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Abstract— In this paper we present an image size invariant 

method for quick detection of dissimilar binary images. The 

method is based on a Probabilistic Matching Model (PMM) for 

binary image matching. Using the model, the probability of 

matching dissimilar image pairs can be predicted, as a function 

of the number of points mapped between two images and the 

amount of similarity between them. The model tells us that by 

matching few points between two images, we can determine 

dissimilar images with high confidence. For example, if images 

are distinct-dissimilar, i.e., completely different, only 8 points 

need to be mapped to arrive at a 90% successful detection rate, 

11 points need to be mapped for a 99% confidence detection 

rate and only 15 points need to be mapped for a 99.9% 

confidence detection rate. If the images are not distinct-

dissimilar and the images have some similarity between them, 

then more points need to be matched; depending on the 

amount of similarity between the images. The model is image 

size invariant and hence images of any sizes will produce the 

same high confidence levels with only a limited number of 

points. As a result, this method does not suffer from the image 

size handicap that current methods suffer from. We report on 

tests conducted on real images of different sizes to show the 

validity of our model. 

 
Index Terms— binary images, image mapping, image 

matching and probabilistic model. 

I. INTRODUCTION 

MAGE matching rises frequently in the field of image 

analysis under many topics such as, image registration, 

template matching, image retrieval, image classification, etc. 

These methods are either feature-based methods that rely on 

some method of extracting image features and then 

matching the extracted features, or area-based methods (also 

referred to as direct or intensity methods) that are based on 

comparing image intensity values directly without any 

feature extraction. When dealing with binary images, and 

due to the fact that they have only two intensity values 

resulting in a limited amount of scene detail, feature-based 

methods become difficult to employ, and area-based 

methods become the method of choice.   

Binary image matching is usually accomplished by 

calculating the cross-correlation between the images [1] or 

simply by subtracting the two images [2]. These methods, as 

well as the majority –if not all– of area-based methods 

require some type of similarity operation to be applied to the 

whole image. Hence, these methods are image size 

dependent which implies that as image size increases, more 

processing time is required. With 20 Mega-pixel images 

common and 50 Mega-pixel images becoming easily 
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producible with recently introduced inexpensive digital 

cameras or even mobile phones, current matching methods 

can become quite slow processing such large images, even 

with today’s fast computers. 

In this paper we present an image size invariant method 

for quick detection of dissimilar binary images. The method 

is based on a Probabilistic Matching Model (PMM) for 

binary image matching [3]. Using the model, the probability 

of matching dissimilar image pairs can be predicted, as a 

function of the number of points mapped between two 

images and the amount of similarity between them. The 

model tells us that by matching few points between two 

images, we can determine dissimilar images with high 

confidence. For example, if images are distinct-dissimilar, 

i.e., completely different, only 8 points need to be mapped 

to arrive at a 90% successful detection rate, 11 points need 

to be mapped for a 99% confidence detection rate and only 

15 points need to be mapped for a 99.9% confidence 

detection rate. If the images are not distinct-dissimilar and 

the images have some similarity between them, then more 

points need to be matched; depending on the amount of 

similarity between the images. The model is image size 

invariant and hence images of any sizes will produce the 

same high confidence levels with only a limited number of 

points. As a result, this method does not suffer from the 

image size handicap that current methods suffer from. We 

report on tests conducted on real images of different sizes to 

show the validity of our model. 

This paper is organized as follows: section II points out 

related literature, section III reviews the binary image 

similarity measure used as a reference in our work, section 

IV presents binary image mappings and how they can 

simplify binary matching, section V presents the main theme 

of this paper and presents the theory of the probabilistic 

matching model, section VI presents results of tests 

conducted on real images and their agreement with the 

theoretical model and section VII finally concludes our 

findings and discusses where our future research is directed. 

II. RELATED LITERATURE  

Cross-correlation is the most widely used method for 

image matching. Many techniques have attempted to 

improve using cross-correlation; Lebrl [4] counted the 

change in mismatched pixels as the template sweeps the 

image. Lewis [5] used pre-computed tables containing the 

integral of the image and the image2 search window. 

Mattoccia et al. [6] presented a zero-mean normalized cross-

correlation to reduce the computational cost. 

Other area-based methods have also been developed 

based on a variety of principles. For example, Mustafa et al. 

