2 2

dS q a  are the feedback invariant. The 

minimum entropy 1( )H y  of cascade control can be obtained 

if 1 2 0M M  , 

 
1
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             ( , )

d
me

d

H y H Q a H S q a

H Q a S q a





 


 

(16)

 
Now a new performance assessment index ( me ) can be 

defined for the cascade control system with the non-Gaussian 
noises, 
 

1

1

( )

( )
me

me

H y

H y
   

(17)

 
where me  is the ratio of the output of the minimum entropy 

( 1( )meH y ) to the current output of the minimum entropy 

( 1( )H y ). 

IV. EXAMPLES 

A. Simulation of the cascade control system 

In this case, the cascade control process with non-Gaussian 
disturbance is considered. 1( )a k  and 2 ( )a k  follow the same 

 -distribution as those in Section 2. The minimum entropy 

of 1y  based on the models is 3.2920. Therefore, the MEC 

performance index (Eq.(17)) is 0.8669me   and the 

theoretical one is 0.8675TH
me  . Thus, without the 

limitations of the assumption of the Gaussian disturbance, the 
MEC based performance assessment index is more favorable 
and trustable when it comes to the evaluation of the cascade 
control loops. 
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B. Industrial cascade control loop 
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Fig. 4.  A temperature cascade control of the disturbance tower. 
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Fig. 5.  Outputs of the primary loop of (a)  Period 1and (b) Period 2 

 
Oil refinery or petroleum refinery is an industrial process. 

The crude oil is processed and refined into more useful 
products, such as petroleum naphtha, gasoline, diesel fuel 
and so on. A multitude of separations is accomplished by 
distillation, but the most important and primary function in 
the refinery is the separation of crude oil into component 
fractions. To get the specific products, accurate temperature 
control is necessary. Hence, cascade control of temperatures 
is widely used in refinery. Fig. 4 shows a schematic diagram 
of a temperature cascade control to the distillation tower. To 

ensure production running smoothly, the temperature T  
should remain constant. And there is a regulating valve to 
control the heating steam flow Q . From the valve action to 

the temperature change, a lot of heat capacities are needed. It 
is better to adopt cascade control. Cascade control includes 
two closed-loop systems; the secondary loop is a flow control 
system while the primary loop is a temperature control 
system. 

The cascade control loop from refinery in a local plant in 
Taiwan is used to test the proposed MEC method. Fig. 5 
shows 2,000 measurements of the outputs for the primary 
loop in two different operating periods. The sampling time is 
1 second. From the normal probability analysis shown in Fig. 
6, obviously, the output data cannot be exactly fitted into a 
straight line in the normal probability plots. Thus, the 
underlying population of the two measurements is not exactly 
normal. Calculating the MVC index of the two periods, 

1 0.0946mv   and 2 0.1966mv  , apparently, these values are 

unreasonable. 
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Fig. 6.  Normal probability plots of the output of (a) Period 1 and (b) Period 2 
for the industrial cascade control loop. 

 
To assess during what period cascade control can 

outperform, the benchmark of the cascade control system 
should be set up first. The benchmark performance bounds 
are determined based on the process and disturbance models. 
Note that due to the space limit, the identification scheme for 
the non-Gaussian disturbances will be discussed in another 
papers. The information theoretic delay criterion is applied to 
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the collected data, and the delays of the primary loop and the 
secondary loop are 6s and 1s time units respectively. Then 
with the MEC based identification method, the ARMAX 
model can be obtained and the disturbance can be estimated. 
Fig. 7 shows the estimated disturbance distributions of Period 
1 and Period 2, respectively. In Period 1, with the estimated 
disturbance sequences and the model parameters, the 
minimum entropy of the primary loop output is found to be 
2.3109. The MEC index is 1 0.8657me  . Likewise, in Period 

2, the MEC performance assessment index is 2 0.6307me  . 

From the analysis, the cascade control system in Period 1 
performs better.  
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Fig. 7.  Estimated disturbances of (a) Period 1 and (b) Period 2 for the 
industrial cascade control loop. 
 

V. CONCLUSION 

To continuously improve the process performance, the 
basic control loop must be constantly assessed. In the past, 
several different measures of CPA have been proposed, but 
the disturbance distribution is assumed to be normal. That is, 
MVC performance assessment is effective in evaluating the 
healthy degree of the cascade control system with Gaussian 
disturbances, but it fails when the system has non-Gaussian 
distribution. As the variance, a second order statistic is not 
sufficient to be a benchmark of the cascade control system 
with unknown disturbances. The contribution of this work is 
a reliable and general algorithm that allows one to estimate 
CPA for the controlled system with non-Gaussian 

disturbance. The proposed method also works well even in 
the case of Gaussian disturbance. The proposed MEC based 
CPA is the Renyi’s quadratic entropy of the output under the 
minimum entropy control loop. The entropy can be used to 
measure many other characteristics of the random 
disturbance, such as similarity, equality, disorder, and so on; 
so it is good for a performance criterion. Like MVC, when 
there is no set point change, the output under closed loop 
control can be devided into two terms, the feedback invariant 
entropy term and the feedback variant entropy term. The 
feedback invariant entropy term depends only on the 
disturbance characteristics rather than the function of the 
process model or the controller. The entropy can be used to 
measure many other characteristics of the random 
disturbance, such as similarity, equality, disorder, and so on; 
so it is good for a performance criterion. The proposed MEC 
performance is more useful in practical processes. From the 
analysis results of the simulation and the real plant data, the 
proposed MEC-based CPA method presents better generality 
and accuracy in practical processes. 
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