
 

  
Abstract—Particle swarm optimizations (PSOs) have been 

applied to many fields. In PSOs, the inertia weight is an 
important parameter for performing global search and local 
search in solution search. In this paper, we use a sine-based 
chaotic map to chaotically adapt inertia weight of PSO based on 
different shift deviations (sd) to perform five multimodal 
benchmark functions with many local optima. The 
experimental results show that the method using sd 0.3-0.5 can 
get better results for multimodal benchmark functions with 
many local optima. Furthermore, the method is superior to PSO 
with inertia weight. This study is useful to help us to set 
appropriate shift deviation for multimodal benchmark 
functions with many local optima when using sine-based chaotic 
map to adapt inertia weight of PSO. 
 

Index Terms—Chaos, inertia weight, particle swarm 
optimization (PSO), sine-based chaotic map, shift deviation. 
 

I. INTRODUCTION 
ARTICLE swarm optimization (PSO) was proposed by 
Eberhart and Kennedy in 1995 [1]. Many variants of the 

PSO had been proposed and applied to real-world 
applications, for examples, learning to play games [2], flow 
shop scheduling [3], Ultrawideband (UWB) Antenna 
Synthesis [4], harmonic filters [5], decoupling control for 
temperature of reheating furnace [6], image filter [7], EMG 
(electromyogram) signal classification [8], and so on. 

In PSOs, the inertia weight plays a crucial role to 
determine the search ability for exploration and exploitation. 
A large inertia weight facilitates a global search while a small 
inertia weight facilitates a local search [9]. Therefore, there 
are many variants of the PSO are proposed which depend on 
the inertia weight. 

In the original PSO, none of inertia weight is embedded in 
PSO [1] and thus it performed worse efficiency. The inertia 
weight was first introduced by Shi and Eberhart in 1998 [10]. 
They performed different chosen inertia weight to illustrate 
its impact on the performance of PSO. Although it improved 
the efficiency of the original PSO, the constant inertia weight 
is incapable of balancing the ability between global search 
and local search. Furthermore, the constant inertia weight 
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PSO is also ineffective for tracking nonlinear dynamic 
systems in most real-world applications. In 2014, we propose 
SBCAW-PSO [11] which uses a sine-based chaotic strategy 
to chaotically adapt the inertia weight of PSO. In this study, 
we performed different chosen shift deviations (sd) to adjust 
sine-based chaotic strategy. Five multimodal benchmark 
functions with many local optima are used to test the 
performance. It tends to automatic control the global and 
local search ability according to the chaotic value. 

II. MATERIALS AND METHODS 

A. The sine-based chaotic map with shift deviation 
In this paper, we proposed a chaotic map with shift 

deviation. The chaotic map use sine function to get the 
chaotic behaviours. It can exhibit aperiodic behavior that 
depends sensitively on the initial conditions and rendering 
long-term prediction impossible. This is helpful for tracking 
nonlinear dynamic systems. The chaotic map is shown in the 
following: 
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where sd is the shift deviation; n is the current number of 
iteration; sin is the sine trigonometric function; π is a 
mathematical constant with the ratio of a circle's 
circumference to its diameter (approximately equal to 
3.14159); N is the total iterations; d is division number of the 
total iterations. 

B. Particle swarm optimization 
The social behaviors of a bird flock or fish school inspire 

the PSO. In the PSO algorithm, a population of random 
solutions is first generated. We call the population as 
“particles”. In these particles, each particle has its own 
velocity and position. In each generation, all particles are 
evaluated by an objective function. These particles are then 
compared with the previous positions to gain the personal 
best positions, and compared with each other to gain the 
global best position. The current velocities are also updated 
according to the previous positions, the personal best 
positions and the global best position. After that, each 
particle moves to a new position according to its current 
velocity and its previous position. The optimal solution is 
thus searched by generation to generation based on the 
update equations of the velocities and the positions of 
particles. 
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1) Original PSO 
Eberhart and Kennedy proposed the original PSO in 1995 

[1]. We consider N is dimensions for an optimization 
problem for search space, and the characteristics of the 
original PSO are described as follows: 

The position of the ith particle is represented as Xi = (xi1, 
xi2, ... , xiN). The personal best position of the ith particle is 
represented as pbesti = (pil, pi2, ... , piN). The global best 
position found from all the particles is represented as gbest = 
(gl, g2, ... , gN). The velocity of the ith is represented as Vi = (vil, 
vi2, ... , viN). The value of velocity Vi is restricted to the range 
of [–Vmax, Vmax] to prevent particles from moving out of the 
search space. 