[7] matched images by minimizing the image intensity 

combinations with excellent results. However, the method is 
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not suited for binary images. Baudrier et al. [8] [9] used 

local-dissimilarity map (LDMap) produced from the 

Hausdorff distance. Tang et al. [10] represented the template 

as a linear combination of a small number of Haar-like 

binary features. Vidal et al. [11] used mathematical 

morphology while Sleit et. al. [12] used chain-codes. 

III. IMAGE CLOSENESS WITH THE  SIMILARITY MEASURE 

In this section, we present our definition of similarity 

between images, and how we categorize images based on it.  

We then introduce the  similarity measure that is used in 

our work as a reference for image similarity. 

A. Similar and Dissimilar Images 

The closeness between two images is based on a pixel-to-

pixel comparison. Image closeness is categorized as either 

similar (S) or dissimilar (R);  

 Similar images: the two images are considered to 

be the same and are of two types, exact (E) or 

inverse (I). If the two images have exactly the 

same intensity values then they are exact. If the 

two images have the complement intensity 

values then they are inverse.  

 Dissimilar images: the two images are not 

similar and are of two types: Distinct-dissimilar 

(D) and Quasi-dissimilar (Q). Distinct-dissimilar 

images are images that are completely different 

whereas Quasi-dissimilar images have 

concurrences between them. 

B. The  Binary Similarity Measure 

There is an abundance of binary similarity measures and 

distances that have been developed over the last century and 

can be found in the literature, e.g. [13]. However, for our 

work we need a measure that can be used with the 

categorization of image similarity stated above and the 

PMM theory developed below. The binary similarity 

measure () was specifically developed for this purpose 

[14].  is a modification of the Hamming distance that 

measures the amount of similarity and concurrence between 

two images. Formally, given two images u and v,  is 

defined as, 

(u,v) = |1 – 2Po((Z = u  v) = z)|,   z {0,1}

  

 (1) 

where  is the exclusive-or (XOR) operation and Po(Z) 

denotes the probability mass function of Z.  has the range, 

0    1. Then based on  we have, 

 distinct-dissimilar images when  = 0, 

 quasi-dissimilar images when 0 <  < 1, and 

 similar images when  = 1. 

In practice, image pairs with  < 0.01 are assumed to be 0, 

and are considered to be distinct-dissimilar image pairs.  

IV. BINARY IMAGE MAPPINGS 

While the complexity of images increases with image 

size, fortunately the number of possible image mappings 

does not. In fact, for binary images there are only 15 

different possible image mappings, regardless of image size. 

These image mappings can simplify the matching process 

and reduce matching time drastically. 

Let u,v {0,1} be two independent random variables that 

represent the image intensity values of two images. Hence, 

for binary images, there are 4 possible pixel mappings 

between any two images,  

P1 = {A, B, C, D}       (2) 

where A:0→0, B:0→1, C:1→0 and D:1→1. Let V1 refer to 

the possible image mapping variations between two binary 

images. Since the number of binary pixel mappings is finite, 

the number of possible image mapping variations between 

any two binary images is also finite regardless of image 

size and is NV1 = 15. These mapping variations, denoted 

by i, i =1… 15, along with their tuple sizes and image 

closeness interpretation are listed in Table I. 

V. A PROBABILISTIC MODEL FOR MATCHING 

Probabilistic models have been developed and applied to 

many areas of computer vision, e.g., image comparison [15] 

and image retrieval [16]. In this section we present a 

probabilistic model for image matching. Initially we begin 

by reviewing the probabilistic model for image mapping [3] 

which is the basis for the matching model.  

A. A Probabilistic Model for Binary Image Mapping 

Since u and v are two independent random variables, all 

pixel mappings have equal probabilities of occurrence. Let 

m denote a tuple of size m such that m  T1,m, where T1,m 

denotes the set consisting of binary image mapping 

variations with size m, then Pr(m, p) represents the 

probability of occurrence of an m-tuple on the pth mapped 

pixel and is given by, 

p
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is the combination function and S is the Stirling numbers of 

the second kind function,  

 

 

 

TABLE I  

 THE 15 MAPPING VARIATIONS FOR BINARY IMAGES. 

 

i 

pixel 

mappings 

tuple 

size 

Image  

closeness 

1 A 1 similar 

2 B 1 similar 

3 C 1 similar 

4 D 1 similar 

5 A,B 2 dissimilar 

6 A,C 2 dissimilar 

7 A,D 2 similar 

8 B,C 2 similar 

9 B,D 2 dissimilar 

10 C,D 2 dissimilar 

11 A,B,C 3 dissimilar 

12 A,B,D 3 dissimilar 

13 A,C,D 3 dissimilar 

14 B,C,D 3 dissimilar 

15 A,B,C,D 4 Dissimilar 
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B. A Probabilistic Model for Binary Image Matching  

Integrating the binary image mapping model with the 

binary mapping interpretations stated earlier provides the 

necessary foundation for the development of a probabilistic 

matching model. Since the similarity between two images 

are classified into two types based on the value of ; similar 

images ( = 1) and dissimilar images (0   < 1), then when 

matching two binary images we have,  

P(S, p) + P(R, p) = 1      

 

(6) 

where P(S, p) and P(R, p) represent the probability of 

occurrence of an image pair being similar and dissimilar 

when matching two images, respectively. Furthermore, since 

dissimilar images are of two types based on the value of ; 

quasi-dissimilar images (0 <  < 1) and distinct-dissimilar 

images ( = 0), thus,  

P(R, p) = P(D, p) + P(Q, p)

          

(7) 

where P(D, p) and P(Q, p) represent the probability of 

occurrence an image pair being distinct-dissimilar and 

quasi-dissimilar, respectively. However, if the pixel 

mappings are assumed to have equal probability of 

occurrences –as earlier stated, then this implies  = 0 and 

P(Q, p) = 0, which implies that,  

P(R, p) = P(D, p)       (8) 

Hence, 

P(S, p) + P(D, p) = 1      (9) 

Based on the mapping model and the image mapping 

variations it was shown that the probability of occurrence of 

distinct-dissimilar image pairs is equal to 121-p, where p is 

the number of mappings. 

 

Theorem: Probabilistic Matching Model (PMM) 

Randomly mapping corresponding points between any two 

distinct-dissimilar (D) binary images ( = 0) will ascertain 

the images to be dissimilar with probability P(D, p), 
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 p  1    (10) 

where  p is the number of mappings. 

  
Hence, P is the confidence level or Detection Confidence 

(DC) that an image pair is indeed distinct-dissimilar at a 

given mapping p. It is important to note that the theorem: 

a) is only applicable to distinct-dissimilar images, 

b) does not inform us anything about quasi-dissimilar or 

similar images, and 

c) informs us of how fast distinct-dissimilar images can 

be found for a given confidence. 

Furthermore, the theorem treats images as random processes 

and does not take into consideration any spatial relationship 

between image points. This negligence of image spatial data 

association might seem to be a weakness in the theorem at a 

first glance, but in reality it is an advantage and what gives 

this method its strength; it allows the process of detecting 

dissimilarity to be fast and not hindered by additional data 

processing of the images to understand spatial relationships 

among the pixels. This is similar to auto-correlation as a 

method used for template matching which ignores spatial 

relationships between pixels.  

Examining (10), we see that P(D, p) has the following 

progression, 
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A plot of P(D, p) is shown in Fig. 1 and the first 16 values 

are tabulated in Table II. It can be seen that P(D, p) quickly 

approaches unity with increasing value of p and in the limit 

as p, we have, 

1
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 (12) 

Hence, for two completely distinct-dissimilar images, 

randomly mapping two points between them will ascertain 

the images to be dissimilar with 50% confidence. Mapping 

three points will ascertain the images to be dissimilar with 

75% confidence, and mapping four points will ascertain the 

images to be dissimilar with 87.5% confidence. Confidence 

increases with increasing mapping; 93.75% confidence can 

be achieved by mapping five points, 96.875% confidence 

with 6 points, 99.219% confidence with 8 points, 99.902% 

with 11 points, 99.994% with 15 points and so on as dictated 

by (10). This mapping behavior agrees with our intuition 

that as we map more and more pixels between two different 

images, random pixel mapping will dominate.   

  

Corollary 1 

Given any two binary images, the mean number of random 

mappings required to ascertain that the two images are 

distinct-dissimilar with probability P is, 

 

p(D,P) = 1 – log2(1– P)   

     

0  P  1      (13) 

 
Corollary 1 just states the inverse of (10), i.e. for a desired 

confidence level the minimum number of mappings can be 

computed.  