Each particle in the swarm is iteratively updated according 
to the aforementioned characteristics. Assume the objective 
function of an optimization problem is defined as 
objective(Xi) and it is minimized. 

The personal best position of each particle is found by 
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where g is the current generation; X is the position of the 
particle. 
 

The global best position is found by 
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where min( )1( +∀ gpbest ) represents the function for get the 
minimum pbest(g+1). 
 

The equation for the new velocity of every particle is 
defined as  
 

)]()([)(                    
)]()([)()()1(

22

11

gXggbestgrc
gXgpbestgrcgVgV

ii

iiiii

−××+
−××+=+  (4)

where g is the current generation; c1 and c2 denote the 
acceleration coefficients; r1 and r2 are the uniform random 
values in the range of between 0 and 1; V is the velocity of the 
particle; X is the position of the particle. 
 

The current position of each particle is updated by 
)1()()1( ++=+ gVgXgX iii  (5)

 
2) PSO with inertia weight 

The original PSO is not effective for solution search. 
Therefore, Shi and Eberhart introduce a parameter called 
inertia weight (w) to the velocity updating equation [10]. 
They had estimated the influence for using inertia weight for 
the performance of PSO. The chosen inertia weight range 
[0.9, 1.2] was considered to be a good area [10]. The velocity 
updating equation for the PSO with inertia weight is given as 
follows: 
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where g is the current generation; w is inertia weight; c1 and 
c2 are the acceleration coefficients; r1 and r2 are the uniform 

random values in the range of between 0 and 1; V is the 
velocity of the particle; X is the position of the particle. 
 
3) The sine-based chaotic map with shift deviation 

chaotically adaptive inertia weight PSO 
The original PSO and PSO with inertia weight are always 

very ineffective for tracking nonlinear dynamic systems in 
most real-world applications. Therefore, we use the 
sine-based chaotic map with shift deviation to chaotically 
update the inertia weight value of the PSO. The inertia weight 
is changed by generation updating and is calculated as 
follows: 

⎩
⎨
⎧

++×
∈≤+×

+=+
           otherwise ,5.04/]1)4)([sin(

1) (0,)( ,2/ ,4/]1)4)([sin(
)1(

π
π

gw
gwGggw

sdgw (7)

where w is inertia weight; g is the current generation; G is the 
total iterations. 

C. Benchmark functions 
Five benchmark functions [12-15] for multimodal 

problems with many local optimums was used for evaluating 
the proposed method. They look to be the most difficult 
category of problems for many optimization methods. Table I 
lists their global optimum, search space and initial ranges. 
The five benchmark functions are shown as follows: 
 
1) Ackley’s function 
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2) Colville 
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3) Schaffer f6 
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4) Sum of different powers 

TABLE I 
GLOBAL OPTIMUM, SEARCH SPACE AND INITIAL RANGES OF THE FIVE 

BENCHMARK FUNCTIONS. 

Function
 f 

Global 
optimum Search space Initial range 

f1 20 [-32.768, 32.768]N [-32.768, 16.0]N 

f2 0 [-10.0, 10.0]N [-10.0, 10.0]N 

f3 0 [-100.0, 100.0]N [-100.0, 50.0]N 

f4 0 [-1.0, 1.0]N [-1.0, 1.0]N 

f5 0 [-0.5, 0.5]N [-0.5, 0.5]N 

N is the size of dimensions. 
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5) Weierstrass 

( )[ ]

( )[ ]
., k, b.a

baN

xbaxf

k

k

kk

N

i

k

k
i

kk

20max 350

,5.02cos                

)5.0(2cos)(

max 

0

1

max 

0
5

===

⋅−

⎟
⎠

⎞
⎜
⎝

⎛
+=

∑

∑ ∑

=

= =

π

π

 (12)