 

 
Fig. 1. Plot of P(D, p).   

 

TABLE II 

 FIRST 16 VALUES OF P(D,P)  

p P(D, p) p P(D, p) 

1 0.00000 9 0.99609 

2 0.50000 10 0.99805 

3 0.75000 11 0.99902 

4 0.87500 12 0.99951 

5 0.93750 13 0.99976 

6 0.96875 14 0.99988 

7 0.98438 15 0.99994 

8 0.99219 16 0.99997 
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Corollary 2 

For any image pair with similarity ,  

),(P),γ(Plim
0

pDpQ 


     (14) 

 

This is due to the fact that as  becomes smaller, the 

difference between the probabilities of occurrence of pixel 

mappings become smaller and in the limit when  

approaches zero, the image pair becomes distinct-dissimilar. 

 

Corollary 3 

For any probability P, the mean number of random 

mappings, p, required to ascertain that any two binary 

images are quasi-dissimilar with similarity , 

1. cannot be less than the mean number of 

mappings required to ascertain that any two 

binary images are distinct-dissimilar,  

p(Q = ,P)  p(D,P)    

    

0  P  1          (15) 

2. The difference between p(Q = ,P) and p(D,P) is 

dependent on , and 

p(Q = 1, P)  p(Q = 2, P)     for    1  2

   

 (16) 

 

Hence, quasi-dissimilar image pairs with  close to zero will 

have mapping-confidence correspondence values close to 

those for distinct-dissimilar image pairs. As  increases and 

images become more similar, mapping values for given 

confidences will be higher than those for distinct-dissimilar 

image pairs. How the mapping value increases as a function 

of  is yet to be determined, and is a topic of ongoing 

research. 

The PMM theorem and its corollaries inform us of how 

quickly distinct-dissimilar image pairs can be detected for a 

given confidence level, but does not tell us how. However, 

based on our earlier discussion on mapping variations this 

can easily be accomplished. To detect dissimilarity when 

matching two images, random image points are repeatedly 

mapped between the images and the mapping tuple size is 

examined after every mapping: 

 if the tuple mapping size is 1, then the images are 

similar and mapping is continued.  

 if the tuple mapping size is 2 and the mapping 

variation is 5, 6, 9 or 10, then the images are 

dissimilar, and no further mapping is required. 

 if the tuple mapping size is 3 then the image pair is 

dissimilar and no further mapping is required. 

The Mapping Rejection Number (MRN), which is the 

number of mappings required to reject or detect a pair of 

images as being dissimilar, will be used to measure the 

performance of PMM. Furthermore, notation such as 

MRNDC is frequently used as shorthand to denote the 

mapping rejection number for a given detection confidence. 

VI. DISCUSSION 

In this section we present experimental results conducted 

on images and compare them to the theory developed. Tests 

with real images are presented.  

A. Real Image Set #1 

Fig. 2 shows the real images used in our work which are 

128128. The set consists of the following labeled images: 

1) urban, 2) mill, 3) forest1, 4) micro, 5) forest2, 6) trees, 7) 

phone, 8) coins, 9) cars, 10) appliances, 11) daisy and 12) 

park. In our discussion below we will refer to an image by 

its label. However, when the images are tabulated or plotted 

as a group we will refer to the images by the indices 

indicated above. 

Table III displays  values for each image pair of the set. 

The image set has a similarity range of 0.002    0.669, 

with mean and standard deviation of 0.231 and 0.161, 

respectively. Two image pairs were found to be distinct-

dissimilar ( < 0.01): 1) the urban-parking image pair         

( = 0.002) and 2) the mill-phone image pair ( = 0.005).  

All images in the set were matched against each other 

producing 66 image pairs for a total of 66,000 trials (1000 

trials per image pair). Table IV shows the results for 

MRN0.999. The MRN0.999 values have a range from 8 to 40 

mappings, with a median value of 13 mappings, a mean 

value of 15.167 mappings and a standard deviation of 5.344. 

This implies that on average 99.9% of the images were 

found to be dissimilar by the 13th mapped value and for all 

images 99.9% of the trials were found to be dissimilar by 

the 40th mapped value. The theoretical value for distinct-

dissimilar images is at a value of 10.966 mappings 

producing a set average discrepancy value of about 2 

mappings and a set total discrepancy value of about 27 

mappings. The discrepancy is attributed –as before- to the 

fact that the set  values are not zero. The results of MRN0.50, 

MRN0.90, MRN0.99, MRN0.999 and MRN0.9999 are summarized 

in Table V. Fig. 3 shows plots of the mapping results for all 

image pairs which clearly shows the increase of MRN values 

as  increases. From these results we see, 

 A small discrepancy between theoretical and 

experimental values due to the fact that image pairs 

are not distinct-dissimilar 

 MRN increases with increasing  value and is non-

linear. 

 MRN increases as the DC value increases.  

 

 

 
Fig. 2. Test images. Left to right and from top to bottom: First row: urban, 

mill, forest1 and micro. Second row: forest2, trees, phone and coins. Last 

row: cars, appliances, daisy and park. 
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 TABLE III    VALUES FOR REAL IMAGES SET #1 

Image 1 2 3 4 5 6 7 8 9 10 11 12 

1  0.255 0.220 0.022 0.040 0.145 0.016 0.229 0.228 0.168 0.173 0.002 

2 0.255  0.447 0.122 0.222 0.424 0.005 0.477 0.456 0.402 0.205 0.023 

3 0.220 0.447  0.077 0.415 0.364 0.145 0.669 0.571 0.467 0.259 0.056 

4 0.022 0.122 0.077  0.155 0.046 0.267 0.096 0.042 0.036 0.123 0.139 

5 0.040 0.222 0.415 0.155  0.229 0.354 0.395 0.347 0.250 0.172 0.163 

6 0.145 0.424 0.364 0.046 0.229  0.085 0.413 0.414 0.337 0.121 0.097 

7 0.016 0.005 0.145 0.267 0.354 0.085  0.081 0.104 0.097 0.185 0.208 

8 0.229 0.477 0.669 0.096 0.395 0.413 0.081  0.623 0.469 0.284 0.174 

9 0.228 0.456 0.571 0.042 0.347 0.414 0.104 0.623  0.471 0.296 0.151 

10 0.168 0.402 0.467 0.036 0.250 0.337 0.097 0.469 0.471  0.214 0.154 

11 0.173 0.205 0.259 0.123 0.172 0.121 0.185 0.284 0.296 0.214  0.169 

12 0.002 0.023 0.056 0.139 0.163 0.097 0.208 0.174 0.151 0.154 0.169  

 
TABLE IV   MRN0.999 FOR REAL IMAGE SET #1    TABLE V  MRN0.999 FOR REAL IMAGE SET #1 

Image 1 2 3 4 5 6 7 8 9 10 11 12   DC Min Max Med   q 

 1  15 15 11 13 13 13 15 13 12 14 13  0.50 2 4 3 2.86 0.42 6.78 

2 15  15 8 13 16 10 21 22 24 13 13  0.90 5 15 5 5.92 1.71 3.45 

3 15 15  12 20 22 10 40 25 22 12 12  0.99 7 27 9 10.80 3.68 2.93 

4 11 8 12  12 12 14 10 11 9 15 13  0.999 8 40 13 15.16 5.34 2.83 

5 13 13 20 12  15 15 17 17 16 13 13  0.9999 9 40 13 15.39 5.30 2.90 

6 13 16 22 12 15  13 18 18 21 13 13   

7 13 10 10 14 15 13  9 13 12 17 13  TABLE VI   MRNDC VALUES FOR IMAGE PAIRS OF SET #2 

8 15 21 40 10 17 18 9  35 22 22 15  DC 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4 

9 13 22 25 11 17 18 13 35  19 13 13  0.50 4 4 4 3 4 4 

10 12 24 22 9 16 21 12 22 19  15 12  0.90 6 8 8 6 6 9 

11 14 13 12 15 13 13 17 22 13 15  12  0.99 10 14 15 11 10 15 

12 13 13 12 13 13 13 13 15 13 12 12    0.999 13 16 21 13 13 21 

 

 

B. Image Set #2 

In this section we apply PMM to larger images to show 

that it is applicable to any image size with the same quick 

detection response. Fig. 4 shows the second real image set 

used in our work; four 3 mega-pixel binary images of size 

32642448. The set consists of the following four labeled 

images: 1) Tropical, 2) Seashore, 3) Children and 4) 

Kuwait_Skyline.  Similar to what was done before, the mean 

MRN values for DC = 0.50, 0.90, 0.99, 0.999 were obtained 

for each pair of images for 1000 trials. The corresponding 

MRN values for each DC value as well as the  values for 

each image pair are tabulated in Table VI. The  values for 

this set are in the range [0.121, 0.467] as shown in the table. 