III. RESULTS AND DISCUSSION 
The experiments used five different sd values to test the 

sine-based chaotic map with shift deviation adaptive inertia 
weight PSO. Furthermore, the method is also compared to 
PSO with inertia weight method. The dimension of these 
benchmark functions is set to 10, i.e., N is 10. We implement 
the algorithm using JAVA for cross platform applications. 
The experiments were computed on Pentium 4 CPU 3.4 GHz 
with 1GB of RAM on Microsoft Windows XP SP3 
professional operating system. For the boundary process, we 
perform when the particles are over shot, the positions of the 
particles will be reset to the maximum limit of the search 
range. 

A. Parameter Settings 
Five main parameters were set for the proposed method, 

i,e., the number of iterations (10000), the particle swarm size 
(10), the inertia weight w (based on sd from 0.0 to 0.5 with 
the sine-based chaotically adaption), and the constriction 
factors c1 and c2 (2 and 2). We run 30 times to calculate the 
mean value, variation, standard deviation, and average 
running time. 

B. Experimental results 
1) The results based on five different sd values for the 

sine-based chaotic map with shift deviation adaptive 
inertia weight PSO 

Table II presents the mean, variation, standard deviation, 
and average running time of 30 runs for different sd on the 
five benchmark functions with 10 dimensions. The best 
results are shown in bold fonts. 

For f1, the method performed the optimal mean when sd 
was set from 0.0 to 0.5. When sd was set to 0.1, the method 
performed the best variation, and standard deviation; the 
average run time are slightly worse than that which when sd 
was set to 0.0. For f2 and f3, the method performed the best 
mean, variation, and standard deviation when sd was set to 
0.3, 0.4, and 0.5. Furthermore, the least average run time was 
spent when the sd was set to 0.3. For f4, the method 
performed the best mean, variation, and standard deviation 
when sd was set to 0.3; the method performed the second 
mean, variation, and standard deviation when sd was set to 
0.2. The shortest average run time is fall on that when sd was 
set to 0.5. Finally, for f5, the method performed all the best 
mean, variation, standard deviation, and average run time 
when sd was set to 0.4. 
 
2) Comparison of the method to PSO with inertia weight 

Here, we compare the sine-based chaotic map with shift 

deviation adaptive inertia weight PSO (sd is set to 0.3) to 
PSO with inertia weight method. The comparing result is 
shown in Table III. From the result, we get all the result of the 
proposed method in mean, variation, standard deviation, and 
average run time are superior to the PSO with inertia weight 
method except the average run time in f4. 

C. Discussion 
From the above results, we find sd is set to 0.3-0.5 has the 

better results in the five benchmark functions except the f1. 
Furthermore, the result also shows the proposed method 
better than the PSO with inertia weight method. The 
sine-based chaotic map with shift deviation can be seen as an 
algorithmic component that provides an improved 
performance of PSO. It changes inertia weight according to 
the chaotic adaption by iterations and give assigned inertia 
weight to guarantee minimum inertia weight value. Therefore, 
it will useful for specific problem to give more opportunities 
to find out optimal solution. 

IV. CONCLUSION 
A sine-based chaotic map chaotically adapts inertia weight 

of PSO based on different shift deviations (sd) is useful for 
improving the performance of PSO. The experimental results 
of the five multimodal benchmark functions with many local 
optima show that the method using sd 0.3-0.5 can get better 
results. Also, the method is superior to PSO with inertia 
weight when comparing their results. The shift deviation is 
useful to help us to improve the performance for specific 
problems with many local optima when using sine-based 
chaotic map to adapt inertia weight of PSO. 
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TABLE II 
SEARCH RESULT COMPARISONS FOR THE MEAN, VARIATION, STANDARD DEVIATION, AND AVERAGE RUN TIME OF 30 RUNS FOR THE FW-PSO AND SBCAW-PSO 

ON THE 10 TEST FUNCTIONS WITH 10 DIMENSIONS 

Function 
 f 

              sd 
Results 0.0 0.1 0.2 0.3 0.4 0.5 

f1 

Mean 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 
Var. 4.22E-09 2.79E-11 7.92E-07 1.78E-03 1.78E-03 3.16E-03 

Std. dev. 6.49E-05 5.28E-06 8.90E-04 4.21E-02 4.21E-02 5.62E-02 
Avg. run 
time (ms) 1180 1183 1290 1187 1188 1194 

f2 

Mean 1.26E-02 3.29E-02 1.98E-04 1.91E-05 3.98E-04 9.02E-03 
Var. 1.63E-04 3.04E-03 2.58E-07 2.25E-09 1.70E-07 7.09E-05 

Std. dev. 1.28E-02 5.51E-02 5.07E-04 4.75E-05 4.12E-04 8.42E-03 
Avg. run 
time (ms) 830 854 926 804 808 863 

f3 

Mean 3.63E-02 5.72E-03 1.30E-03 0 0 0 
Var. 4.87E-03 9.43E-05 1.13E-05 0 0 0 

Std. dev. 6.98E-02 9.71E-03 3.36E-03 0 0 0 
Avg. run 
time (ms) 1253 1089 976 802 813 869 

f4 

Mean 3.32E-18 1.24E-14 2.63E-187 3.07E-215 5.07E-90 5.16E-14 
Var. 1.85E-34 4.55E-27 0 0 7.70E-178 1.58E-26 

Std. dev. 1.36E-17 6.74E-14 0 0 2.78E-89 1.26E-13 
Avg. run 
time (ms) 1502 1454 1739 1469 1398 1248 

f5 

Mean 1.51E-01 4.94E-01 3.35E-01 1.68E-01 0 2.29E-01 
Var. 5.30E-01 6.07E-01 3.24E-01 3.08E-01 0 5.44E-01 

Std. dev. 7.28E-01 7.79E-01 5.69E-01 5.55E-01 0 7.37E-01 
Avg. run 
time (ms) 31477 31145 30481 25107 21619 30220 

f10 

Mean 1.26E-02 3.29E-02 1.98E-04 1.91E-05 3.98E-04 9.02E-03 
Var. 1.63E-04 3.04E-03 2.58E-07 2.25E-09 1.70E-07 7.09E-05 

Std. dev. 1.28E-02 5.51E-02 5.07E-04 4.75E-05 4.12E-04 8.42E-03 
Avg. run 
time (ms) 830 854 926 804 808 863 
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TABLE III 

COMPARISON OF THE SINE-BASED CHAOTIC MAP WITH SHIFT DEVIATION ADAPTIVE INERTIA WEIGHT PSO AND PSO WITH INERTIA WEIGHT METHOD. 

Function 
 f 

              sd 
Results PSO with inertia weight 

Sine-based chaotic map with shift 
deviation adaptive inertia weight PSO 

(sd = 3) 

f1 

Mean 2.03E+01 2.00E+01 
Var. 4.80E-03 1.78E-03 

Std. dev. 6.93E-02 4.21E-02 
Avg. run 
time (ms) 1281 1187 

f2 

Mean 1.24E-01 1.91E-05 
Var. 6.69E-03 2.25E-09 

Std. dev. 8.18E-02 4.75E-05 
Avg. run 
time (ms) 966 804 

f3 

Mean 3.89E-03 0 
Var. 2.34E-05 0 

Std. dev. 4.84E-03 0 
Avg. run 
time (ms) 1682 802 

f4 

Mean 1.28E-03 3.07E-215 
Var. 7.03E-07 0 

Std. dev. 8.38E-04 0 
Avg. run 
time (ms) 1330 1469 

f5 

Mean 7.60E+00 1.68E-01 
Var. 7.39E-01 3.08E-01 

Std. dev. 8.59E-01 5.55E-01 
Avg. run 
time (ms) 30380 25107 

f10 

Mean 2.03E+01 2.00E+01 
Var. 4.80E-03 1.78E-03 

Std. dev. 6.93E-02 4.21E-02 
Avg. run 
time (ms) 1281 1187 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I, 
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015