From the table we see, 

 as the similarity between images increases, MRN 

values increase.  

 as the DC value increases the MRN increases for a 

given image pair. 

This is consistent with the results obtained earlier for set #1. 

Furthermore, Table VII displays MRN results of this set with 

image pairs from set #1 of comparable  values. For 

example, the image pair consisting of  images #1 and #2 of 

this set has  = 0.122 which is comparable to the image pair 

consisting of images #6 and #11 of set #1 ( = 0.121), and 

they only differ by || = 0.001. We see that the average 

MRN value difference between the two pairs is MRN = 0.75 

(less than a single mapping value). MRN for comparable  

image pairs of the two sets varied from 0 to 2 mappings with 

an overall average value of 0.958. This discrepancy is an 

acceptable value and is attributed to the fact that the MRN 

values are rounded to the nearest integer value. These values 

are highly correlated producing a nearly perfect correlation 

value of 0.997. 

 

 
 Fig. 3. MRN vs.  for the real image set. 

 

 

 
 

Fig. 4. Image Set #2: four 3Mega-pixel images. 
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 TABLE VII   COMPARISON OF MRNDC VALUES FOR IMAGE PAIRS OF COMPARABLE  BETWEEN SETS #1 AND #2   

  Set #2 Set #1 Set #2 Set #1 Set #2 Set #1 Set #2 Set #1 Set #2 Set #1 Set #2 Set #1 

DC 1 & 2 6 & 11 1 & 3 3 & 6 1 & 4 6 & 9 2 & 3 9 & 11 2 & 4 2 & 5 3 & 4 2 & 8 

0.50 4 3 4 3 4 3 3 3 4 3 4 3 

0.90 6 5 8 6 8 7 6 6 6 5 9 8 

0.99 10 9 14 13 15 12 11 11 10 10 15 16 

0.999 13 13 16 19 21 18 13 13 13 13 21 21 

 0.122   0.121   0.363   0.363   0.416 0.414 0.182   0.184   0.221 0.222 0.479 0.467 

||  0.001   0.000 0.002 0.002 0.001 0.012 

MRN 0.75 1.75 2.00 0.000 0.5 0.75 

 

VII. CONCLUSION 

In this paper we have presented a probabilistic matching 

model for fast detection of dissimilar binary images. The 

method is based on a probabilistic model of the occurrence 

of image mappings. The method requires the comparison of 

only a few image points depending on the level of similarity 

between the images. If the images have no similarity and are 

distinct-dissimilar then there is a 50% confidence that the 

images will be found different by the 5th mapped pixel. By 

taking more pixels the confidence increases exponentially; a 

75% confidence that dissimilar images will be detected by 

the 3rd mapping, a 93.75% confidence that dissimilar images 

will be detected by the 5th mapping, a 99.22% confidence 

that dissimilar images will be detected by the 8th mapping, a 

99.90% confidence that dissimilar images will be detected 

by the 11th mapping and a 99.99% confidence that dissimilar 

images will be detected by the 15th mapping.  

If the images have some similarity then more points need 

to be mapped and checked. Using the binary similarity 

measure  as a reference for similarity measurement, image 

pairs with low similarity are detected at mapping values 

very close to the ideal case. On the other hand, image pairs 

with higher similarity required more points to attain the 

same confidence level. Images with good similarity            

(  0.7), required as much as 40 points to be checked for a 

99.99% confidence level.  

An important aspect of our method that it is not image 

size dependent. This was proven by conducting tests on 

images of different sizes; 3 mega-pixel images showed 

results comparable to results obtained with 16k images, in 

agreement with the theory presented. In contrast, the 

majority of other methods used to detect dissimilar images 

are size dependent. Hence, the amount of time required for 

detection of dissimilar images by our method is only a 

fraction of the time required by other methods, as our 

preliminary additional research has shown and will soon 

report. Future work will concentrate on several other issues 

raised by this research, 1) developing a probabilistic model 

for quasi-dissimilar  images, 2) template matching using 

PMM, and 3) a noise analysis of PMM. 
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